
Binary Heaps
• What is a Binary Heap?

• Array representation of a Binary Heap

• MinHeap implementation

• Operations on Binary Heaps:
• enqueue
• dequeue
• deleting an arbitrary key
• changing the priority of a key

• Building a binary heap
• top down approach
• bottom up approach

• Heap Applications:
• Heap Sort
• Heap as a priority queue

What is a Binary Heap?
• A binary heap is a complete binary tree with one (or both) of the following

heap order properties:
• MinHeap property: Each node must have a key that is less or equal to

the key of each of its children.
• MaxHeap property: Each node must have a key that is greater or equal

to the key of each of its children.
• A binary heap satisfying the MinHeap property is called a MinHeap.
• A binary heap satisfying the MaxHeap property is called a MaxHeap.
• A binary heap with all keys equal is both a MinHeap and a MaxHeap.
• Recall: A complete binary tree may have missing nodes only on the right

side of the lowest level.

All levels except the bottom one
must be fully populated with nodes

All missing nodes, if any, must be
on the right side of the lowest level

MinHeap and non-MinHeap examples

21

24

65 26 32

31 19

16

68

13

A MinHeap

Violates MinHeap property
21>6

21

6

65 26 32

31 19

16

68

13

Not a Heap

21

24

65 26 32

31 19

16

68

13

Violates heap structural property

Not a Heap

21

24

65 26 32

31 19

16

13

Violates heap structural property

Not a Heap

MaxHeap and non-MaxHeap examples

65

24

15 20 31

32 23

46

25

68

A MaxHeap

Violates MaxHeap property
65 < 67

Not a Heap

65

67

15 20 31

32 23

46

25

68

Not a Heap
50

24

15 20 25

31 19

40

38

70

21

19

2 5 15

18 10

16

30Not a Heap

Violates heap structural property Violates heap structural property

Array Representation of a Binary Heap
• A heap is a dynamic data structure that is represented and

manipulated more efficiently using an array.
• Since a heap is a complete binary tree, its node values can be

stored in an array, without any gaps, in a breadth-first order, where:
Value(node i+1) array[i], for i > 0

21

24

65 26 32

31 19

16

68

13

32266568193124162113
9876543210

• The root is array[0]
• The parent of array[i] is array[(i – 1)/2], where i > 0
• The left child, if any, of array[i] is array[2i+1].
• The right child, if any, of array[i] is array[2i+2].

Array Representation of a Binary Heap (contd.)
• We shall use an implementation in which the heap elements are

stored in an array starting at index 1.
Value(node i) array[i] , for i > 1

21

24

65 26 32

31 19

16

68

13

32266568193124162113
9876543210 10

• The root is array[1].
• The parent of array[i] is array[i/2], where i > 1
• The left child, if any, of array[i] is array[2i].
• The right child, if any, of array[i] is array[2i+1].

MinHeap Implementation

• A binary heap can serve as a priority queue
• Our MinHeap class will implement the following

PriorityQueue interface

public interface PriorityQueue extends Container{

public abstract void enqueue(Comparable comparable);

public abstract Comparable findMin();

public abstract Comparable dequeueMin();
}

MinHeap Implementation (contd.)
public class BinaryHeap extends AbstractContainer

implements PriorityQueue {

protected Comparable array[];

public BinaryHeap(int i){
array = new Comparable[i + 1];

}

public BinaryHeap(Comparable[] comparable) {
this(comparable.length);
for(int i = 0; i < comparable.length; i++)

array[i + 1] = comparable[i];
count = comparable.length;

buildHeapBottomUp();
}

MinHeap enqueue
• The pseudo code algorithm for enqueing a key in a MinHeap is:

1 enqueue(e1)
2 {
3 if(the heap is full) throw an exception ;
4 insert e1 at the end of the heap ;
5 while(e1 is not in the root node and e1 < parent(e1))
6 swap(e1 , parent(e1)) ;
7 }

• The process of swapping an element with its parent, in order to
restore the heap order property is called percolate up, sift up, or
reheapification upward.

• Thus, the steps for enqueue are:
1. Enqueue the key at the end of the heap.
2. As long as the heap order property is violated, percolate up.

MinHeap Insertion Example

21

24

65 26 32

31 19

16

68

13
Insert 18 21

24

65 26 32

31 19

16

68

13

18

Percolate up

18

24

65 26 32

21 19

16

68

13

31

21

24

65 26 32

18 19

16

68

13

31

Percolate up

MinHeap enqueue implementation
• To have better efficiency, we avoid repeated swapping
• We find a place (hole) for the new key, move the hole upward when

needed, and at the end, put the key into the hole

public void enqueue(Comparable comparable){
if(isFull()) throw new ContainerFullException();

int hole = ++count;

// percolate up via a hole
while(hole > 1 &&

array[hole / 2].compareTo(comparable)>0){
array[hole] = array[hole / 2];
hole = hole / 2 ;

}
array[hole] = comparable;

}

public boolean isFull(){
return count == array.length - 1;

}

MinHeap dequeue
• The pseudo code algorithm for deleting the root key in a MinHeap

is:
1 dequeueMin(){
2 if(Heap is empty) throw an exception ;
3 extract the element from the root ;
4 if(root is a leaf node){ delete root ; return; }
5 copy the element from the last leaf to the root ;
6 delete last leaf ;
7 p = root ;
8 while(p is not a leaf node and p > any of its children)
9 swap p with the smaller child ;
10 return ;
11 }

• The process of swapping an element with its child, in order to
restore the heap order property is called percolate down, sift down,
or reheapification downward.

• Thus, the steps for deletion are:
1. Replace the key at the root by the key of the last leaf node.
2. Delete the last leaf node.
3. As long as the heap order property is violated, percolate down.

MinHeap Dequeue Example

delete last node

31

24

65 26 32

21 23

19

68

18

21

24

65 26 32

31 23

19

68

18

18

24

65 26 32

21 23

19

68

13

31

Delete min element

Replace by value of last node

Percolate down

18

24

65 26 32

21 23

19

68

31

Percolate down

MinHeap dequeue Implementation
public Comparable dequeueMin(){

if(isEmpty()) throw new ContainerEmptyException();
Comparable minItem = array[1];
array[1] = array[count];
count--;
percolateDown(1);
return minItem;

}

private void percolateDown(int hole){
int minChildIndex;
Comparable temp = array[hole];
while(hole * 2 <= count){

minChildIndex = hole * 2;
if(minChildIndex + 1 <= count && array[minChildIndex + 1].

compareTo(array[minChildIndex])<0)
minChildIndex++;

if(array[minChildIndex].compareTo(temp)<0){
array[hole] = array[minChildIndex];
hole = minChildIndex;

} else
break;

}
array[hole] = temp;

}

Deleting an arbitrary key
The algorithm of deleting an arbitrary key from a heap is:
• Copy the key x of the last node to the node containing the deleted key.
• Delete the last node.
• Percolate x down until the heap property is restored.
Example:

Changing the priority of a key
There are three possibilities when the priority of a key x is changed:
1. The heap property is not violated.
2. The heap property is violated and x has to be percolated up to restore the heap property.
3. The heap property is violated and x has to be percolated down to restore the heap property.
Example:

Building a heap (top down)
• A heap is built top-down by inserting one key at a time in an initially empty heap.
• After each key insertion, if the heap property is violated, it is restored by

percolating the inserted key upward.
The algorithm is:

for(int i=1; i <= heapSize; i++){
read key;
binaryHeap.enqueue(key);

}
Example: Insert the keys 4, 6, 10, 20, and 8 in this order in an originally empty max-heap

Converting an array into a Binary heap
(Building a heap bottom-up)

• The algorithm to convert an array into a binary heap is:
1. Start at the level containing the last non-leaf node (i.e.,

array[n/2], where n is the array size).
2. Make the subtree rooted at the last non-leaf node into a heap

by invoking percolateDown.
3. Move in the current level from right to left, making each

subtree, rooted at each encountered node, into a heap by
invoking percolateDown.

4. If the levels are not finished, move to a lower level then go
to step 3.

• The above algorithm can be refined to the following method of the
BinaryHeap class:

private void buildHeapBottomUp()
{
for(int i = count / 2; i >= 1; i--)

percolateDown(i);
}

Converting an array into a MinHeap (Example)

29

65

13 26 31

32 19

68

16

70

31261316193265682970 At each stage convert the
highlighted tree into a MinHeap by
percolating down starting at the
root of the highlighted tree.

29

65

13 26 32

31 19

68

16

70
29

13

65 26 32

31 19

68

16

70

29

13

65 26 32

31 19

16

68

70
13

26

65 29 32

31 19

16

68

70
26

29

65 70 32

31 19

16

68

13

Heap Application: Heap Sort
• A MinHeap or a MaxHeap can be used to implement an efficient

sorting algorithm called Heap Sort.
• The following algorithm uses a MinHeap:

• Because the dequeueMin algorithm is O(log n), heapSort is an O(n
log n) algorithm.

• Apart from needing the extra storage for the heap, heapSort is
among efficient sorting algorithms.

public static void heapSort(Comparable[] array){
BinaryHeap heap = new BinaryHeap(array) ;
for(int i = 0; i < array.length; i++)

array[i] = heap.dequeueMin() ;
}

Heap Applications: Priority Queue

• A heap can be used as the underlying implementation of a priority queue.
• A priority queue is a data structure in which the items to be inserted have

associated priorities.
• Items are withdrawn from a priority queue in order of their priorities,

starting with the highest priority item first.
• Priority queues are often used in resource management, simulations, and

in the implementation of some algorithms (e.g., some graph algorithms,
some backtracking algorithms).

• Several data structures can be used to implement priority queues. Below is
a comparison of some:

Dequeue MinFind MinEnqueueData structure

O(n)O(n)O(1)Unsorted List

O(1)O(1)O(n)Sorted List

O(log n)O(log n)O(log n)AVL Tree

O(log n)O(1)O(log n)MinHeap

Priority Queue (Contd.)
1 priorityQueueEnque(e1)
2 {
3 if(priorityQueue is full) throw an exception;
4 insert e1 at the end of the priorityQueue;
5 while(e1 is not in the root node and e1 < parent(e1))
6 swap(e1 , parent(e1));
7 }

1 priorityQueueDequeue(){
2 if(priorityQueue is empty) throw an exception;
3 extract the highest priority element from the root;
4 if(root is a leaf node){ delete root ; return; }
5 copy the element from the last leaf to the root;
6 delete last leaf;
7 p = root;
8 while(p is not a leaf node and p > any of its children)
9 swap p with the smaller child;
10 return;
11 }

X

Heap Heap

X is the element with
highest priority

