# **Binary Heaps**

- What is a Binary Heap?
- Array representation of a Binary Heap
- MinHeap implementation
- Operations on Binary Heaps:
  - enqueue
  - dequeue
  - deleting an arbitrary key
  - changing the priority of a key
- Building a binary heap
  - top down approach
  - bottom up approach
- Heap Applications:
  - Heap Sort
  - Heap as a priority queue

# What is a Binary Heap?

- A **binary heap** is a *complete binary tree* with one (or both) of the following heap order properties:
  - **MinHeap property:** Each node must have a key that is less or equal to the key of each of its children.
  - MaxHeap property: Each node must have a key that is greater or equal to the key of each of its children.
- A binary heap satisfying the MinHeap property is called a MinHeap.
- A binary heap satisfying the MaxHeap property is called a MaxHeap.
- A binary heap with all keys equal is both a MinHeap and a MaxHeap.
- Recall: A complete binary tree may have missing nodes only on the right side of the lowest level.



## MinHeap and non-MinHeap examples



## MaxHeap and non-MaxHeap examples



Violates heap structural property

Violates heap structural property

# Array Representation of a Binary Heap

- A heap is a dynamic data structure that is represented and manipulated more efficiently using an array.
- Since a heap is a complete binary tree, its node values can be stored in an array, without any gaps, in a breadth-first order, where:



- The root is array[0]
- The parent of array[i] is array[(i 1)/2], where i > 0
- The left child, if any, of array[i] is array[2i+1].
- The right child, if any, of array[i] is array[2i+2].

# Array Representation of a Binary Heap (contd.)

• We shall use an implementation in which the heap elements are stored in an array starting at index 1.

Value(node  $_i$ )  $\longrightarrow$  array[i], for  $i \ge 1$ 



- The root is array[1].
- The parent of array[i] is array[i/2], where i > 1
- The left child, if any, of array[i] is array[2i].
- The right child, if any, of array[i] is array[2i+1].

## **MinHeap Implementation**

- A binary heap can serve as a priority queue
- Our MinHeap class will implement the following PriorityQueue interface

public interface PriorityQueue extends Container{
 public abstract void enqueue(Comparable comparable);
 public abstract Comparable findMin();
 public abstract Comparable dequeueMin();
}

### MinHeap Implementation (contd.)

```
protected Comparable array[];
```

```
public BinaryHeap(int i){
    array = new Comparable[i + 1];
}
```

```
public BinaryHeap(Comparable[] comparable) {
   this(comparable.length);
   for(int i = 0; i < comparable.length; i++)
      array[i + 1] = comparable[i];
   count = comparable.length;</pre>
```

```
buildHeapBottomUp();
```

}

## MinHeap enqueue

• The pseudo code algorithm for enqueing a key in a MinHeap is:

- The process of swapping an element with its parent, in order to restore the heap order property is called percolate up, sift up, or reheapification upward.
- Thus, the steps for enqueue are:
  - 1. Enqueue the key at the end of the heap.
  - 2. As long as the heap order property is violated, percolate up.

#### **MinHeap Insertion Example**



#### MinHeap enqueue implementation

- To have better efficiency, we avoid repeated swapping
- We find a place (hole) for the new key, move the hole upward when needed, and at the end, put the key into the hole

```
public void enqueue(Comparable comparable){
   if(isFull()) throw new ContainerFullException();
   int hole = ++count;
   // percolate up via a hole
   while(hole > 1 \&\&
                 array[hole / 2].compareTo(comparable)>0){
      array[hole] = array[hole / 2];
      hole = hole / 2;
   }
   array[hole] = comparable;
}
public boolean isFull(){
   return count == array.length - 1;
}
```

## MinHeap dequeue

• The pseudo code algorithm for deleting the root key in a MinHeap is:

```
dequeueMin(){
1
2
           if (Heap is empty) throw an exception ;
           extract the element from the root ;
3
           if(root is a leaf node){ delete root ; return; }
4
           copy the element from the last leaf to the root ;
5
6
           delete last leaf ;
           p = root;
7
           while(p is not a leaf node and p > any of its children)
8
9
                  swap p with the smaller child ;
10
          return ;
11
```

- The process of swapping an element with its child, in order to restore the heap order property is called percolate down, sift down, or reheapification downward.
- Thus, the steps for deletion are:
  - 1. Replace the key at the root by the key of the last leaf node.
  - 2. Delete the last leaf node.
  - 3. As long as the heap order property is violated, percolate down.

## **MinHeap Dequeue Example**



#### **MinHeap dequeue Implementation**

```
public Comparable dequeueMin(){
   if(isEmpty()) throw new ContainerEmptyException();
   Comparable minItem = array[1];
   array[1] = array[count];
   count--;
   percolateDown(1);
   return minItem;
}
private void percolateDown(int hole){
   int minChildIndex;
   Comparable temp = array[hole];
   while(hole * 2 <= count){</pre>
      minChildIndex = hole * 2;
      if(minChildIndex + 1 <= count && array[minChildIndex + 1].
                                  compareTo(array[minChildIndex])<0)</pre>
         minChildIndex++;
      if(array[minChildIndex].compareTo(temp)<0){</pre>
         array[hole] = array[minChildIndex];
         hole = minChildIndex;
      } else
         break;
   }
   array[hole] = temp;
}
```

#### Deleting an arbitrary key

The algorithm of deleting an arbitrary key from a heap is:

- Copy the key **x** of the last node to the node containing the deleted key.
- Delete the last node.
- Percolate **x** down until the heap property is restored.

Example:



#### Changing the priority of a key

There are three possibilities when the priority of a key  $\mathbf{x}$  is changed:

- 1. The heap property is not violated.
- 2. The heap property is violated and  $\mathbf{x}$  has to be percolated up to restore the heap property.
- 3. The heap property is violated and **x** has to be percolated down to restore the heap property. **Example:**



#### Building a heap (top down)

- A heap is built top-down by inserting one key at a time in an initially empty heap.
- After each key insertion, if the heap property is violated, it is restored by percolating the inserted key upward.

The algorithm is:

```
for(int i=1; i <= heapSize; i++){
   read key;
   binaryHeap.enqueue(key);
}</pre>
```

Example: Insert the keys 4, 6, 10, 20, and 8 in this order in an originally empty max-heap



#### Converting an array into a Binary heap (Building a heap bottom-up)

- The algorithm to convert an array into a binary heap is:
- Start at the level containing the last non-leaf node (i.e., array[n/2], where n is the array size).
- 2. Make the subtree rooted at the last non-leaf node into a heap by invoking percolateDown.
- 3. Move in the current level from right to left, making each subtree, rooted at each encountered node, into a heap by invoking percolateDown.
- If the levels are not finished, move to a lower level then go to step 3.
- The above algorithm can be refined to the following method of the BinaryHeap class:

```
private void buildHeapBottomUp()
{
  for(int i = count / 2; i >= 1; i--)
        percolateDown(i);
}
```

#### Converting an array into a MinHeap (Example)



# Heap Application: Heap Sort

- A MinHeap or a MaxHeap can be used to implement an efficient sorting algorithm called Heap Sort.
- The following algorithm uses a MinHeap:

```
public static void heapSort(Comparable[] array){
   BinaryHeap heap = new BinaryHeap(array);
   for(int i = 0; i < array.length; i++)
      array[i] = heap.dequeueMin();
}</pre>
```

- Because the dequeueMin algorithm is O(log n), heapSort is an O(n log n) algorithm.
- Apart from needing the extra storage for the heap, heapSort is among efficient sorting algorithms.

#### Heap Applications: Priority Queue

- A heap can be used as the underlying implementation of a priority queue.
- A priority queue is a data structure in which the items to be inserted have associated priorities.
- Items are withdrawn from a priority queue in order of their priorities, starting with the highest priority item first.
- Priority queues are often used in resource management, simulations, and in the implementation of some algorithms (e.g., some graph algorithms, some backtracking algorithms).
- Several data structures can be used to implement priority queues. Below is a comparison of some:

| Data structure | Enqueue  | Find Min | Dequeue Min |
|----------------|----------|----------|-------------|
| Unsorted List  | O(1)     | O(n)     | O(n)        |
| Sorted List    | O(n)     | O(1)     | O(1)        |
| AVL Tree       | O(log n) | O(log n) | O(log n)    |
| MinHeap        | O(log n) | O(1)     | O(log n)    |

## Priority Queue (Contd.)

