Introduction to Stacks

What is a Stack
Stack implementation using array.
Stack implementation using linked list.

Applications of Stack.

What is a Stack?

Stack is a data structure in which data is added and
removed at only one end called the top.

To add (push) an item to the stack, it must be placed on
the top of the stack.

To remove (pop) an item from the stack, it must be
removed from the top of the stack too.

Thus, the last element that is pushed into the stack, is
the first element to be popped out of the stack.

l.e., Last In First Out (LIFO)

top

top

An Example of Stack

top

Push(8)

v

top
pop()

A

top

Push(2)

N|N|F,]|

v

top

pop()

NI N|FP]OODN

()dod

N | N|[PF]| O

Stack Implementations

public iInterface Stack extends Container {
public abstract Object getTop();
public abstract void push(Object obj);
public abstract Object pop();

}

* |n our implementation, a stack is a container that extends the
AbstractContainer class and implements the Stack interface.

 Two implementations:
— StackAsArray
 The underlying data structure is an array of Object

— StackAsLinkedList
 The underlying data structure is an object of MyLinkedList

StackAsArray — Constructor

In the StackAsArray implementation that follows, the top of the stack is
array[count — 1] and the bottom is array[0]:

The constructor’s single parameter, size, specifies the maximum
number of items that can be stored in the stack.

The variable array is initialized to be an array of length size.

public class StackAsArray extends AbstractContailner
implements Stack {

protected Object|[] array;

public StackAsArray(int size){
array = new Object[size];

¥
// .

StackAsArray — purge() Method

 The purpose of the purge method is to remove all the
contents of a container.

 To empty the stack, the purge method simply assigns
the value null to the first count positions of the array.

public void purge(){
while (count > 0)
array[--count] = null;

Complexity is O(n)

StackAsArray — push() Method

push() method adds an element at the top the stack.
It takes as argument an Object to be pushed.

It first checks if there is room left in the stack. If no room
IS left, it throws a ContainerFullException exception.
Otherwise, it puts the object into the array, and then
Increments count variable by one.

public void push(Object object){
iIT (count == array.length)
throw new ContainerFullException();
else
array[count++] = object;

Complexity is O(1)

StackAsArray — pop() Method

 The pop method removes an item from the stack and
returns that item.

 The pop method first checks if the stack is empty. If the
stack is empty, it throws a ContainerEmptyException.
Otherwise, it simply decreases count by one and returns
the item found at the top of the stack.

public Object pop(){
i1f(count == 0)
throw new ContainerEmptyException();
else {
Object result = array[--count];
array[count] = null;
return result;

+
+ Complexity is O(1)

StackAsArray — getTop() Method

o getTop() method first checks if the stack is empty.

e getTop() method is a stack accessor which returns the top
item in the stack without removing that item. If the stack is
empty, it throws a ContainerEmptyException. Otherwise,
It returns the top item found at position count-1.

public Object getTop(){
i1f(count == 0)
throw new ContainerEmptyException();
else
return arrayfcount — 1];

Complexity is O(1)

StackAsArray — iterator() Method

public lterator i1terator() {
return new lterator() {
private Int position = count-1;
public boolean hasNext() {
return position >=0;
by
public Object next () {
1T(position < 0)
throw new NoSuchElementException();
else
return array[position--];

StackAsLinkedList Implementation

public class StackAsLinkedList
extends AbstractContainer
implements Stack {

protected MyLinkedList list;

public StackAsLinkedList(){
list = new MyLinkedList();

}

public void purge(){
list.purge();
count = O: Complexity is O(1)

// .

StackAsLinkedList Implementation (Cont.)

public void push(Object obj){
list.prepend(obj); T
count++: Complexity is O(1)
+

public Object pop(){
if(count == 0)
throw new ContainerEmptyException();
else{
Object obj = list.getFirst();
list.extractFirst();
count--; Complexity is O(1)
return obj;
}
+
public Object getTop(){
iT(count == 0)
throw new ContainerEmptyException();

else
return list.getFirst(); Complexity is O(1)

StackAsLinkedList Implementation (Cont.)

public lterator i1terator() {
return new lterator() {
private MyLinkedList.Element position =
list.getHead();

public boolean hasNext() {
return position != null;

}

public Object next() {
if(position == null)
throw new NoSuchElementException();
else {
Object obj = position.getData();
position = position.getNext();
return obj;

}

Applications of Stack

« Some direct applications:
— Page-visited history in a Web browser
— Undo sequence in a text editor
— Chain of method calls in the Java Virtual Machine
— Evaluating postfix expressions

« Some indirect applications
— Auxiliary data structure for some algorithms
— Component of other data structures

Application of Stack - Evaluating Postfix Expression

(5+9)*2+6*5
 An ordinary arithmetical expression like the above is called infix-
expression -- binary operators appear in between their operands.

 The order of operations evaluation is determined by the precedence
rules and parenthesis.

 When an evaluation order is desired that is different from that
provided by the precedence, parentheses are used to override
precedence rules.

Application of Stack - Evaluating Postfix Expression

« EXpressions can also be represented using postfix notation -
where an operator comes after its two operands.

 The advantage of postfix notation is that the order of operation
evaluation is unique without the need for precedence rules or
parenthesis.

Infix Postfix

16/ 2 16 2 /

(2+ 14)*5 2 14 + 5 *
2 + 14*5 2 14 5 *+
(6-2)*(5+4) 6 2-54+*

Application of Stack - Evaluating Postfix Expression

« The following algorithm uses a stack to evaluate a postfix expressions.

Start with an empty stack
for (each item in the expression) {
If (the item is a number)
Push the number onto the stack
else If (the item is an operator){
Pop two operands from the stack
Apply the operator to the operands
Push the result onto the stack

}

Pop the only one number from the stack — that’s the result of the evaluation

Application of Stack - Evaluating Postfix Expression

 Example: Consider the postfix expression, 2 10 + 9 6 - /, which s
(2 + 10) / (9 - 6) in infix, the result of whichis 12/ 3 = 4.

« The following is a trace of the postfix evaluation algorithm for the

above.
210+ 96 -1
pop 10 psh? Popé pap 3 :
k2 pop pohs porS pop 12 pop e 4
e psh2 + 10 = 12 push® - &= 3 push 12§ 3 = 4
6
100 3 3
2 12 12 12 4

