KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS202: Data Structures

 HOMEWORK 3 (Term 062)

Due Date: Monday, May 21st, 2007
Question#1 [16 points:]

(a) [10 Points] Draw the final B-Tree and the intermediate trees that results in inserting the following keys in an initially empty B-tree of order 3 following the given sequence:
 8, 13, 7, 78, 34, 21, 90, 45, 33, 17, 5
Grading: 1 point for each correct insertion, except the first one.

[image: image1.wmf]9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

(b) [6 Points: 3 + 3] What will be the resulting B-Tree when the indicated operation is performed on the given B-Tree:
i. Delete key 10 from the following B-Tree of order 3.
[image: image10.wmf]A

B

F

G

C

D

E

5

1

2

3

4

6

[image: image11.wmf]A

B

F

G

C

D

E

5

1

2

3

4

7

6

8

9

10

11

12

If 10 is swapped with its successor and then deleted, an underflow will happen and a right rotation will be needed. If 10 is swapped with its predecessor and then deleted, there will be no underflow. In both cases the resulting B-Tree will be the same.

ii. Delete key 15 from the following B-Tree of order 5.
[image: image12.wmf]15

9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

12

18

27

45

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

[image: image13.wmf]25

20

50

60

30

10

65

Deleting 15 will result in an underflow. A rotation is not possible. The underflow node should be merged with the right node. The root node does not underflow after merging.

Question 2 [20 points: 8 + 3 + 3 + 3 + 3] Huffman Coding

A textfile x contains the following message:

 AAAAAAAAAYEEEEEEEEKKOOOOOOORRRRMMMBBBBBBDDDDD

(a) Draw a Huffman code tree for encoding the textfile. Show all intermediate and the final tree and the way these trees are arranged in a MinHeap priority queue.
Note: Create a unique Huffman code tree by using the following guidelines:

1. If two or more initial one-node trees have the same frequency; arrange them in the MinHeap priority queue in alphabetically increasing order.

2. Whenever two trees are dequeued from the priority queue; the first dequeued tree becomes the left subtree of the merged tree, and the second dequeued tree becomes the right subtree.

3. A merged tree t must be inserted after all trees in the MinHeap priority queue with the same frequency as that of t.

4. The left edge of each node in the final tree is assigned 0 and the right edge of each node is assigned 1
Note: NO GRADE WILL BE GIVEN FOR THIS QUESTION IF THESE 4 GUIDELINES ARE NOT FOLLOWED

	
[image: image25.wmf]A

B

F

G

C

D

E

5

1

2

3

4

6

	
[image: image2.wmf]9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

	
[image: image3.wmf]9

A

8

E

1

Y

7

O

2

K

3

M

6

B

3

6

4

R

5

D

	
[image: image4.wmf]9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

	
[image: image5.wmf]9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

12

	
[image: image6.wmf]15

9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

12

	
[image: image7.wmf]15

9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

12

18

	
[image: image8.wmf]15

9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

12

18

27

	[image: image14.wmf]20

25

15

50

60

30

10

65

[image: image9.wmf]15

9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

12

18

27

45

(b) Write the Huffman codeword of each character in a table similar to the following:

	character
	Huffman codeword

	A
	00

	B
	100

	D
	011

	E
	111

	K
	10111

	M
	1010

	O
	110

	R
	010

	Y
	10110

(c) Encode the message READBOOK

0101110001110011011010111
(d) Decode the message 101010110111010010110010 if possible.

MYERROR

(e) Calculate the number of bits to transmit the encoded file x.

	character
	A
	B
	D
	E
	K
	M
	O
	R
	Y

	codeword
	00
	100
	011
	111
	10111
	1010
	110
	010
	10110

	bits
	2
	3
	3
	3
	5
	4
	3
	3
	5

	frequency
	9
	6
	6
	8
	2
	3
	7
	4
	1

	Bits*frequency
	18
	18
	18
	24
	10
	12
	21
	12
	5

Number of bits transmitted = Sum of bits * frequency = 128
Question 3 [13 points: 6 + 7] Graph Traversals and Tracing
Consider the following graph:

[image: image15.wmf]7

15

5

(a) List the vertices in the order they will be visited by each of the following traversal methods. If at any point you have more than one vertex to visit, you must visit the vertices in increasing alphabetic order.
i. [2 points] Pre-order Depth-First Traversal starting at vertex A:

A, B, D, C, F, G, E
ii. [2 points] Post-order Depth-First Traversal starting at vertex B:

B, A, C, D, E, G, F

iii. [2 points] Breadth-First Traversal starting at vertex G:

G, D, E, F, A, B, C

(b) [6+1 points] Use the above graph to trace the execution of Prim’s algorithm as it finds the minimum-cost spanning tree starting from vertex C. Draw the resulting minimum-cost spanning tree. Use the following table for tracing Prim’s algorithm.

	Pass:
	initial
	1
	2
	3
	4
	5
	6
	7
	weight
	Predecessor

	Active vertex:
	
	C
	A
	B
	D
	E
	G
	
	
	

	A
	(
	2
	
	
	
	
	
	
	2
	C

	B
	(
	(
	5
	
	
	
	
	
	5
	A

	C
	0
	
	
	
	
	
	
	
	0
	-

	D
	(
	7
	7
	3
	
	
	
	
	3
	B

	E
	(
	(
	(
	9
	4
	
	
	
	4
	D

	F
	(
	8
	8
	8
	8
	8
	1
	
	1
	G

	G
	(
	(
	(
	(
	11
	6
	
	
	6
	E

The resulting minimum-cost spanning tree is:

[image: image16.wmf]8

8

13

8

13

7

8

13

7

78

8

13

7

78

34

8

13

7

78

34

21

8

13

7

78

34

21

90

8

13

7

78

34

21

90

45

8

13

7

45

34

21

90

78

33

8

13

7

45

34

21

90

78

33

17

8

13

7

45

34

21

90

78

33

17

5

8

13

7

45

34

21

90

78

33

17

5

Question 4 [34 points: 10 + 20 + 4] Graph Implementation
The GraphAsArrayLists class uses the concept of adjacency list to represent a graph. If you have done Lab#10 (Graphs), you will have complete implementation of the GraphAsArrayLists class.
Note: If you have not done Lab#10, make sure that your GraphAsArrayLists class implements all the abstract methods. Otherwise your class will not compile.

In this question, you need to make a copy of the GraphAsArrayLists class and add the following methods to it.

(a) public void deleteEdge(String from, String to)

[10 points] This method removes the edge between the vertices whose labels are passed in as Strings from and to. If such an edge does not exist, the method should throw an appropriate exception. If the graph is undirected, the method should also remove the reverse of the edge.

public void deleteEdge(String from, String to){//total points = 10

Edge edge = this.getEdge(from, to);//1 point

if (edge == null)// 1 point

throw new IllegalArgumentException("No such edge");//1 point

int index = getIndex(from);//1 point

edges[index].extract(edge);//3 points

/*Instead of calling extract method as above,

 * the student may write a loop to find the edge in the linked list

 * and then remove it by adjusting the next reference of the

 * previous element.

 * This approach is also acceptable

 */

this.numberOfEdges--;// 1 points

// delete the reverse edge as well for undirected graph

if (!this.isDirected() && this.getEdge(to, from)!=null)//1 points

this.deleteEdge(to, from);// 1 points

}
(b) public void deleteVertex(String label)

[20 points] This method removes the vertex whose label is passed in. If such a vertex does not exist, the method should throw an appropriate exception. The method should also remove all emanating and all incident edges for the deleted vertex.

public void deleteVertex(String label){//total points = 20

int vertexIndex = getIndex(label);// 1 point

if (vertexIndex == -1) // 1 point

throw new IllegalArgumentException("No such vertex");//1 point

//count emanating edges so that edges count can be adjusted later

int emCount = 0;

MyLinkedList.Element e = edges[vertexIndex].getHead();

while (e!=null){

emCount++;

e = e.next;

}// 2 points for the above part

//shifting all higher index vertices and adjacency lists

for (int i = vertexIndex; i < this.numberOfVertices - 1; i++){// 2 point

//this will delete the vertex

vertices[i] = vertices[i+1];// 1 point

// this will delete the emanating edges

edges[i] = edges[i+1];// 1 point

}

this.numberOfVertices--;// 1 point

this.numberOfEdges -= emCount;// 1 point

vertices[numberOfVertices] = null;// 1 point

edges[numberOfVertices].purge();// 1 point

// deleting the incident edges

for (int i = 0; i < this.numberOfVertices; i++){// 1 point

e = edges[i].getHead();// 1 point

while (e!=null){// 1 point

Edge eg = (Edge) e.getData();// 1 point

if (eg.getToVertex().getLabel().equals(label)){// 1 point

e.extract();// 1 point

// or edges[i].extract(eg);

numberOfEdges--;// 1 point

}

}

}

}
(c) public static void main(String[] args)

[4 points] This method should test the above two methods. Create an object of GraphAsArrayLists class and populate it with some vertices and edges. Remove few vertices and edges. Print the graph at various stages to see the effect of the above methods.

No specific solution.
Question 5 [17 points: 5 + 2 + 10] Graph Application
Think about a realistic problem which can be represented as finding Shortest-Path problem or finding Minimum-Cost Spanning Tree problem. You will have to introduce the problem and solve it with one of the graph algorithms discussed in the lecture.

Example problems are:

· Creating a minimum-cost railway or vehicle road network that connects all major cities of a particular country.

· Using an existing railway, bus or airline network of stations, finding the minimum in cost, shortest in distance, or fastest in time rout to reach from one place to another.

· Or you may choose any other problem …

Do the followings for the problem:

(a) [5 points] Describe the problem with the help of a pictorial graph. Your graph must have at least 7 vertices and as many edges.

(b) [2 points] Represent the graph as a text file so that it can be read by your program (as done in the lab).

(c) [10 points] Write a java class MyGraphProblem which contains the main method (and other methods if needed). In the main method, a graph object must be initialized by reading the text file created in the previous step. Then extra information is collected from the user if needed (e.g., name of the city the user wants to start traveling from/to). The method then calls an appropriate method from the ics202.Algorithms class to find a solution. It then prints the result properly.

No specific solution.

Important Notes:

· Your report for this homework must be word-processed and must follow the homework submission template format, which you can get in the downloadables section of the WebCT.

· Diagrams can be drawn using a tool (Visio, SmartDraw, etc) or by hand.

· All the classes for this homework must be stored in a package ics202.hw04.

· You must import the necessary packages needed for your program.

· You need to submit two things:

1. A printed copy of your report at the beginning of your class on the due date.

2. Submit your entire ics202 package into the webCT under the Assignments option.

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

[image: image17.wmf]10

15

7

5

[image: image18.wmf]10

15

7

5

[image: image19.wmf]8

8

13

8

13

7

8

13

7

78

8

13

7

78

34

8

13

7

78

34

21

8

13

7

78

34

21

90

8

13

7

78

34

21

90

45

8

13

7

45

34

21

90

78

33

8

13

7

45

34

21

90

78

33

17

8

13

7

45

34

21

90

78

33

17

5

8

13

7

45

34

21

90

78

33

17

5

[image: image20.wmf]7

15

5

[image: image21.wmf]20

25

15

50

60

30

10

65

[image: image22.wmf]25

20

50

60

30

10

65

[image: image23.wmf]15

9

A

8

E

1

Y

7

O

2

K

4

R

3

M

6

B

5

D

3

6

9

12

18

27

45

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

[image: image24.wmf]A

B

F

G

C

D

E

5

1

2

3

4

7

6

8

9

10

11

12

_1241085432.bin

_1241085660.bin

_1241087790.bin

_1241088451.bin

_1241085688.bin

_1241085731.bin

_1241085548.bin

_1241085587.bin

_1241085517.bin

_1239552075.bin

_1241085368.bin

_1241085401.bin

_1241085307.bin

_1239548058.bin

_1239550616.bin

_1239547985.bin

_1239547936.bin

