
Lempel-Ziv-Welch (LZW) Compression Algorithm

• Introduction to the LZW Algorithm

• LZW Encoding Algorithm

• LZW Decoding Algorithm

• LZW Limitations

LZW Encoding Algorithm
• If the message to be encoded consists of only one character, LZW outputs the

code for this character; otherwise it inserts two- or multi-character, overlapping*,
distinct patterns of the message to be encoded in a Dictionary.

*The last character of a pattern is the first character of the next pattern.

• The patterns are of the form: C0C1 . . . Cn-1Cn. The prefix of a pattern consists of
all the pattern characters except the last: C0C1 . . . Cn-1

LZW output if the message consists of more than one character:
If the pattern is not the last one; output: The code for its prefix.
If the pattern is the last one:

• if the last pattern exists in the Dictionary; output: The code for the pattern.
• If the last pattern does not exist in the Dictionary; output: code(lastPrefix) then

output: code(lastCharacter)

Note: LZW outputs codewords that are 12-bits each. Since there are 212 = 4096
codeword possibilities, the minimum size of the Dictionary is 4096; however since
the Dictionary is usually implemented as a hash table its size is larger than 4096.

LZW Encoding Algorithm (cont’d)
Initialize Dictionary with 256 single character strings and their corresponding ASCII
codes;

Prefix ← first input character;
CodeWord ← 256;
while(not end of character stream){

Char ← next input character;
if(Prefix + Char exists in the Dictionary)

Prefix ← Prefix + Char;
else{

Output: the code for Prefix;
insertInDictionary((CodeWord , Prefix + Char)) ;
CodeWord++;
Prefix ← Char;

}
}

Output: the code for Prefix;

Example 1: Compression using LZW
Encode the string BABAABAAA by the LZW encoding algorithm.

1. BA is not in the Dictionary; insert BA, output the code for its prefix: code(B)
2. AB is not in the Dictionary; insert AB, output the code for its prefix: code(A)
3. BA is in the Dictionary.

BAA is not in Dictionary; insert BAA, output the code for its prefix: code(BA)
4. AB is in the Dictionary.

ABA is not in the Dictionary; insert ABA, output the code for its prefix: code(AB)
5. AA is not in the Dictionary; insert AA, output the code for its prefix: code(A)
6. AA is in the Dictionary and it is the last pattern; output its code: code(AA)

The compressed message is: <66><65><256><257><65><260>

Example 2: Compression using LZW
Encode the string BABAABRRRA by the LZW encoding algorithm.

1. BA is not in the Dictionary; insert BA, output the code for its prefix: code(B)
2. AB is not in the Dictionary; insert AB, output the code for its prefix: code(A)
3. BA is in the Dictionary.

BAA is not in Dictionary; insert BAA, output the code for its prefix: code(BA)
4. AB is in the Dictionary.

ABR is not in the Dictionary; insert ABR, output the code for its prefix: code(AB)
5. RR is not in the Dictionary; insert RR, output the code for its prefix: code(R)
6. RR is in the Dictionary.

RRA is not in the Dictionary and it is the last pattern; insert RRA, output code for its prefix:
code(RR), then output code for last character: code(A)

The compressed message is: <66><65><256><257><82><260> <65>

LZW: Number of bits transmitted
Example: Uncompressed String: aaabbbbbbaabaaba

Number of bits = Total number of characters * 8
= 16 * 8
= 128 bits

Compressed string (codewords): <97><256><98><258><259><257><261>
Number of bits = Total Number of codewords * 12

= 7 * 12
= 84 bits

Note: Each codeword is 12 bits because the minimum Dictionary size is taken
as 4096, and

212 = 4096

LZW Decoding Algorithm
The LZW decompressor creates the same string table during decompression.

Initialize Dictionary with 256 ASCII codes and corresponding single character strings as
their translations;

PreviousCodeWord ← first input code;
Output: string(PreviousCodeWord) ;
Char ← character(first input code);
CodeWord ← 256;
while(not end of code stream){

CurrentCodeWord ← next input code ;
if(CurrentCodeWord exists in the Dictionary)

String ← string(CurrentCodeWord) ;
else

String ← string(PreviousCodeWord) + Char ;
Output: String;
Char ← first character of String ;
insertInDictionary((CodeWord , string(PreviousCodeWord) + Char));
PreviousCodeWord ← CurrentCodeWord ;
CodeWord++ ;

}

LZW Decoding Algorithm (cont’d)
Summary of LZW decoding algorithm:

output: string(first CodeWord);

while(there are more CodeWords){
if(CurrentCodeWord is in the Dictionary)
output: string(CurrentCodeWord);

else
output: PreviousOutput + PreviousOutput first character;

insert in the Dictionary: PreviousOutput + CurrentOutput first character;
}

Example 1: LZW Decompression
Use LZW to decompress the output sequence <66> <65> <256> <257> <65> <260>

1. 66 is in Dictionary; output string(66) i.e. B
2. 65 is in Dictionary; output string(65) i.e. A, insert BA
3. 256 is in Dictionary; output string(256) i.e. BA, insert AB
4. 257 is in Dictionary; output string(257) i.e. AB, insert BAA
5. 65 is in Dictionary; output string(65) i.e. A, insert ABA
6. 260 is not in Dictionary; output

previous output + previous output first character: AA, insert AA

Example 2: LZW Decompression
Decode the sequence <67> <70> <256> <258> <259> <257> by LZW decode algorithm.

1. 67 is in Dictionary; output string(67) i.e. C
2. 70 is in Dictionary; output string(70) i.e. F, insert CF
3. 256 is in Dictionary; output string(256) i.e. CF, insert FC
4. 258 is not in Dictionary; output previous output + C i.e. CFC, insert CFC
5. 259 is not in Dictionary; output previous output + C i.e. CFCC, insert CFCC
6. 257 is in Dictionary; output string(257) i.e. FC, insert CFCCF

LZW: Limitations
• What happens when the dictionary gets too large?

• One approach is to clear entries 256-4095 and start building the dictionary again.

• The same approach must also be used by the decoder.

Exercises

• Use LZW to trace encoding the string ABRACADABRA.

• Write a Java program that encodes a given string using LZW.

• Write a Java program that decodes a given set of encoded codewords using
LZW.

