
Types of Recursive Methods

• Types of Recursive Methods

• Direct and Indirect Recursive Methods

• Nested and Non-Nested Recursive Methods

• Tail and Non-Tail Recursive Methods

• Linear and Tree Recursive Methods

• Excessive Recursion

Types of Recursive Methods

• A recursive method is characterized based on:

Whether the method calls itself or not (direct or indirect
recursion).

Whether the recursion is nested or not.

Whether there are pending operations at each recursive call
(tail-recursive or not).

The shape of the calling pattern -- whether pending operations
are also recursive (linear or tree-recursive).

Whether the method is excessively recursive or not.

Direct and Indirect Recursive Methods
• A method is directly recursive if it contains an explicit call to itself.

• A method x is indirectly recursive if it contains a call to another method
which in turn calls x. They are also known as mutually recursive
methods:

long factorial (int x) {
if (x == 0)

return 1;
else

return x * factorial (x – 1);
}

public static boolean isEven(int n) {
if (n==0)

return true;
else

return(isOdd(n-1));
}

public static boolean isOdd(int n) {
return (! isEven(n));

}

Direct and Indirect Recursive Methods
• Another example of mutually recursive methods:

Direct and Indirect Recursive Methods

public static double sin(double x){
if(x < 0.0000001)

return x - (x*x*x)/6;
else{

double y = tan(x/3);
return sin(x/3)*((3 - y*y)/(1 + y*y));

}
}

public static double tan(double x){
return sin(x)/cos(x);

}

public static double cos(double x){
double y = sin(x);
return Math.sqrt(1 - y*y);

}

Nested and Non-Nested Recursive Methods
• Nested recursion occurs when a method is not only defined in terms of itself; but

it is also used as one of the parameters:
• Example: The Ackerman function

• The Ackermann function grows faster than a multiple exponential function.

public static long Ackmn(long n, long m){
if (n == 0)

return m + 1;
else if (n > 0 && m == 0)

return Ackmn(n – 1, 1);
else

return Ackmn(n – 1, Ackmn(n, m – 1));
}

Tail and Non-Tail Recursive Methods
• A method is tail recursive if in each of its recursive cases it executes one

recursive call and if there are no pending operations after that call.
• Example 1:

• Example 2:

public static void f1(int n){
System.out.print(n + " ");
if(n > 0)

f1(n - 1);
}

public static void f3(int n){
if(n > 6){

System.out.print(2*n + " ");
f3(n – 2);

} else if(n > 0){
System.out.print(n + " ");
f3(n – 1);

}
}

• Example of non-tail recursive methods:
• Example 1:

– After each recursive call there is a pending System.out.print(n + " ")
operation.

• Example 2:

– After each recursive call there is a pending * operation.

Tail and Non-Tail Recursive Methods

public static void f4(int n){
if (n > 0)

f4(n - 1);
System.out.print(n + " ");

}

long factorial(int x) {
if (x == 0)
return 1;

else
return x * factorial(x – 1);

}

• It is easy to convert a tail recursive method into an iterative one:
Converting tail-recursive method to iterative

Tail recursive method Corresponding iterative method

public static void f1(int n) {
System.out.print(n + " ");
if (n > 0)

f1(n - 1);
}

public static void f1(int n) {
for(int k = n; k >= 0; k--)

System.out.print(k + " ");
}

public static void f3 (int n) {
while (n > 0) {

if (n > 6) {
System.out.print(2*n + " ");
n = n – 2;

} else if (n > 0) {
System.out.print(n + " ");
n = n – 1;

}
}

}

public static void f3 (int n) {
if (n > 6) {

System.out.print(2*n + " ");
f3(n – 2);

} else if (n > 0) {
System.out.print(n + " ");
f3 (n – 1);

}
}

Why tail recursion?
• It is desirable to have tail-recursive methods, because:

a. The amount of information that gets stored during computation is
independent of the number of recursive calls.

b. Some compilers can produce optimized code that replaces tail
recursion by iteration (saving the overhead of the recursive calls).

c. Tail recursion is important in languages like Prolog and Functional
languages like Clean, Haskell, Miranda, and SML that do not have
explicit loop constructs (loops are simulated by recursion).

Converting non-tail to tail recursive method
• A non-tail recursive method can often be converted to a tail-

recursive method by means of an "auxiliary" parameter.
This parameter is used to form the result.

• The idea is to attempt to incorporate the pending operation
into the auxiliary parameter in such a way that the recursive
call no longer has a pending operation.

• The technique is usually used in conjunction with an
"auxiliary" method. This is simply to keep the syntax clean
and to hide the fact that auxiliary parameters are needed.

Converting non-tail to tail recursive method
• Example 1: Converting non-tail recursive factorial to tail-recursive

factorial

• We introduce an auxiliary parameter result and initialize it to 1. The
parameter result keeps track of the partial computation of n! :

long factorial (int n) {
if (n == 0)

return 1;
else

return n * factorial (n – 1);
}

public long tailRecursiveFact (int n) {
return factAux(n, 1);

}
private long factAux (int n, int result) {

if (n == 0)
return result;

else
return factAux(n-1, n * result);

}

Converting non-tail to tail recursive method
• Example 2: Converting non-tail recursive fib to tail-recursive fib
• The fibonacci sequence is:

0 1 1 2 3 5 8 13 21 . . .
• Each term except the first two is a sum of the previous two terms.

• Because there are two recursive calls, a tail-recursive fibonacci method
can be implemented by using two auxiliary parameters for accumulating
results:

int fib(int n){
if (n == 0 || n == 1)

return n;
else

return fib(n – 1) + fib(n – 2);
}

Converting non-tail to tail recursive method
int fib (int n) {

return fibAux(n, 1, 0);
}
int fibAux (int n, int next, int result) {

if (n == 0)
return result;

else
return fibAux(n – 1, next + result, next);

}

Linear and Tree Recursive Methods
• Another way to characterize recursive methods is by the way

in which the recursion grows. The two basic ways are "linear"
and "tree."

• A recursive method is said to be linearly recursive when no
pending operation involves another recursive call to the
method.

• For example, the factorial method is linearly recursive. The
pending operation is simply multiplication by a variable, it
does not involve another call to factorial.

long factorial (int n) {
if (n == 0)

return 1;
else

return n * factorial (n – 1);
}

Linear and Tree Recursive Methods
• A recursive method is said to be tree recursive when the

pending operation involves another recursive call.

• The Fibonacci method fib provides a classic example of tree
recursion.

int fib(int n){
if (n == 0 || n == 1)

return n;
else

return fib(n – 1) + fib(n – 2);
}

Excessive Recursion
• A recursive method is excessively recursive if it repeats computations for

some parameter values.
• Example: The call fib(6) results in two repetitions of f(4). This in turn

results in repetitions of fib(3), fib(2), fib(1) and fib(0):

