
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Information and Computer Science Department

ICS431: Operating System
Project Two (Term 071)

Project Title:

Read/Write Locks with Quota

Project Objective:

- To demonstrate your understanding of Thread Creation and Execution concept.
- To demonstrate your understanding of Thread synchronization
- To demonstrate your understanding of reading/writing problem

Project Duration:
 You have 21 days (3 Weeks) to finish this project starting on the date of posting this project. The
exact deadline will be announced through the WebCT.

Project Submission:
 You are requested to submit both hardcopy and softcopy. Hardcopy should contain cover page,
your source code, and sample outputs. Softcopy (source code only) will be submitted through WebCT.

Project Rules:

1. Submitting your project after the deadline will result in ZERO mark.
2. Any cheating in the project will result to ZERO mark.
3. You are allowed to work in teams of Two.

Programming Assignment:
 This project is basically a programming assignment. Everything should be written in C language.
Your code will be tested on the Solaris operating system or on the Linux operating system. So, you have
to be sure that your code should be compiled and run on both operating systems.

Academic Honesty

This really should not be an issue, but recurring events have made the following necessary.
You are encouraged to discuss the project material and concepts with other students in the class.
However, all work that you submit must be your own. Under no circumstances may you look at anyone
else's code or show anyone else your code. And while you may discuss the concepts and techniques used
in your project, you may not discuss implementation details of the project itself.

If you are caught copying or otherwise turning in work that is not solely your own, you will fail the
course and a letter will be sent to your Department, CCSE, and to the Registrar office.

The bottom line is that you are expected to conduct yourself as a person of integrity — you are expected
to adhere to the highest standards of academic integrity. This means that plagiarism in any form is
completely unacceptable. As a (soon to be) computing professional, I encourage you to consult the code
of ethics appropriate to your discipline.

The Assignment
Implement a mutex that distinguishes between read locks and write locks. The read and write locks
should be granted according to the following logic

• If the mutex is locked for reading any new requests for a read lock should be granted
• If the mutex is locked for reading any new requests for write lock should be blocked
• If the mutex is locked for writing any new requests for read or write lock should be blocked

The mutex should grant access to blocked thread on an unlock according to the following logic
• If a writer unlocks, and there are writers and readers waiting then if the number of readers waiting

it more than N, then all readers should be allowed to get the lock. If the number of readers is less
than N then one write should be granted the lock.

• If the last reader unlocks and there are waiting writers then, one writer should be granted the lock.

This assignment is to be written in the C programming language. You will implement a RWMutex
abstraction that has the following functions (see below). You should define a RWMutex type
(rwmutex_t) and pass it as the first parameter to each of the functions. The prototypes for the
RWMutex abstraction are as follows:

rwmutex_t * create_rwmutex (int N)

Allocate and initialize a new rwmutex.

void write_lock (rwmutex_t *)

Get a write lock to the mutex. When the function returns, the thread has a write lock to the mutex.
The function should block until a write lock is obtained.

void read_lock (rwmutex_t *)

Get a read lock to the mutex. When the function returns, the thread has a read lock to the mutex.
The function should block if there are other threads that have a write block. Several threads can
hold a read lock at the same time.

void read_unlock (rwmutex_t *)

Release the read lock on the rwmutex. You have to make sure that the calling thread has a read
lock. You will have to store the thread_id of each thread that has a read lock

void write_unlock (rwmutex_t *)
Release the write lock on the rwmutex. The thread calling this functions should have a write lock
on the mutex.

Implementation Requirements
The entire implementation should be in the file rwmutex.c. You may NOT change the existing functions’
parameters or return types. A header file named rwmutex.h is required to declare the rwmutex type and
all the function prototypes. All operations need to be atomic which will require you to use mutexes and
conditional variables. You will also need to use pthread_equal() function to check if two thread ids are
same.

	The Assignment
	Implementation Requirements

