KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS202: Data Structures

 HOMEWORK 3 (Term 062)

Due Date: Monday, April 23rd, 2007
Question#1 [20 points: 4 + 10 + 6]

Consider the following two methods which do the same thing in different ways:

public static long power1 (int x, int n) {

 long product = 1;

 for (int i = 1; i <= n; i++)

 product *= x;

 return product;

}

public static long power2 (int x, int n) {

 if (n == 1) return x;

 else if (n == 0)return 1;

 else {

 long t = power2(x , n / 2);

 if ((n % 2) == 0) return t * t;

 else return x * t * t;

 }

}

(a) Write the recurrence relation for the running time T(n) of the method power2(x, n).

T(n) = a

for n = 1 …… (1 point)
T(n) = b

for n = 0 …… (1 point)
T(n) = T(n/2) + c

for n > 1 …… (2 points)

(b) Solve the recurrence relation in (a) by the method of unrolling and summing to find the big-O complexity of power2(x, n). Show all details.
T(n)
= T(n/2) + c

…… (1 point)

= T(n/4) + 2c

…… (1 point)

= T(n/8) + 3c

…… (1 point)

= …..

T(n)
= T(n/2k) + kc

…… (1 point)
Now consider n/2k = 1

…… (1 point)
n = 2k

…… (1 point)
k = Log2 n

…… (1 point)
By putting the value of k in the above equation:
T(n)
= T(1) + c * Log n

…… (1 point)

= a + c * Log n

…… (1 point)

Therefore, the complexity of power2 is O(Log n)

…… (1 point)
(c) For large value of n, which of the above two methods is more efficient in terms of: i) time and, ii) memory space. Give reason for your answer.
i. The time efficiency for power1 is O(n) and for power2 is O(Log n). Therefore power2 is more time efficient.
ii. power2 needs more stack space because of recursion, but power1 does not need it. Therefore power1 is more space efficient.

Question#2 [25 points: 20 + 5]

(a) Implement a Java class ExpressionTree having the following two methods:
public static double evaluate (BinaryTree b)

public static void main (String[] args)

The BinaryTree type parameter of the evaluate method represents an arithmetic expression, where each leaf node contains an operand (a Double object), and each internal node contains an operator (a Character object) as its key.
As an example, the expression: 25 + (14 – 53) * 34 is represented as the following binary tree:

[image: image1.jpg]

The evaluate method should recursively find the value of the expression represented by its parameter. You only consider +, -, / and * as valid operators. If the parameter is an empty tree, the method must throw an appropriate exception.
The main method should test the evaluate method. It should initialize a BinaryTree object to represent the following expression and then use the evaluate method to print its value.

3 * (5 + 7) – 54 / (9 * 2)
package ics202.hw03;
import ics202.*; // ..import has 1 point
public class ExpressionTree {
 public static double evaluate (BinaryTree b){

//each line has 1 point = 13 points

if (b.isEmpty())

 throw new InvalidOperationException("The tree is empty");

if (b.isLeaf())

 return ((Double)b.getKey()).doubleValue();

char operator = ((Character)b.getKey()).charValue();

double left = evaluate(b.getLeft());

double right = evaluate(b.getRight());

switch (operator){

case '+': return left + right;

case '-': return left - right;

case '*': return left * right;

case '/': return left / right;

default: throw new InvalidOperationException(

"Operator not supported: "+operator);

}
 }
 public static void main(String[] args){

//each line has 1/2 point = 6 points

//3 * (5 + 7) – 54 / (9 * 2)

BinaryTree v5 = new BinaryTree(new Double(5));

BinaryTree v7 = new BinaryTree(new Double(7));

BinaryTree v3 = new BinaryTree(new Double(3));

BinaryTree v9 = new BinaryTree(new Double(9));

BinaryTree v2 = new BinaryTree(new Double(2));

BinaryTree v54 = new BinaryTree(new Double(54));

BinaryTree t1 = new BinaryTree(new Character('+'),v5,v7);

BinaryTree t2 = new BinaryTree(new Character('*'),v9,v2);

t1 = new BinaryTree(new Character('*'),v3,t1);

t2 = new BinaryTree(new Character('/'),v54,t2);

BinaryTree t = new BinaryTree(new Character('-'),t1,t2);

System.out.println("3 * (5 + 7) – 54 / (9 * 2) = " + evaluate(t));
 }
}
(b) Draw the resulting Binary search tree after deleting 24 by copying method from the following BST:

[image: image3.wmf]10

7

16

11

8

17

14

Anyone of the following two is correct:
	[image: image17.wmf]10

7

13

11

7

16

17

14

+1

+1

0

0

0

0

0

+1

12

0

	[image: image2.jpg]

Question#3 [30 points: 5 + 5 + 5 + 15]
(a) Show the result of converting the array given below into a min-heap by the bottom-up approach:

	15
	10
	13
	9
	6
	7
	8
	17
	8
	5

[image: image4.wmf]11

12

13

23

17

18

14

13

19

33

	5
	6
	7
	8
	10
	13
	8
	17
	9
	5

(b) Show the resulting heap after the dequeueMin operation is performed on the following heap.

	15
	17
	19
	20
	35
	20
	25
	27
	21
	37
	36

[image: image5.wmf]10

7

16

11

8

17

14

13

0

-1

+1

+2

-2

+2

0

0

	17
	20
	19
	21
	35
	20
	25
	27
	36
	37

(c) Draw the tree that results in building a max-heap, top-down, when the following keys are inserted one at a time in an initially empty max-heap.

11, 19, 23, 12, 13, 17, 13, 14, 18, 33
[image: image6.wmf]10

7

16

11

8

17

13

14

(d) Write a method in the BinaryHeap class with the following signature:

public void changeKey(Comparable oldKey, Comparable newKey)

The method will replace the first occurrence of oldKey with the newKey, and restore the Min-Heap property after the change. If the oldKey does not exist in the heap, the method prints an appropriate message and returns without changing the heap. Suppose our binary heap object (bh) has the following keys:

	5
	10
	9
	11
	15
	10
	12
	13
	14
	16
	18

Then the method call: bh.changeKey (new Integer(10), new Integer(3)) should change the keys to:

	3
	5
	9
	11
	15
	10
	12
	13
	14
	16
	18

Also write test code to create a binary heap and use the changeKey method on it.
// in class BinaryHeap (each of body line has 1 point = 12 points)
 public void changeKey(Comparable oldKey, Comparable newKey){

int i=1;

while (i < count+1){

if (array[i].equals(oldKey))

break;

i++;

}

if (i == count+1){

System.out.println(oldKey + " is not present in the heap"); return;

}

array[i] = newKey; // change the key

if (i>1 && array[i].compareTo(array[i/2])<0)

percolateUp(i);

else

percolateDown(i);
 }

// inside the main method of BinaryHeapTest class (= 3 points)

case 7:

 System.out.print("Enter the key to replace: ");

 int oldk = stdin.nextInt(); // (1 point)

 System.out.print("Enter the new key: ");

 int newk = stdin.nextInt();// (1 point)

 binaryheap.changeKey(new Integer(oldk), new Integer(newk));// (1 point)

 break;
Question#4 [25 points]

Draw the intermediate trees, the final tree, and mention the rotations performed, if any, when the keys 13 and 12 are inserted, in the given order, in the AVL tree given below. (Note: The second insertion is done on the AVL tree modified by the first insertion).
[image: image7.wmf]10

7

16

13

8

17

14

11

+1

+1

0

0

-1

0

0

0

Grading Policy:

3 points: First diagram (after inserting 13)
1 point: Stating: double right-left rotation or right rotation followed by left rotation

6 points: Second diagram (after the first rotation of the double rotation)
6 points: Third diagram (after the second of the double rotation)
2 points: Fourth diagram (after inserting 12)
1 point: Stating: single right rotation

6 points: Fifth diagram (final tree)

Note: DO NOT PENALIZE STUDENTS FOR NOT SHOWING THE BALANCE FACTORS
SOLUTION:
After inserting 13, the tree will become the following. It needs a double Right-Left Rotation on Node (11)
[image: image8.wmf]10

7

16

13

8

17

14

11

+2

+1

0

-1

-2

0

0

+1

12

0

For the double rotation, first we need to do a Right rotation on 14. This will change the tree to:

[image: image9.wmf]10

7

13

11

7

16

17

14

+1

+1

0

0

0

0

0

+1

12

0

The Left rotation on 11 will change the tree to:

[image: image10.wmf]11

12

13

23

17

18

14

13

19

33

Now after inserting 12, the tree will become the following. It needs a single Right rotation on 16.
[image: image11.wmf]10

7

16

11

8

17

14

After the right rotation on 16, the tree will become:
[image: image12.jpg]23

Important Notes:

· Your report for this homework must be word-processed and must follow the homework submission template format, which you can get in the downloadables section of the WebCT.

· Diagrams can be drawn using a tool (Visio, SmartDraw, etc) or by hand.

· All the classes for this homework must be stored in a package ics202.hw03.

· You must import the necessary packages needed for your program.

· You need to submit two things:

1. A printed copy of your report at the beginning of your class on the due date.

2. Submit your entire ics202 package into the webCT under the Assignments option.

� EMBED SmartDraw.2 ���

53

14

-

34

*

25

+

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

� EMBED SmartDraw.2 ���

[image: image13.wmf]10

7

16

11

8

17

14

13

0

-1

+1

+2

-2

+2

0

0

[image: image14.wmf]10

7

16

11

8

17

13

14

[image: image15.wmf]10

7

16

13

8

17

14

11

+1

+1

0

0

-1

0

0

0

[image: image16.wmf]10

7

16

13

8

17

14

11

+2

+1

0

-1

-2

0

0

+1

12

0

_1238916082.bin

_1238923548.bin

_1238923853.bin

_1238924182.bin

_1238923701.bin

_1238923315.bin

_1237285752.bin

