
Introduction to Stacks

• What is a Stack

• Stack implementation using array.

• Stack implementation using linked list.

• Applications of Stack.

What is a Stack?

• Stack is a data structure in which data is added and
removed at only one end called the top.

• To add (push) an item to the stack, it must be placed on
the top of the stack.

• To remove (pop) an item from the stack, it must be
removed from the top of the stack too.

• Thus, the last element that is pushed into the stack, is
the first element to be popped out of the stack.
i.e., Last In First Out (LIFO)

An Example of Stack

2

8

1

7

2

7

2

1

7

2

1

7

2

8

1

7

2

8

1

7

2

top
top

top Push(8) Push(2)

pop()

top
top

top pop()pop()

Stack Implementations

public interface Stack extends Container {
public abstract Object getTop();
public abstract void push(Object obj);
public abstract Object pop();

}

• In our implementation, a stack is a container that extends the
AbstractContainer class and implements the Stack interface.

• Two implementations:
– StackAsArray

• The underlying data structure is an array of Object
– StackAsLinkedList

• The underlying data structure is an object of MyLinkedList

StackAsArray – Constructor
• In the StackAsArray implementation that follows, the top of the stack is

array[count – 1] and the bottom is array[0]:

• The constructor’s single parameter, size, specifies the maximum
number of items that can be stored in the stack.

• The variable array is initialized to be an array of length size.

public class StackAsArray extends AbstractContainer
implements Stack {

protected Object[] array;

public StackAsArray(int size){
array = new Object[size];

}

// …

StackAsArray – purge() Method

• The purpose of the purge method is to remove all the
contents of a container.

• To empty the stack, the purge method simply assigns
the value null to the first count positions of the array.

public void purge(){
while (count > 0)

array[--count] = null;
}

Complexity is O(n)

StackAsArray – push() Method
• push() method adds an element at the top the stack.
• It takes as argument an Object to be pushed.
• It first checks if there is room left in the stack. If no room

is left, it throws a ContainerFullException exception.
Otherwise, it puts the object into the array, and then
increments count variable by one.

public void push(Object object){
if (count == array.length)

throw new ContainerFullException();
else

array[count++] = object;
}

Complexity is O(1)

StackAsArray – pop() Method
• The pop method removes an item from the stack and

returns that item.
• The pop method first checks if the stack is empty. If the

stack is empty, it throws a ContainerEmptyException.
Otherwise, it simply decreases count by one and returns
the item found at the top of the stack.

public Object pop(){
if(count == 0)

throw new ContainerEmptyException();
else {

Object result = array[--count];
array[count] = null;
return result;

}
} Complexity is O(1)

StackAsArray – getTop() Method

• getTop() method first checks if the stack is empty.
• getTop() method is a stack accessor which returns the top

item in the stack without removing that item. If the stack is
empty, it throws a ContainerEmptyException. Otherwise,
it returns the top item found at position count-1.

public Object getTop(){
if(count == 0)

throw new ContainerEmptyException();
else

return array[count – 1];
}

Complexity is O(1)

StackAsArray – iterator() Method

public Iterator iterator() {
return new Iterator() {

private int position = count-1;
public boolean hasNext() {

return position >=0;
}
public Object next () {

if(position < 0)
throw new NoSuchElementException();

else
return array[position--];

}
};

}

StackAsLinkedList Implementation

public class StackAsLinkedList
extends AbstractContainer
implements Stack {

protected MyLinkedList list;

public StackAsLinkedList(){
list = new MyLinkedList();

}

public void purge(){
list.purge();
count = 0;

}

// …

Complexity is O(1)

StackAsLinkedList Implementation (Cont.)
public void push(Object obj){

list.prepend(obj);
count++;

}

public Object pop(){
if(count == 0)

throw new ContainerEmptyException();
else{

Object obj = list.getFirst();
list.extractFirst();
count--;
return obj;

}
}
public Object getTop(){

if(count == 0)
throw new ContainerEmptyException();

else
return list.getFirst();

}

Complexity is O(1)

Complexity is O(1)

Complexity is O(1)

StackAsLinkedList Implementation (Cont.)
public Iterator iterator() {

return new Iterator() {
private MyLinkedList.Element position =

list.getHead();

public boolean hasNext() {
return position != null;

}

public Object next() {
if(position == null)

throw new NoSuchElementException();
else {

Object obj = position.getData();
position = position.getNext();
return obj;

}
}

};
}

Applications of Stack

• Some direct applications:
– Page-visited history in a Web browser
– Undo sequence in a text editor
– Chain of method calls in the Java Virtual Machine
– Evaluating postfix expressions

• Some indirect applications
– Auxiliary data structure for some algorithms
– Component of other data structures

Application of Stack - Evaluating Postfix Expression

(5+9)*2+6*5
• An ordinary arithmetical expression like the above is called infix-

expression -- binary operators appear in between their operands.

• The order of operations evaluation is determined by the precedence
rules and parenthesis.

• When an evaluation order is desired that is different from that
provided by the precedence, parentheses are used to override
precedence rules.

Application of Stack - Evaluating Postfix Expression

• Expressions can also be represented using postfix notation -
where an operator comes after its two operands.

• The advantage of postfix notation is that the order of operation
evaluation is unique without the need for precedence rules or
parenthesis.

PostfixInfix
16 2 /16 / 2
2 14 + 5 * (2 + 14)* 5
2 14 5 * + 2 + 14 * 5
6 2 - 5 4 + * (6 – 2) * (5 + 4)

Application of Stack - Evaluating Postfix Expression

• The following algorithm uses a stack to evaluate a postfix expressions.

Start with an empty stack
for (each item in the expression) {

if (the item is a number)
Push the number onto the stack

else if (the item is an operator){
Pop two operands from the stack

Apply the operator to the operands
Push the result onto the stack

}
}
Pop the only one number from the stack – that’s the result of the evaluation

Application of Stack - Evaluating Postfix Expression
• Example: Consider the postfix expression, 2 10 + 9 6 - /, which is

(2 + 10) / (9 - 6) in infix, the result of which is 12 / 3 = 4.
• The following is a trace of the postfix evaluation algorithm for the

above.

