
Doubly Linked Lists

• Representation

• Space Analysis

• Creation and Insertion

• Traversal

• Deletion

Representation

public class DoublyLinkedList{
protected Element head, tail;
//. . .
public class Element {

Object data; Element next, previous;

Element(Object obj, Element next, Element previous){
data = obj; this.next = next;
this.previous = previous;

}
public Object getData(){return data;}
public Element getNext(){return next;}
public Element getPrevious(){return previous;}
// . . .

}
}

list head
tail

Doubly Linked Lists : Space Analysis

• The space requirements of our representation of the doubly linked
lists is as follows:

S(n) = sizeof(DoublyLinkedList) + n sizeof(DoublyLinkedList.Element)
= 2 sizeof(DoublyLinkedList.Element ref) + n [sizeof(Object ref)

+ 2 sizeof(DoublyLinkedList.Element ref)]
= (2n + 2) sizeof(DoublyLinkedList.Element ref) + n sizeof(Object ref)

ExplanationRequired space
The list reference has two fields:
head (type: Element) and tail (type: Element)
= 2 sizeof(DoublyLinkedList.Element ref)

sizeof(DoublyLinkedList)

The list has n elements of type Element. Each
element has three fields-- previous (type
Element), data (type Object), and next (type
Element)

n sizeof(DoublyLinkedList.
Element)

List Creation and Insertion

• An empty doubly linked list is created as follows:
DoublyLinkedList list = new DoublyLinkedList();

• Like singly link list, once Created, elements can be inserted into the
list using either the append or prepend methods

for (int k = 0; k < 10; k++)
list.append(new Int(k));

• Also if we have reference to a node (an element), we can use
insertAfter or InsertBefore of the Element class..

b)

head

tail

Insertion at the end (append)
public void append(Object obj){

Element element = new Element(obj, null, tail);
if(head == null)

head = tail = element;
else {

tail.next = element;
tail = element;

}
}

Complexity is O(1)

Insertion at the beginning (prepend)
public void prepend(Object obj){

Element element = new Element(obj, head, null);
if(head == null)

head = tail = element;
else {

head.previous = element;
head = element;

}
}

Complexity is O(1)

Insertion before an element
• Inserting before the current node (this) that is neither the first

nor the last node:

Complexity is O(1)

Element element = new Element(obj, this, this.previous);
this.previous.next = element;
this.previous = element;

Traversal
For DoublyLinked list, traversal can be done in either direction.
Forward, starting from head, or backward starting from tail.

Example: Count the number of nodes in a linked list.

Element e = head;
while (e != null) {
//do something
e = e.next;

}

Element e = tail;
while (e != null) {
//do something
e = e.previous;

}

public int countNodes(){
int count = 0;
Element e = head;
while(e != null){

count++;
e = e.next;

}
return count;

}

Complexity is O(n)

Traversal
Example: The following computes the sum of the last n
nodes:
public int sumLastNnodes(int n){

if(n <= 0)
throw new IllegalArgumentException("Wrong: " + n);

if(head == null)
throw new ListEmptyException();

int count = 0, sum = 0;
Element e = tail;
while(e != null && count < n){

sum += ((Integer)e.data).intValue();
count++;
e = e.previous;

}
if(count < n)

throw new IllegalArgumentException(“No. of nodes < "+n);
return sum;

}

Complexity is O(n)

Deletion
• To delete an element, we use either the extract method of

DoublyLinkedList or that of the Element inner class.
public void extract(Object obj){

Element element = head;
while((element != null) && (!element.data.equals(obj)))

element = element.next;

if(element == null)
throw new IllegalArgumentException("item not found");

if(element == head) {
head = element.next;
if(element.next != null)

element.next.previous = null;
}else{

element.previous.next = element.next;
if(element.next != null)

element.next.previous = element.previous;
}
if(element == tail)

tail = element.previous;
}

Complexity is O(n)

Exercises

• For the DoublyLinkedList class, Implement each of the following
methods and state its complexity.
– String toString()
– Element find(Object obj)
– void ExtractLast()
– void ExtractFirst()
– void ExtractLastN(int n)

• For the DoublyLinkedList.Element inner class, implement each of
the following methods and state its complexity.
– void insertBefore()
– void insertAfter()
– void extract()

• What are the methods of DoublyLinkedList and its Element inner
class are more efficient than those of MyLinkedList class?

