
Testing for Connectedness and Cycles

• Connectedness of an Undirected Graph

• Implementation of Connectedness detection Algorithm.

• Implementation of Strong Connectedness Algorithm.

• Cycles in a Directed Graph.

• Implementation of a Cycle detection Algorithm.

• Review Questions.

Connectedness of an Undirected Graph

• An undirected graph G = (V, E) is connected if there is a path
between every pair of vertices.

• Although the figure below appears to be two graphs, it is actually a
single graph.

• Clearly, G is not connected. e.g. no path between A and D.

• G consists of two unconnected parts, each of which is a connected
sub-graph --- connected components.

V = {A, B, C, D, E, F}

E = {{A, B}, {A, C}, {B, C}, {D, E}, {E, F}}

Implementation of Connectedness Algorithm
• A simple way to test for connectedness in an undirected graph is to

use either depth-first or breadth-first traversal - Only if all the vertices
are visited is the graph connected. The algorithm uses the following
visitor:

public class CountingVisitor extends AbstractVisitor {
protected int count;
public int getCount(){ return count;}
public void visit(Object obj) {count++;}

}

• Using the CountingVisitor, the isConnected method is implemented
as follows:

public boolean isConnected() {
CountingVisitor visitor = new CountingVisitor();
Iterator i = getVertices();
Vertex start = (Vertex) i.next();
breadthFirstTraversal(visitor, start);
return visitor.getCount() == numberOfVertices;

}

Connectedness of a Directed Graph
• A directed graph G = (V, E) is strongly connected if there

is a directed path between every pair of vertices.

• Is the directed graph below connected?

– G is not strongly connected. No path between any of the vertices
in {D, E, F}

– However, G is weakly connected since the underlying undirected
graph is connected.

V = {A, B, C, D, E, F}

E = {(A, B), (B, C), (C, A), (B, E), (D, E), (E, F),
(F, D)

Implementation of Strong Connectedness Algorithm

• A simple way to test for strong connectedness is to use |V|
traversals - The graph is strongly connected if all the vertices are
visited in each traversal.

public boolean isStronglyConnected() {
if (!this.isDirected())

throw new InvalidOperationException(
"Invalid for Undirected Graph");

Iterator it = getVertices();
while(it.hasNext()) {

CountingVisitor visitor = new CountingVisitor();
breadthFirstTraversal(visitor, (Vertex) it.next());
if(visitor.getCount() != numberOfVertices)

return false;
}
return true;

}

• Implementation of weak connectedness is done in the Lab.

Cycles in a Directed Graph

• An easy way to detect the presence of cycles in a directed graph is to
attempt a topological order traversal.

– This algorithm visits all the vertices of a directed graph if the graph has no
cycles.

• In the following graph, after A is visited and removed, all the remaining
vertices have in-degree of one.

• Thus, a topological order traversal cannot complete. This is because of the
presence of the cycle { B, C, D, B}.

public boolean isCyclic() {
CountingVisitor visitor = new CountingVisitor();
topologicalOrderTraversal(visitor);
return visitor.getCount() != numberOfVertices;

}

Review Questions

1. Every tree is a directed, acyclic graph (DAG), but there exist DAGs that are not
trees.
a) How can we tell whether a given DAG is a tree?
b) Devise an algorithm to test whether a given DAG is a tree.

2. Consider an acyclic, connected, undirected graph G that has n vertices. How
many edges does G have?

3. In general, an undirected graph contains one or more connected components.
a) Devise an algorithm that counts the number of connected components in a
graph.
b) Devise an algorithm that labels the vertices of a graph in such a way that all
the vertices in a given connected component get the same label and vertices in
different connected components get different labels.

4. Devise an algorithm that takes as input a graph, and a pair of vertices, v and w,
and determines whether w is reachable from v.

