
Graph Traversals

• Depth-First Traversals.
– Algorithms.
– Example.
– Implementation.

• Breadth-First Traversal.
– The Algorithm.
– Example.
– Implementation.

• Review Questions.

Depth-First Traversal Algorithm
• In this method, After visiting a vertex v, which is adjacent to w1, w2,

w3, ...; Next we visit one of v's adjacent vertices, w1 say. Next, we
visit all vertices adjacent to w1 before coming back to w2, etc.

• Must keep track of vertices already visited to avoid cycles.

• The method can be implemented using recursion or iteration.

• The iterative preorder depth-first algorithm is:

1 push the starting vertex onto the stack
2 while(stack is not empty){
3 pop a vertex off the stack, call it v
4 if v is not already visited, visit it
5 push vertices adjacent to v, not visited, onto the stack
6 }

• Note: Adjacent vertices can be pushed in any order; but to obtain a unique

traversal, we will push them in reverse alphabetical order.

Example
• Demonstrates depth-first traversal using an explicit stack.

Order of
Traversal StackA B C F E G D H I

Recursive preorder Depth-First Traversal Implementation

dfsPreorder(v){
visit v;
for(each neighbour w of v)

if(w has not been visited)
dfsPreorder(w);

}

• The following is the code for the recursive preorderDepthFirstTraversal
method of the AbstractGraph class:

public void preorderDepthFirstTraversal(Visitor visitor, Vertex start)
{

boolean visited[] = new boolean[numberOfVertices];
for(int v = 0; v < numberOfVertices; v++)

visited[v] = false;
preorderDepthFirstTraversal(visitor, start, visited);

}

Recursive preorder Depth-First Traversal Implementation (cont’d)

private void preorderDepthFirstTraversal(Visitor visitor,
Vertex v, boolean[] visited)

{
if(visitor.isDone())

return;
visitor.visit(v);
visited[getIndex(v)] = true;

Iterator p = v.getSuccessors();
while(p.hasNext()) {

Vertex to = (Vertex) p.next();
if(! visited[getIndex(to)])

preorderDepthFirstTraversal(visitor, to, visited);
}

}

Recursive preorder Depth-First Traversal Implementation (cont’d)

At each stage, a set of unvisited
adjacent vertices of the current vertex
is generated.

Recursive postorder Depth-First Traversal Implementation

dfsPostorder(v){
mark v;
for(each neighbour w of v)

if(w is not marked)
dfsPostorder(w);

visit v;
}

•The following is the code for the recursive postorderDepthFirstTraversal method
of the AbstractGraph class:

public void postorderDepthFirstTraversal(Visitor visitor,
Vertex start)

{
boolean visited[] = new boolean[numberOfVertices];
for(int v = 0; v < numberOfVertices; v++)

visited[v] = false;

postorderDepthFirstTraversal(visitor, start, visited);
}

Recursive postorder Depth-First Traversal Implementation (cont’d)

private void postorderDepthFirstTraversal(
Visitor visitor, Vertex v, boolean[] visited)

{
if(visitor.isDone())

return;

// mark v
visited[getIndex(v)] = true;

Iterator p = v.getSuccessors();
while(p.hasNext()){

Vertex to = (Vertex) p.next();
if(! visited[getIndex(to)])

postorderDepthFirstTraversal(visitor, to, visited);
}

// visit v
visitor.visit(v);

}

Recursive postorder Depth-First Traversal Implementation (cont’d)

At each stage, a set of unmarked
adjacent vertices of the current vertex
is generated.

Breadth-First Traversal Algorithm
• In this method, After visiting a vertex v, we must visit all its adjacent

vertices w1, w2, w3, ..., before going down next level to visit
vertices adjacent to w1 etc.

• The method can be implemented using a queue.

• A boolean array is used to ensure that a vertex is enqueued only
once.

1 enqueue the starting vertex
2 while(queue is not empty){
3 dequeue a vertex v from the queue;
4 visit v.
5 enqueue vertices adjacent to v that were never enqueued;
6 }

• Note: Adjacent vertices can be enqueued in any order; but to obtain a unique

traversal, we will enqueue them in alphabetical order.

Example
• Demonstrating breadth-first traversal using a queue.

Order of
Traversal Queue rearA B D E C G F H I

Queue front

Breadth-First Traversal Implementation
public void breadthFirstTraversal(Visitor visitor, Vertex start){

boolean enqueued[] = new boolean[numberOfVertices];
for(int i = 0; i < numberOfVertices; i++) enqueued[i] = false;

Queue queue = new QueueAsLinkedList();
enqueued[getIndex(start)] = true;
queue.enqueue(start);

while(!queue.isEmpty() && !visitor.isDone()) {
Vertex v = (Vertex) queue.dequeue();
visitor.visit(v);
Iterator it = v.getSuccessors();
while(it.hasNext()) {

Vertex to = (Vertex) it.next();
int index = getIndex(to);
if(!enqueued[index]) {

enqueued[index] = true;
queue.enqueue(to);

}
}

}
}

Review Questions

1. Considera depth-first traversal of the undirected graph GA shown above,
starting from vertex a.

• List the order in which the nodes are visited in a preorder traversal.
• List the order in which the nodes are visited in a postorder traversal

2. Repeat exercise 1 above for a depth-first traversal starting from vertex d.
3. List the order in which the nodes of the undirected graph GA shown above are

visited by a breadth first traversal that starts from vertex a. Repeat this
exercise for a breadth-first traversal starting from vertex d.

4. Repeat Exercises 1 and 3 for the directed graph GB.

