
AVL Search Trees

• Inserting in an AVL tree

• Insertion implementation

• Deleting from an AVL tree

Insertion
• Insert using a BST insertion algorithm.
• Rebalance the tree if an imbalance occurs.
• An imbalance occurs if a node's balance factor changes from -1 to -2

or from+1 to +2.
• Rebalancing is done at the deepest or lowest unbalanced ancestor of

the inserted node.

• There are three insertion cases:
1. Insertion that does not cause an imbalance.

2. Same side (left-left or right-right) insertion that causes an
imbalance.
• Requires a single rotation to rebalance.

3. Opposite side (left-right or right-left) insertion that causes an
imbalance.
• Requires a double rotation to rebalance.

Insertion: case 1

• Example: An insertion that does not cause an imbalance.

Insert 14

Insertion: case 2
• Case 2a: The lowest node (with a balance factor of -2) had a taller

left-subtree and the insertion was on the left-subtree of its left child.
• Requires single right rotation to rebalance.

Insert 3

right rotation, with node
10 as pivot

-2

-1

Insertion: case 2 (contd)
• Case 2b: The lowest node (with a balance factor of +2) had a taller

right-subtree and the insertion was on the right-subtree of its right
child.

• Requires single left rotation to rebalance.

+2

+1

Insert 45
left rotation, with node 30
as the pivot

Insertion: case 3
• Case 3a: The lowest node (with a balance factor of -2) had a taller

left-subtree and the insertion was on the right-subtree of its left child.
• Requires a double left-right rotation to rebalance.

Insert 7

left rotation, with node 5
as the pivot

right rotation, with node 10
as the pivot

-2

+1

Insertion: case 3 (contd)
• Case 3b: The lowest node (with a balance factor of +2) had a taller

right-subtree and the insertion was on the left-subtree of its right
child.

• Requires a double right-left rotation to rebalance.

Insert 15

+2

-1

right rotation, with node 16
as the pivot

left rotation, with node 9
as the pivot

AVL Rotation Summary

-2

-1

-2

+1 +1 -1

+2+2

Single
left
rotation

Double
left-right
rotation

Single
right
rotation

Double
right-left
rotation

Insertion Implementation
• The insert method of the AVLTree class is:

Recall that the insert method of the BinarySearchTree class is:

public void insert(Comparable comparable){
if(isEmpty()) attachKey(comparable);
else {

Comparable key = (Comparable) getKey();
if(comparable.compareTo(key)==0)
throw new IllegalArgumentException("duplicate key");

else if (comparable.compareTo(key)<0)
getLeftBST().insert(comparable);

else
getRightBST().insert(comparable);

}
}

public void insert(Comparable comparable){
super.insert(comparable);
balance();

}

Insertion Implementation (contd)
• The AVLTree class overrides the attachKey method of the

BinarySearchTree class:

public void attachKey(Object obj)
{

if(!isEmpty())
throw new InvalidOperationException();

else
{

key = obj;
left = new AVLTree();
right = new AVLTree();
height = 0;

}
}

Insertion Implementation (contd)

protected void balance(){
adjustHeight();
int balanceFactor = getBalanceFactor();
if(balanceFactor == -2){

if(getLeftAVL().getBalanceFactor() < 0)
rotateRight();

else
rotateLeftRight();

}
else if(balanceFactor == 2){

if(getRightAVL().getBalanceFactor() > 0)
rotateLeft();

else
rotateRightLeft();

}
}

Deletion

• Delete by a BST deletion by copying algorithm.
• Rebalance the tree if an imbalance occurs.
• There are three deletion cases:

1. Deletion that does not cause an imbalance.
2. Deletion that requires a single rotation to rebalance.
3. Deletion that requires two or more rotations to rebalance.

• Deletion case 1 example:

Delete 14

Deletion: case 2 examples

Delete 40
right rotation, with node 35
as the pivot

Deletion: case 2 examples (contd)

Delete 32
left rotation, with node 44
as the pivot

Deletion: case 3 examples

Delete 40

0

right rotation, with node 35
as the pivot

right rotation, with
node 30 as the pivot

