Doubly Linked Lists

Representation
Space Analysis
Creation and Insertion
Traversal

Deletion



Representation

public class DoublyLinkedList{
protected Element head, tail;
//. . .
public class Element {
Object data; Element next, previous;

Element(Object obj, Element next, Element previous){
data = obj; this.next = next;
this.previous = previous;

}

public Object getData(){return data;}

public Element getNext(){return next;}

public Element getPrevious(){return previous;}
// .

head

A 4

list

A 4

A\ 4

'
tail k:




Doubly Linked Lists : Space Analysis

« The space requirements of our representation of the doubly linked

lists is as follows:

S(n) = sizeof(DoublyLinkedList) + n sizeof(DoublyLinkedList.Element)
= 2 sizeof(DoublyLinkedList.Element ref) + n [sizeof(Object ref)
+ 2 sizeof(DoublyLinkedList.Element ref)]
= (2n + 2) sizeof(DoublyLinkedList.Element ref) + n sizeof(Object ref)

Required space

Explanation

sizeof(DoublyLinkedList)

The list reference has two fields:
head (type: Element) and tail (type: Element)
= 2 sizeof(DoublyLinkedList.Element ref)

n sizeof(DoublyLinkedList.
Element)

The list has n elements of type Element. Each
element has three fields-- previous (type
Element), data (type Object), and next (type
Element)




List Creation and Insertion

: _ head
An empty doubly linked list is created as follows: =4

DoublyLinkedList list = new DoublyLinkedList(); b)

tail

Like singly link list, once Created, elements can be inserted into the
list using either the append or prepend methods

for (int k = 0; k < 10; k++)
list.append(new Int(k));

Also if we have reference to a node (an element), we can use
InsertAfter or InsertBefore of the Element class..



Insertion at the end (append)

public void append(Object obj){
Element element = new Element(obj, null, tail);
iT(head == null)
head = tail = element;
else {
tail.next = element;

tail = element; Complexity is O(1)

element obj

- —— B E— /
- —+ element obj

w, /




Insertion at the beginning (prepend)

public void prepend(Object obj){
Element element = new Element(obj, head, null);
iT(head == null)
head = tail = element;
else { Complexity is O(1)
head.previous = element;
head = element;

¥
}
element / l]hj |
head ¢ = -
L _+— P | =

element \ / obj |
i
J

head .~




Insertion before an element

* Inserting before the current node (this) that is neither the first
nor the last node:

Element element = new Element(obj, this, this.previous);
this.previous.next = element;
this.previous = element;

Complexity is O(1)

element .
/100 ] \
/ \
—* +— S E— - -
_.‘__ B I L __h._ =
ﬂ'is:r/
element .
/ obj \
e 7NN —
T __.,._ -




Traversal

For DoublyLinked list, traversal can be done in either direction.
Forward, starting from head, or backward starting from tail.

Element e = head; Element e = tail;
while (e = null) { while (e = null) {
//do something //do something

e = e.next; e = e.previous;
+ ks

Example: Count the number of nodes in a linked list.

public 1nt countNodes(){
Iint count = O;
Element e head;
while(e = null){

count++; o
e = e.next: Complexity is O(n)

}

return count;

}



Traversal

Example: The following computes the sum of the last n
nodes:

public Int sumLastNnodes(int n){
if(nh <= 0)
throw new lllegalArgumentException("'Wrong: " + n);
if(head == null)
throw new ListEmptyException();

int count = 0, sum = O;
Element e = tail; .
while(e = null && count < n){ Complexity is O(n)
sum += ((Integer)e.data).intvValue();
count++;

e = e.previous;
+
1T(count < n)

throw new Il1legalArgumentException(““No. of nodes < '"+n);
return sum;



Deletion

To delete an element, we use either the extract method of
DoublyLinkedList or that of the Element inner class.

public void extract(Object obj){
Element element = head;
while((element = null) && (Yelement.data.equals(obj)))
element = element.next;
Complexity is O(n)
if(element == null)
throw new lllegalArgumentException(*'item not found');
iIf(element == head) {
head = element.next;
if(element.next '= null)
element._next.previous = null;
}else{
element.previous.next = element.next;
if(element.next = null)
element.next.previous = element.previous;
+
if(element == tail)
tail = element.previous;



Exercises

For the DoublyLinkedList class, Implement each of the following
methods and state its complexity.

String toString()
Element find(Object obj)
void ExtractLast()

void ExtractFirst()

void ExtractLastN(int n)

For the DoublyLinkedList.Element inner class, implement each of
the following methods and state its complexity.

— void insertBefore()

— void insertAfter()

— void extract()

What are the methods of DoublyLinkedList and its Element inner
class are more efficient than those of MyLinkedList class?



