Lempel-Ziv Compression Techniques

Classification of Lossless Compression technigues
Introduction to Lempel-Ziv Encoding: LZ77 & LZ78
LZ78 Encoding Algorithm

LZ78 Decoding Algorithm

Classification of Lossless Compression Techniques

Recall what we studied before:

« Lossless Compression techniques are classified into static, adaptive (or dynamic), and
hybrid.

« Static coding requires two passes: one pass to compute probabilities
(or frequencies) and determine the mapping, and a second pass to encode.

« Examples of Static techniques: Static Huffman Coding

» All of the adaptive methods are one-pass methods; only one scan of the
message Is required.

« Examples of adaptive techniques: LZ77, LZ78, LZW, and Adaptive
Huffman Coding

Introduction to Lempel-Ziv Encoding

» Data compression up until the late 1970's mainly directed towards creating
better methodologies for Huffman coding.

* Aninnovative, radically different method was introduced in1977 by
Abraham Lempel and Jacob Ziv.

e This technique (called Lempel-Ziv) actually consists of two considerably
different algorithms, LZ77 and LZ78.

e Due to patents, LZ77 and LZ78 led to many variants:

LZ77 LZR LZSS LZB LZH

Variants

LZ78 LZW LZC LZT| LZMW LZJ | LZFG
Variants

e The zip and unzip use the LZH technique while UNIX's compress
methods belong to the LZW and LZC classes.

LLZ78 Compression Algorithm

LZ78 inserts one- or multi-character, non-overlapping, distinct patterns of

the message to be encoded in a Dictionary.

The multi-character patterns are of the form: C,C, ... C_,C.. The prefix of
a pattern consists of all the pattern characters except the last: C,C,...C_,

LZ78 Output:

(0, char)

if one-character pattern 13 not m Dictionary,

(DictionaryPrefixIndex, lastPatternCharacter)

if multi-character pattern 15 not 1n Dictionary.

(DictionaryPrefixIndex,)

if" the last mput character or the last pattern 13
in the Dictionary.

Note: The dictionary is usually implemented as a hash table.

LLZ78 Compression Algorithm (cont’d)

Dictionary < empty ; Prefix < empty ; Dictionarylndex <« 1;
while(characterStream is not empty)

{
Char < next character in characterStream;
if(Prefix + Char exists in the Dictionary)
Prefix <« Prefix + Char ;
else
{
if(Prefix is empty)
CodeWordForPrefix « 0;
else
CodeWordForPrefix « Dictionarylndex for Prefix ;
Output: (CodeWordForPrefix, Char) ;
insertinDictionary((Dictionarylndex , Prefix + Char));
Dictionarylndex++ ;
Prefix « empty ;
}
}
iIf(Prefix is not empty)
{

CodeWordForPrefix « Dictionarylndex for Prefix;
Output: (CodeWordForPrefix ,);

}

Example 1: LZ78 Compression

Encode (i.e., compress) the string ABBCBCABABCAABCAAB using the LZ78 algorithm.

ABBOBCABABCAABCAAB)

Dictionary
output index string
(0, A) 1 A
(0, B) 2 B
(2, C) 3 BC
(3, A) 4 BCA
(2, A) 5 BA
(4, A) 6 BCAA
(6, B) 7 BCAAB

The compressed message is: (0,A)(0,B)(2,C)(3,A)(2,A)(4,A)(6,B)

Note: The above is just a representation, the commas and parentheses are not transmitted;

we will discuss the actual form of the compressed message later on in slide 12.

Example 1: LZ78 Compression (cont’d)

1. A'is not in the Dictionary; insert it
2. B is not in the Dictionary; insert it
3. B is in the Dictionary.
BC is not in the Dictionary; insert it.
4. B is in the Dictionary.
BC is in the Dictionary.
BCA is not in the Dictionary; insert it.
5. B is in the Dictionary.
BA is not in the Dictionary; insert it.
6. B is in the Dictionary.
BC is in the Dictionary.
BCA is in the Dictionary.
BCAA is not in the Dictionary; insert it.
7. B is in the Dictionary.
BC is in the Dictionary.
BCA is in the Dictionary.
BCAA is in the Dictionary.
BCAAB is not in the Dictionary; insert it.

Example 2: LZ78 Compression
Encode (i.e., compress) the string BABAABRRRA using the LZ78 algorithm.

BABARBDRERA
Dictionary
output index string

- (0, B) 1 B
- (0, A) 2 A
- (1, A) 3 BA
P (2, B) 4 AB
» | (0O,R) & R
- (5. R) 6 ER
> (2,)

The compressed message is: (0,B)(0,A)(1,A)(2,B)(0,R)(5,R)(2,)

N

Example 2: LZ78 Compression (cont’d)

B is not in the Dictionary; insert it

. A'Is not in the Dictionary; insert it
. B is in the Dictionary.

BA is not in the Dictionary; insert it.
A s in the Dictionary.

AB is not in the Dictionary; insert it.
R is not in the Dictionary; insert it.

. R is in the Dictionary.

RR is not in the Dictionary; insert it.
A Is in the Dictionary and it is the last input character; output a pair
containing its index: (2,)

Example S5. LZL/o Compression
Encode (i.e., compress) the string AAAAAAAAA using the LZ78 algorithm.

1 2 3 4
AAAIA A AJA A A)

Dictionary
output index string
» | (0,A) 1 A
> (1, A) 2 AA
- (2, A) 3 AAA
> (3.)

1. Ais not in the Dictionary; insert it
2. Ais in the Dictionary
AA is not in the Dictionary; insert it
3. Alis in the Dictionary.
AA is in the Dictionary.
AAA is not in the Dictionary; insert it.
4. A'is in the Dictionary.
AA is in the Dictionary.
AAA is in the Dictionary and it is the last pattern; output a pair containing its index:

3.)

LLZ78 Compression: Number of bits transmitted
» Example: Uncompressed String: ABBCBCABABCAABCAAB
Number of bits = Total number of characters * 8
=18*8
= 144 bits
* Suppose the codewords are indexed starting from 1:
Compressed string(codewords): (0, A) (0,B) (2,C) (3, A) (2, A) (4, A) (6, B)
Codeword index 1 2 3 4 5 6 7
 Each code word consists of an integer and a character:
» The character is represented by 8 bits.
» The number of bits n required to represent the integer part of the codeword with

index i is given by: 1 if i=1

[1og,i | ifi>1

o Alternatively number of bits required to represent the integer part of the codeword

with index i is the number of significant bits required to represent the integer i — 1

LLZ78 Compression: Number of bits transmitted (cont’d)

index mndex - 1 hits Mumber of significant hits
1 0 I 1
2 1 1
3 4 10 4
4 3 11
4 4 100 3
£ 5 101
7 fi 110
B 7 111
5 & 1o0n 4
10 5 1001
11 10 1010
12 11 1011
{55 14 1100
14 13 1101
15 14 1110
16 15 1111
Codeword (0, A) o0,B) (2,C) @B,A) (2,A) 4, A (6,B)
index 1 2 3 4 5 6 /
Bits: (1+8)+(L+8)+(2+8)+(2+8)+(3+8)+(3+8)+(3+8) = 71 bits

The actual compressed message is: 0AOB10C11A010A100A110B

where each character is replaced by its binary 8-bit ASCII code.

LLZ78 Decompression Algorithm

Dictionary <— empty ; Dictionarylndex <— 1 ;
while(there are more (CodeWord, Char) pairs in codestream){
CodeWord « next CodeWord in codestream ;
Char « character corresponding to CodeWord ;
iIf(CodeWord = =0)
String <— empty ;
else
String < string at index CodeWord in Dictionary ;
Output: String + Char ;
insertinDictionary((Dictionarylndex , String + Char)) ;
Dictionarylndex++;

}
Summary:
» input: (CW, character) pairs
> output:
if(CW == 0)
output: currentCharacter
else

output: stringAtindex CW + currentCharacter
» Insert: current output in dictionary

Example 1: LZ78 Decompression
Decode (i.e., decompress) the sequence (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

1 2 3 4 s 0

0. A) (0. B) 2. C) 3. A) (2. A) (4. A) (6. B)

R T T T B

& B string(2) string(3) string(2) string(d) string(6)
g + A i + 4 + B
Dictionary
output index string
. | 1 A
e | B 2 B
» | BC 3 EC
» | BECA 4 ECA
» |BA 5 BA
= | BCAA |6 BCAA
- BECAAR |7 ECAAR

The decompressed message is: ABBCBCABABCAABCAAB

Example 2: LZ78 Decompression
Decode (i.e., decompress) the sequence (0, B) (0, A) (1, A) (2,B) (0,R) (5, R) (2,)

Dictionary
output index string
E 1 E
A Z A
EA 3 BEA
AR 4 AR
E. 5 E
EE & EE
&

The decompressed message is;: BABAABRRRA

Example 3: LZ78 Decompression

Decode (i.e., decompress) the sequence (0, A) (1, A) (2, A) (3,)

Dictionaty
output tricles string
A 1 A
A4 2 A8
ALY A AAL
AAL

The decompressed message is: AAAAAAAAA

Exercises

1. Use LZ78 to trace encoding the string
SATATASACITASA.

2. Write a Java program that encodes a given string using
LZ78.

3. Write a Java program that decodes a given set of encoded
codewords using LZ78.

