
More on Recursive

• Recursion vs. Iteration

• Why Recursion?

• Common Errors in Writing Recursive Methods:

Recursion vs. Iteration

• In general, an iterative version of a method will execute more efficiently
in terms of time and space than a recursive version.

• This is because the overhead involved in entering and exiting a function
in terms of stack I/O is avoided in iterative version.

• Sometimes we are forced to use iteration because stack cannot handle
enough activation records - Example: power(2, 5000))

Why Recursion?
• Usually recursive algorithms have less code, therefore algorithms can

be easier to write and understand - e.g. Towers of Hanoi. However,
avoid using excessively recursive algorithms even if the code is simple.

• Sometimes recursion provides a much simpler solution. Obtaining the
same result using iteration requires complicated coding - e.g.
Quicksort, Towers of Hanoi, etc.

• Recursive methods provide a very natural mechanism for processing
recursive data structures. A recursive data structure is a data structure
that is defined recursively – e.g. Tree.

• Functional programming languages such as Clean, FP, Haskell,
Miranda, and SML do not have explicit loop constructs. In these
languages looping is achieved by recursion.

Why Recursion?

public static long power1 (int x, int n) {
long product = 1;
for (int i = 1; i <= n; i++)

product *= x;
return product;

}

public static long power2 (int x, int n) {
if (n == 1) return x;
else if (n == 0)return 1;
else {

long t = power2(x , n / 2);
if ((n % 2) == 0) return t * t;
else return x * t * t;

}
}

• Some recursive algorithms are more efficient than equivalent iterative
algorithms.

• Example:

Common Errors in Writing Recursive Methods

• The method does not call itself directly or indirectly.

• Non-terminating Recursive Methods (Infinite recursion):
a) No base case.

b) The base case is never reached for some parameter values.

int badFactorial(int x) {
return x * badFactorial(x-1);

}

int anotherBadFactorial(int x) {
if(x == 0)

return 1;
else

return x*(x-1)*anotherBadFactorial(x -2);
// When x is odd, we never reach the base case!!

}

Common Errors in Writing Recursive Methods
• Post increment and decrement operators must not be used since the update will

not occur until AFTER the method call - infinite recursion.

• Local variables must not be used to accumulate the result of a recursive method.
Each recursive call has its own copy of local variables.

public static int sumArray (int[] x, int index) {
if (index == x.length)return 0;
else

return x[index] + sumArray (x, index++);
}

public static int sumArray (int[] x, int index) {
int sum = 0;
if (index == x.length)return sum;
else {

sum += x[index];
return sumArray(x,index + 1);

}
}

Common Errors in Writing Recursive Methods

• Wrong placement of return statement.
• Consider the following method that is supposed to calculate the sum of

the first n integers:

• When result is initialized to 0, the method returns 0 for whatever value of
the parameter n. The result returned is that of the final return statement
to be executed. Example: A trace of the call sum(3, 0) is:

public static int sum (int n, int result) {
if (n >= 0)

sum(n - 1, n + result);
return result;

}

Common Errors in Writing Recursive Methods

• A correct version of the method is:

• Example: A trace of the call sum(3, 0) is:

public static int sum(int n, int result){
if (n == 0)

return result;
else

return sum(n-1, n + result);
}

Common Errors in Writing Recursive Methods

• The use of instance or static variables in recursive methods should be
avoided.

• Although it is not an error, it is bad programming practice. These
variables may be modified by code outside the method and cause the
recursive method to return wrong result.

public class Sum{
private int sum;

public int sumArray(int[] x, int index){
if(index == x.length)

return sum;
else {

sum += x[index];
return sumArray(x,index + 1);

}
}

}

