
Singly Linked Lists

• Representation

• Space Analysis

• Creation and Insertion

• Traversal

• Search

• Deletion

Representation

• We are using a representation in which a linked list has both
head and tail references .

list head
tail

public class MyLinkedList{
protected Element head;
protected Element tail;
public final class Element{

Object data;
Element next;
Element(Object obj, Element element){

data = obj;
next = element;

}
public Object getData(){return data;}
public Element getNext(){return next;}

}
}

Representation: Space Analysis

• Now, we can take a look at the space requirements:

S(n) = sizeof(MyLinkedList) + n sizeof(MyLinkedList.Element)
= 2 sizeof(MyLinkedList.Element ref) + n [sizeof(Object ref) +

sizeof(MyLinkedList.Element ref)]
= (n + 2) sizeof(MyLinkedList.Element ref) + n sizeof(Object ref)

ExplanationSpace Require
The list reference has two fields:
head (type: Element) and tail (type:
Element)
= 2 sizeof(MyLinkedList.Element ref)

sizeof(MyLinkedList)

The list has n elements of type Element.
Each element has two fields-- data (type
Object) and next (type Element).

n
sizeof(MyLinkedList.Element)

List Creation and Insertion

• An empty list is created as follows:

• Once created, elements can be inserted into the list using either the
append or prepend methods

• Also if we have reference to a node (an element), we can use
insertAfter or InsertBefore of the Element class.

head

tail

MyLinkedList list = new MyLinkedList();

for (int k = 0; k < 10; k++)
list.append(new Integer(k));

Insertion at the end (Append)
public void append(Object obj){

Element element = new Element(obj, null);
if(head == null)

head = element;
else

tail.next = element;
tail = element;

}
Complexity is O(1)

Insertion at the beginning (Prepend)
public void prepend(Object obj) {

Element element = new Element(obj, head);
if(head == null)

tail = element;
head = element;

}
Complexity is O(1)

Insertion before and after an element
public void insertBefore(Object obj) {

Element element = new Element(obj, this);
if(this == head) {

head = element;
return;

}
Element previous = head;
while (previous.next != this) {

previous = previous.next;
}
previous.next = element;

}

Complexity is O(n)

public void insertAfter(Object obj) {
next = new Element(obj, next);
if(this == tail)

tail = next;
}

Complexity is O(1)

Traversal
To move a reference e from one node to the next:

Example: Count the number of nodes in a linked list.

public int countNodes(){
int count = 0;
Element e = head;
while(e != null){

count++;
e = e.next;

}
return count;

}

e = e.next;

Complexity is O(n)

Searching
• To search for an element, we traverse from head until

we locate the object.
Example: Count the number of nodes with data field

equal to a given object.

public int countNodes(Object obj){
int count = 0;
Element e = head;
while(e != null){

if(e.data.equals(obj))
count++;

e = e.next;
}
return count;

}

Complexity is O(n)

Deletion
• To delete an element, we use either the extract method of

MyLinkedList or that of the Element inner class.
public void extract(Object obj) {

Element element = head;
Element previous = null;
while(element != null && ! element.data.equals(obj)) {

previous = element;
element = element.next;

}

if(element == null)
throw new IllegalArgumentException("item not found");

if(element == head)
head = element.next;

else
previous.next = element.next;

if(element == tail)
tail = previous;

}

Complexity is O(n)

Deletion - Difference between the MyLinkedList and
the Element extracts

• To delete an element, we use either the extract method
of MyLinkedList or that of the Element inner class.

try{
list.extract(obj1);

} catch(IllegalArgumentException e){
System.out.println("Element not found");

}

MyLinkedList.Element e = list.find(obj1);
if(e != null)

e.extract();
else

System.out.println("Element not found");

Deletion – Deleting First and Last Element

public void extractFirst() {
if(head == null)

throw new IllegalArgumentException("item not found");
head = head.next;
if(head == null)

tail = null;
} Complexity is O(1)

public void extractLast() {
if(tail == null)

throw new IllegalArgumentException("item not found");
if (head == tail)

head = tail = null;
else {

Element previous = head;
while (previous.next != tail)

previous = previous.next;
previous.next = null;
tail = previous;

}
}

Complexity is O(n)

Exercises

• For the MyLinkedList class, Implement each of the following
methods:
– String toString()
– Element find(Object obj)
– void insertAt(int n) //counting the nodes from 1.

State the complexity of each method.

• Which methods are affected if we do not use the tail reference in
MyLinkedList class.

