
Lempel-Ziv Compression Techniques

• Classification of Lossless Compression techniques

• Introduction to Lempel-Ziv Encoding: LZ77 & LZ78

• LZ78 Encoding Algorithm

• LZ78 Decoding Algorithm

Classification of Lossless Compression Techniques
Recall what we studied before:

• Lossless Compression techniques are classified into static, adaptive (or dynamic), and
hybrid.

• Static coding requires two passes: one pass to compute probabilities
(or frequencies) and determine the mapping, and a second pass to encode.

• Examples of Static techniques: Static Huffman Coding

• All of the adaptive methods are one-pass methods; only one scan of the
message is required.

• Examples of adaptive techniques: LZ77, LZ78, LZW, and Adaptive
Huffman Coding

Introduction to Lempel-Ziv Encoding
• Data compression up until the late 1970's mainly directed towards creating

better methodologies for Huffman coding.

• An innovative, radically different method was introduced in1977 by
Abraham Lempel and Jacob Ziv.

• This technique (called Lempel-Ziv) actually consists of two considerably
different algorithms, LZ77 and LZ78.

• Due to patents, LZ77 and LZ78 led to many variants:

• The zip and unzip use the LZH technique while UNIX's compress
methods belong to the LZW and LZC classes.

LZHLZBLZSSLZRLZ77
Variants

LZFGLZJLZMWLZTLZCLZWLZ78
Variants

LZ78 Compression Algorithm
LZ78 inserts one- or multi-character, non-overlapping, distinct patterns of
the message to be encoded in a Dictionary.

The multi-character patterns are of the form: C0C1 . . . Cn-1Cn. The prefix of
a pattern consists of all the pattern characters except the last: C0C1 . . . Cn-1

LZ78 Output:

Note: The dictionary is usually implemented as a hash table.

LZ78 Compression Algorithm (cont’d)
Dictionary ← empty ; Prefix ← empty ; DictionaryIndex ← 1;
while(characterStream is not empty)
{

Char ← next character in characterStream;
if(Prefix + Char exists in the Dictionary)

Prefix ← Prefix + Char ;
else
{

if(Prefix is empty)
CodeWordForPrefix ← 0 ;

else
CodeWordForPrefix ← DictionaryIndex for Prefix ;

Output: (CodeWordForPrefix, Char) ;
insertInDictionary((DictionaryIndex , Prefix + Char));
DictionaryIndex++ ;
Prefix ← empty ;

}
}
if(Prefix is not empty)
{

CodeWordForPrefix ← DictionaryIndex for Prefix;
Output: (CodeWordForPrefix ,) ;

}

Example 1: LZ78 Compression
Encode (i.e., compress) the string ABBCBCABABCAABCAAB using the LZ78 algorithm.

The compressed message is: (0,A)(0,B)(2,C)(3,A)(2,A)(4,A)(6,B)
Note: The above is just a representation, the commas and parentheses are not transmitted;
we will discuss the actual form of the compressed message later on in slide 12.

Example 1: LZ78 Compression (cont’d)

1. A is not in the Dictionary; insert it
2. B is not in the Dictionary; insert it
3. B is in the Dictionary.

BC is not in the Dictionary; insert it.
4. B is in the Dictionary.

BC is in the Dictionary.
BCA is not in the Dictionary; insert it.

5. B is in the Dictionary.
BA is not in the Dictionary; insert it.

6. B is in the Dictionary.
BC is in the Dictionary.
BCA is in the Dictionary.
BCAA is not in the Dictionary; insert it.

7. B is in the Dictionary.
BC is in the Dictionary.
BCA is in the Dictionary.
BCAA is in the Dictionary.
BCAAB is not in the Dictionary; insert it.

Example 2: LZ78 Compression
Encode (i.e., compress) the string BABAABRRRA using the LZ78 algorithm.

The compressed message is: (0,B)(0,A)(1,A)(2,B)(0,R)(5,R)(2,)

Example 2: LZ78 Compression (cont’d)
1. B is not in the Dictionary; insert it
2. A is not in the Dictionary; insert it
3. B is in the Dictionary.

BA is not in the Dictionary; insert it.
4. A is in the Dictionary.

AB is not in the Dictionary; insert it.
5. R is not in the Dictionary; insert it.
6. R is in the Dictionary.

RR is not in the Dictionary; insert it.
7. A is in the Dictionary and it is the last input character; output a pair

containing its index: (2,)

Example 3: LZ78 Compression
Encode (i.e., compress) the string AAAAAAAAA using the LZ78 algorithm.

1. A is not in the Dictionary; insert it
2. A is in the Dictionary

AA is not in the Dictionary; insert it
3. A is in the Dictionary.

AA is in the Dictionary.
AAA is not in the Dictionary; insert it.

4. A is in the Dictionary.
AA is in the Dictionary.
AAA is in the Dictionary and it is the last pattern; output a pair containing its index:
(3,)

LZ78 Compression: Number of bits transmitted
• Example: Uncompressed String: ABBCBCABABCAABCAAB

Number of bits = Total number of characters * 8
= 18 * 8
= 144 bits

• Suppose the codewords are indexed starting from 1:
Compressed string(codewords): (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

Codeword index 1 2 3 4 5 6 7

• Each code word consists of an integer and a character:

• The character is represented by 8 bits.

• The number of bits n required to represent the integer part of the codeword with

index i is given by:

• Alternatively number of bits required to represent the integer part of the codeword

with index i is the number of significant bits required to represent the integer i – 1

LZ78 Compression: Number of bits transmitted (cont’d)

Codeword (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)
index 1 2 3 4 5 6 7
Bits: (1 + 8) + (1 + 8) + (2 + 8) + (2 + 8) + (3 + 8) + (3 + 8) + (3 + 8) = 71 bits

The actual compressed message is: 0A0B10C11A010A100A110B

where each character is replaced by its binary 8-bit ASCII code.

LZ78 Decompression Algorithm
Dictionary ← empty ; DictionaryIndex ← 1 ;
while(there are more (CodeWord, Char) pairs in codestream){

CodeWord ← next CodeWord in codestream ;
Char ← character corresponding to CodeWord ;
if(CodeWord = = 0)

String ← empty ;
else

String ← string at index CodeWord in Dictionary ;
Output: String + Char ;
insertInDictionary((DictionaryIndex , String + Char)) ;
DictionaryIndex++;

}

Summary:
input: (CW, character) pairs
output:

if(CW == 0)
output: currentCharacter

else
output: stringAtIndex CW + currentCharacter

Insert: current output in dictionary

Example 1: LZ78 Decompression
Decode (i.e., decompress) the sequence (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

The decompressed message is: ABBCBCABABCAABCAAB

Example 2: LZ78 Decompression
Decode (i.e., decompress) the sequence (0, B) (0, A) (1, A) (2, B) (0, R) (5, R) (2,)

The decompressed message is: BABAABRRRA

Example 3: LZ78 Decompression

Decode (i.e., decompress) the sequence (0, A) (1, A) (2, A) (3,)

The decompressed message is: AAAAAAAAA

Exercises

1. Use LZ78 to trace encoding the string
SATATASACITASA.

2. Write a Java program that encodes a given string using
LZ78.

3. Write a Java program that decodes a given set of encoded
codewords using LZ78.

