and the QUEST FOR NETWORK AND REPLICATION PERFORMANCE

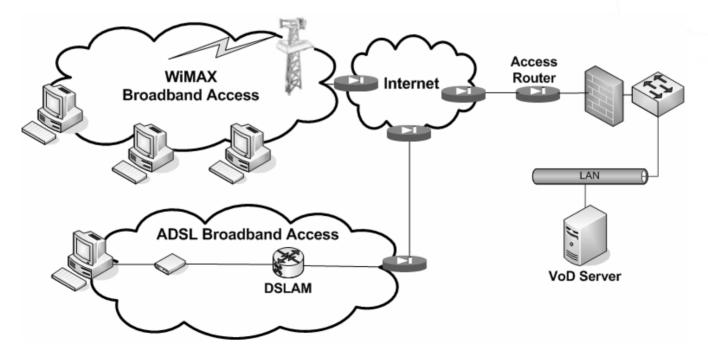
Streaming Video Content Over WiMAX Broadband Access

Will Hrudey and Ljiljana Trajković Simon Fraser University Vancouver, British Columbia Email: {whrudey, ljilja}@cs.sfu.ca

Copyright © 2008 OPNET Technologies, Inc

Roadmap

- Introduction
- Related work
- OPNET model
- Simulation results:
 - packet loss, delay, and jitter
 - traffic throughput
- Conclusions and future work
- References



Introduction

Focus of this study:

Can WiMAX deliver comparable network performance to ADSL broadband access for streaming video applications?

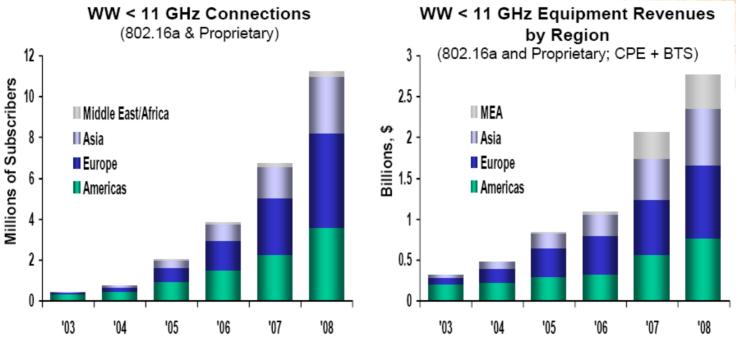
Simulation streaming an MPEG-4 two-hour movie to four video clients

WiMAX Broadband Access

- Worldwide interoperability for microwave access:
 - IEEE 802.16-2004
 - IEEE 802.16e-2005
- All IP network architecture
- Point-to-multipoint (PMP) mode
- Connection oriented: bandwidth request/grant scheme
- Flexible QoS supports voice and video
- Optimum spectral efficiency
- Channel bandwidth: 1.25 20 MHz
- Typical cell size: 7 10 km
- Optimized for outdoors
- Provides fixed, nomadic, and mobile usage

Copyright © 2008 OPNET Technologies, Inc

'03 '04 '05 '06 '07 '08 '03 '04 '05 '06 '07 M. LaBrecque, WiMAX introduction [Online]. Available: http://www.wimaxforum.org/technology/downloads (February 2008).

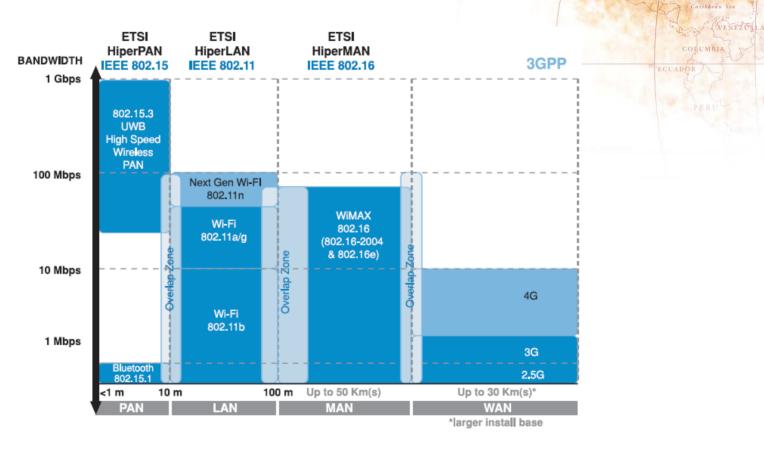

- WiMAX Forum March press release: 133 million users by 2012
- OPNETWORK 2007 conference cited > 100 planned carrier trials

Copyright © 2008 OPNET Technologies, Inc.

CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, copied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the Author.

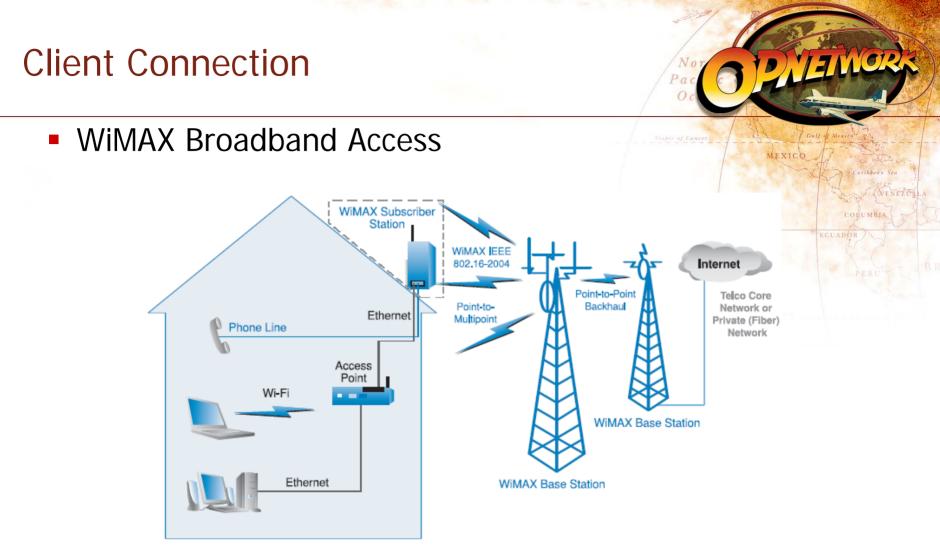
Why WiMAX?

WiMAX Growth


MEXICO

Wireless Technologies

Nor OPIERCR


MEXICO

WiMAX Broadband Access

Intel, Understanding Wi-Fi and WiMAX as metro-access solutions [Online]. Available: http://www.rclient.com/PDFs/IntelPaper.pdf (February 2008).

Copyright © 2008 OPNET Technologies, Inc.

Customer Premise (Home, Business or HOTSPOT)

Intel, Understanding Wi-Fi and WiMAX as metro-access solutions [Online]. Available: http://www.rclient.com/PDFs/IntelPaper.pdf (February 2008).

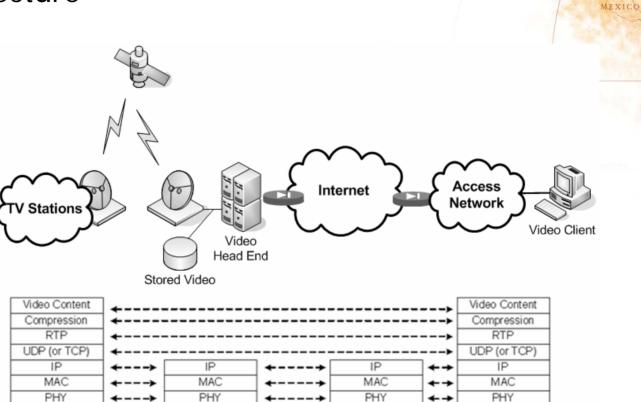
Copyright © 2008 OPNET Technologies, Inc.

Video Services

Nor Pac Oc

- Video Content Streaming
 - Digital video source delivered to video clients over an IP network infrastructure:
 - digital video information is organized as frames
 - frames are compressed using a video codec
 - compressed frames are encapsulated in protocol headers
 - video frame packets are transmitted at a constant rate
 - Video packets may be IP multicast or IP unicast
 - Managed services
 - IPTV (live & VoD)
 - Video conferencing

Unmanaged services


- IPTV (live & VoD)
- YouTube, Google Video

Copyright © 2008 OPNET Technologies, Inc.

Video Streaming

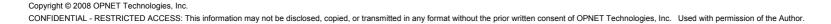
Architecture

I. Uilecan, C. Zhou, and G. Atkin, "Framework for delivering IPTV services over WiMAX wireless networks," *Proc IEEE EIT 2007*, Chicago, IL, May 2007, pp. 470-475.

Video Coding Schemes

- Exploit temporal and spatial characteristics
- Various standards and codecs
 - ITU (H.26x) and ISO (MPEG-x)

Codec	Raw data rate	Compressed rate
MPEG-1	30 Mbps	1.5 Mbps
MPEG-2	128 Mbps	3 – 10 Mbps
MPEG-4		< 1.024 Mbps


Based on QCIF and/or CIF video formats

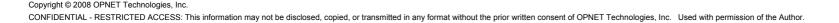
MEXICO

Roadmap

- Introduction
- Related work
- OPNET model
- Simulation results:
 - packet loss, delay, and jitter
 - traffic throughput
- Conclusions and future work
- References

MEXICO

Related work


- D. Niyato, E. Hossain, and J. Diamond, "IEEE802.16/WiMAX-Based broadband wireless access and its application for telemedicine / e-health services," *IEEE Wireless Communications Magazine*, vol. 14, no.1, pp. 72-83, Feb. 2007.
 - simulation performed in Matlab
- F. Retnasothie, M. Ozdemir, T. Yucek, H. Celebi, J. Zhang, and R. Muththaiah, "Wireless IPTV over WiMAX: challenges and applications," *Proc. IEEE WAMICON 2006*, Clearwater, FL, Dec. 2006, pp. 1-5.
 - no simulations
- F. Yousaf, K. Daniel, and C. Wietfeld, "Performance evaluation of IEEE 802.16 WiMAX link with respect to higher layer protocols," *Proc. IEEE ISWCS 2007*, Trondheim, Norway, Oct. 2007, pp. 180-184.
 - utilized testbed instead of simulations
- I. Uilecan, C. Zhou, and G. Atkin, "Framework for delivering IPTV services over WiMAX wireless networks," *Proc IEEE EIT 2007*, Chicago, IL, May 2007, pp. 470-475.
 - no simulations

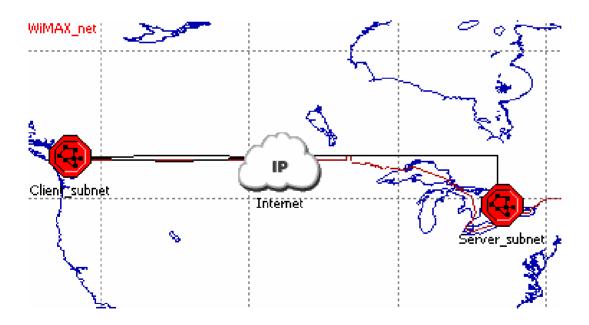
Copyright © 2008 OPNET Technologies, Inc

Roadmap

- Introduction
- Related work
- OPNET model
- Simulation results:
 - packet loss, delay, and jitter
 - traffic throughput
- Conclusions and future work
- References

MEXICO

Performance Metrics

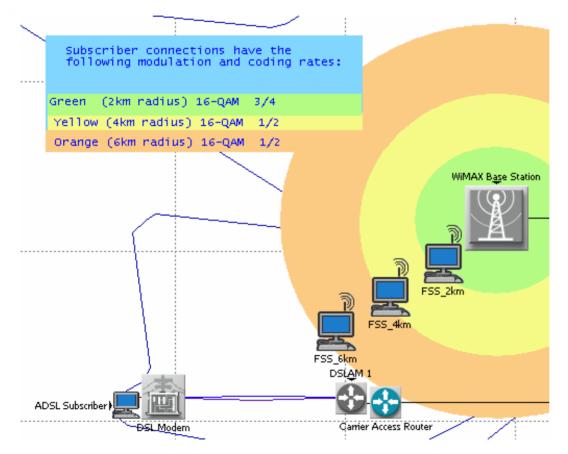

- Loss: Number of packets dropped
 - 1 (# of received packets) / (# of expected packets)
 - Avg: < 10⁻³ Ideal: < 10⁻⁵
- Delay: Average time of transit
 - Processing delay + propagation delay + queuing delay
 - Avg: < 300 ms Ideal: < 10 ms
- Jitter: Variation in packet arrival time
 - Actual reception time expected reception time
 - Avg: < 60 ms
 Ideal: < 20 ms
- Throughput: Minimum end-to-end transmission rate
 - Measured in bytes/sec (bps)
 - 10 kbps 5 Mbps

Development Platform

- Toshiba Tecra S2 laptop:
 - Intel Pentium M Processor / 1GB RAM
 - Windows XP Service Pack 2
- OPNET 12.0.A PL3 + WiMAX Module:
 - Integrated WiMAX and ADSL nodes
 - generic video conferencing application
- Visual Studio .NET 2003 development environment:
 - required to compile models

Simulated Network Topology

- Network:
 - video services subnet located in Toronto
 - video clients subnet located in Vancouver (distance: 3,342 km)


Client WAN link
 1,547 km
 6.1 ms d_{prop}

MEXICO

 Server WAN link 1,795 km 7.2 ms d_{prop}

Video Clients Topology

Subnet

MEXICO

- three WiMAX stations
 2, 4, and 6 km from base station
- one ADSL station
 1 km from central office

Copyright © 2008 OPNET Technologies, Inc.

Network Design Parameters

- Network:
 - ADSL configuration:
 - downlink: 3.0 Mbps / uplink: 0.640 Mbps
 - subscriber to central office: 5 km delay based link
 - Adopted latitude / longitude coordinate system to model pathloss and propagation delay
 - WiMAX clients are located 2/4/6 km from base station:
 - manually configured robust burst profiles as a function of distance
 - Reviewed Motorola datasheets for current generation WiMAX hardware

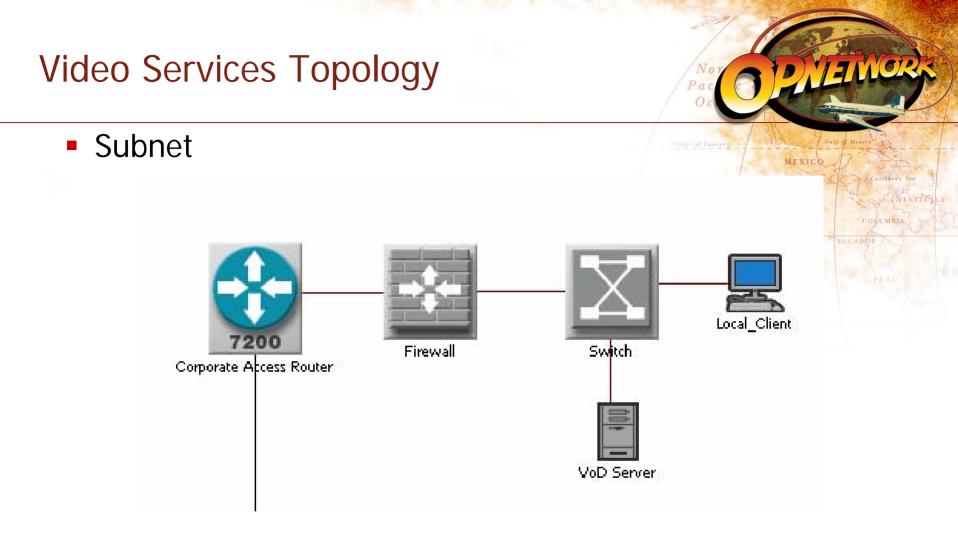
Network Design Parameters

- WiMAX deployment parameters (not disclosed without NDA):
 - Scheduling algorithm: best effort (BE)
 - Min sustainable data rate: downlink: 3.0 Mbps / uplink: 0.640 Mbps
 - Frequency band/channel bandwidth: 2.5 GHz / 5 MHz
 derived 5 MHz channel definition
 - PHY layer access scheme: OFDM 512
 - Transmit power levels (BS/SS): 5W/2W
 - Pathloss model: suburban with mostly flat terrain with light tree densities

17110

Network Design Parameters

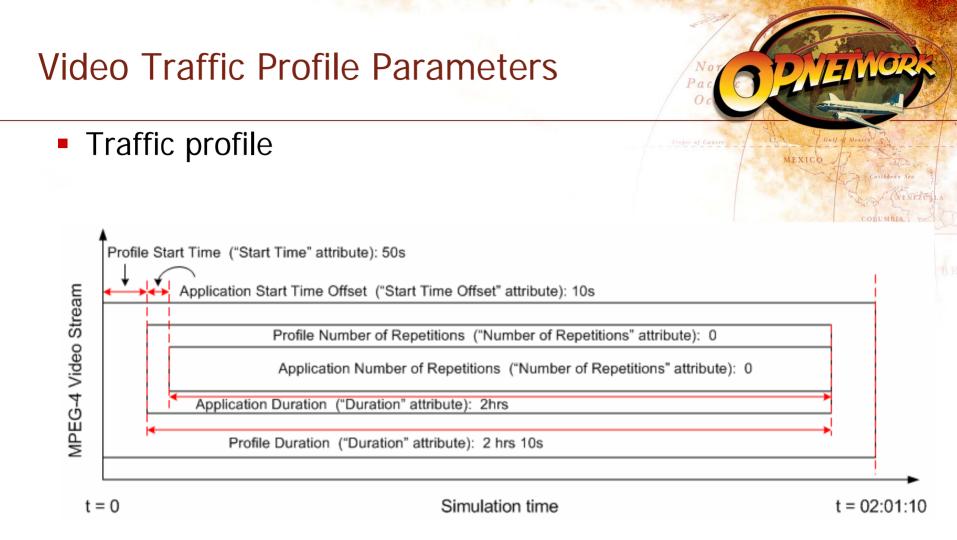
MEXICO


Required SNR for modulation / coding

Modulation	Coding	Information Bits/symbol/Hz	Required SNR (dB)
QPSK	1/2	1	9.4
	3/4	1.5	11.2
16-QAM	1/2	2	16.4
	3/4	3	18.2
64-QAM	2/3	4	22.7
	3/4	4.5	24.4

• OFDM 512 subcarriers

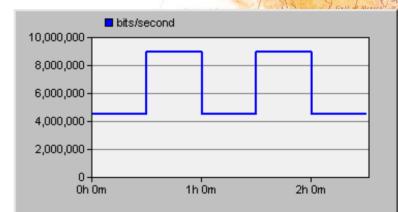
Frequency Division					
	DL Zone	UL Zone			
Number of Null Subcarriers - Lower Edge	46		52		
Number of Null Subcarriers - Upper Edge	45		51		
Number of Data Subcarriers	360		272		
Number of Subchannels	15		17		

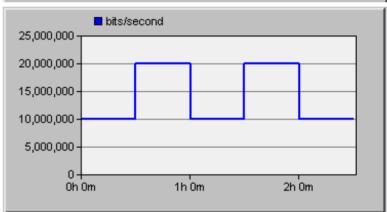

Copyright © 2008 OPNET Technologies, Inc.

- Server provides video on demand (VoD) services
- Local client used only for initial troubleshooting and validation

Video Design Configuration

- Video traffic is loss tolerant but delay sensitive
- Simulation model is trace driven
- Configured 2 video streams:
 - MPEG-2 1280x720 at 30 fps (performed poorly)
 - MPEG-4 352x288 at 25 fps (primary stream)
- Video trace pre-processing:
 - sorted into codec sequence (versus display sequence)
 - converted frame sizes to bytes
 - imported into OPNET as a distribution
- Configured Application and Profiles Nodes
- Promoted necessary statistics


MPEG-2 performed poorly: simulation employed an MPEG-4 stream


Copyright © 2008 OPNET Technologies, Inc.

Network Background Traffic

- WAN Links:
 - 10-20% background traffic
- LAN Links:
 - 10-20% background traffic

- Internet:
 - packet discard ratio: 0.001 %
 - packet latency: 0.001 s

Background traffic growth: 10% every 30 min

Video Traces

Traffic Details

Parameters	Validation	Τ2	Matrix III
Resolution	128x120	1280x720	352x288
Codec	<none></none>	MPEG-2	MPEG-4 Part 2
Frame Compression Ratio	1	58.001	47.682
Min Frame Size (Bytes)	17280	627	8
Max Frame Size (Bytes)	17280	127036	36450
Mean Frame Size (Bytes)	17280	23833.792	3189.068
Display Pattern	N/A	IBBPBBPBBPBB	IBBPBBPBBPBB
Transmission Pattern	N/A	IPBBPBBPBBIB	IPBBPBBPBBIB
Group of Picture Size	N/A	12	12
Frame Rate (frames/sec)	1	30	25
Number of Frames	7,200	324,000	180,000
Peak Rate (Mbps)	0.138	30.488	7.290
Mean Rate (Mbps)	0.138	5.720	0.637

Note peak and mean rates for MPEG-2 and MPEG-4 traffic

Copyright © 2008 OPNET Technologies, Inc.

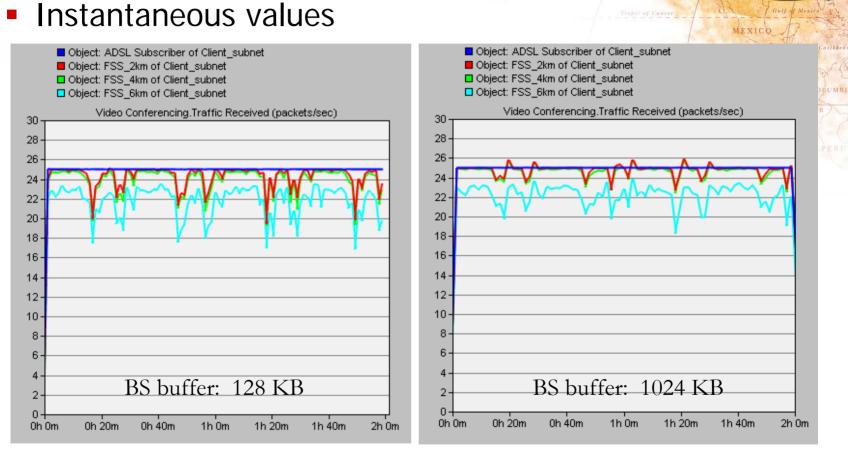
CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, copied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the Author.

MEXICO

Simulation Model

- Limitations:
 - video traffic only*
 - no RTP encapsulation
 - WiMAX AMC not available**
 - WiMAX power management not available^{**}
- * G. Auwera, P. David, and M. Reisslein, "Traffic characteristics of H.264/AVC variable bit rate video," [Online]. Available: http://trace.eas.asu.edu/h264/index.html (March 2008).
- * G. Auwera, P. David, and M. Reisslein, "Traffic and quality characterization of single-layer video streams encoded with the H.264/MPEG-4 advanced video coding standard and scalable video coding extension" [Online]. Available: http://trace.eas.asu.edu/h264/index.html (March 2008).
- ** OPNET WIMAX (802.16e) model user guide [Online]. Available via OPNET WIMAX registration.

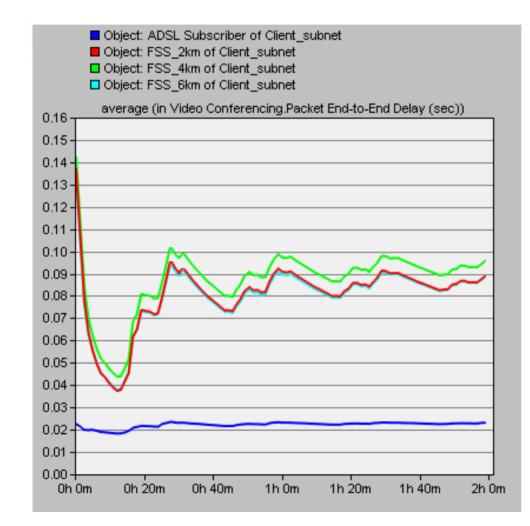
Copyright © 2008 OPNET Technologies, Inc.


Roadmap

- Introduction
- Related work
- OPNET model
- Simulation results:
 - packet loss, delay, and jitter
 - traffic throughput
- Conclusions and future work
- References

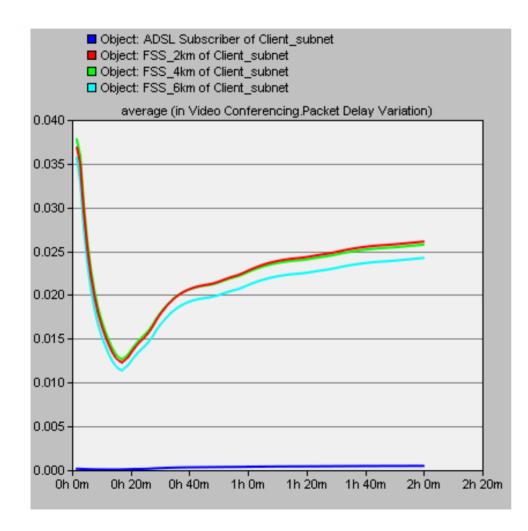
MEXICO

Video Packet Loss


- Loss is depicted as deviation from the blue line representing 25 pkts/sec
- 1024 KB is large enough to prevent dropped downlink packets at BS
- 6 km WiMAX station loss because SNR is < min level for modulation/coding</p>

Copyright © 2008 OPNET Technologies, Inc.

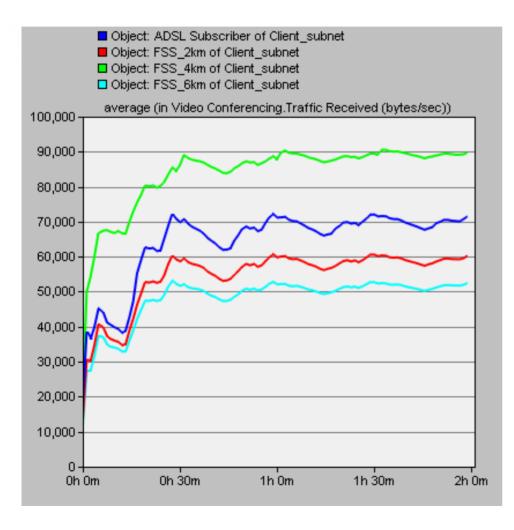
Video Packet Delay


MEXICO

- Values are averaged over the two-hour movie duration
- Metric: average: < 300 ms ideal: < 10 ms

Copyright © 2008 OPNET Technologies, Inc.

Video Packet Jitter


Nor OREBOR

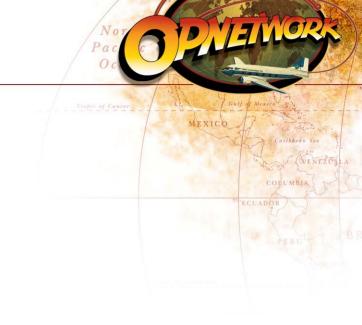
MEXICO

- Values are averaged over the two-hour movie duration
- Metric: average: < 60 ms ideal: < 20 ms

Copyright © 2008 OPNET Technologies, Inc.

Video Traffic Throughput

Nor OPERCENT Pac Oc


MEXICO

- Values are averaged over the two-hour movie duration
- Metric: 10 kbps 5 Mbps

Copyright © 2008 OPNET Technologies, Inc.

Roadmap

- Introduction
- Related work
- OPNET model
- Simulation results:
 - packet loss, delay, and jitter
 - traffic throughput
- Conclusions and future work
- References

Conclusions

- Simulation time: 2.0 hrs / Actual time: > 8 hrs
- WiMAX satisfied the video performance metrics:
 - WiMAX packet loss reduced by increasing BS buffering
 - results are understated (model used worst case BE scheduler)
- Promising overall results in comparison to ADSL:
 - dependant on specific carrier deployment parameters
 - WiMAX has capacity to deliver higher throughput rates and QoS than ADSL
 - With further refinement, WiMAX can provide comparable performance to ADSL for video streaming services
- Simulations do not replace real world equivalence:
 should be considered when interpreting results

Future work

- Develop more comprehensive simulations:
 - experimentally characterize specific WiMAX parameters: scheduling, transmit power, antenna gain, channel bandwidths
- Conduct comprehensive analysis on data
- Research and refine video performance metrics
- Encapsulate video traffic in RTP
- Incorporate audio streams
- WiMAX mobility and shadowing

Roadmap

- Introduction
- Related work
- OPNET model
- Simulation results:
 - packet loss, delay, and jitter
 - traffic throughput
- Conclusions and future work
- References

MEXICO

References

- M. LaBrecque, WiMAX introduction [Online]. Available: http://www.wimaxforum.org/technology/downloads (Feb. 2008).
- WiMAX forum [Online]. Available: http://www.wimaxforum.org/news/pr/ (Apr. 2008).
- F. Retnasothie, M. Ozdemir, T. Yucek, H. Celebi, J. Zhang, and R. Muththaiah, "Wireless IPTV over WiMAX: challenges and applications," *Proc. IEEE WAMICON 2006*, Clearwater, FL, Dec. 2006, pp. 1–5.
- I. Uilecan, C. Zhou, and G. Atkin, "Framework for delivering IPTV services over WiMAX wireless networks," *Proc. IEEE EIT 2007*, Chicago, IL, May 2007, pp. 470–475.
- J. She, F. Hou, P. Ho, and L. Xie, "IPTV over WiMAX key success factors, challenges, and solutions," *IEEE Communications Magazine*, vol. 45, no. 8, pp. 87–93, Aug. 2007.
- G. Auwera, P. David, and M. Reisslein, Traffic and quality characterization of singlelayer video streams encoded with the H.264/MPEG-4 advanced video coding standard and scalable video coding extension [Online]. Available: http://trace.eas.asu.edu/h264/index.html (Mar. 2008).

Copyright © 2008 OPNET Technologies, Inc. CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, copied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the

References

- G. Auwera, P. David, and M. Reisslein. Traffic characteristics of H.264/AVC variable bit rate video. [Online]. Available: http://trace.eas.asu.edu/h264/index.html (Mar. 2008).
- J. Kurose and K. Ross, *Computer Networking: A Top-Down Approach*, 4/e. Boston, MA: Pearson/Addison-Wesley, 2008, p. 590, p. 612, and p. 624.
- V. Markovski, F. Xue, and Lj. Trajkovic, "Simulation and analysis of packet loss in video transfers using User Datagram Protocol," *The Journal of Supercomputing*, vol. 20, no. 2, pp. 175–196, Sept. 2001.
- IEEE Std. 802.16-2004: Part 16: Air interface for fixed broadband wireless access systems [Online]. Available: http://standards.ieee.org/getieee802/802.16.html (Feb. 2008).
- M. Chatterjee, S. Sengupta, and S. Ganguly, "Feedback-based real-time streaming over WiMax," *IEEE Wireless Communications Magazine*, vol. 14, no. 1, pp. 64–71, Feb. 2007.
- Intel, Understanding Wi-Fi and WiMAX as metro-access solutions [Online]. Available: http://www.rclient.com/PDFs/IntelPaper.pdf (Feb. 2008).

Copyright © 2008 OPNET Technologies, Inc.

References

- D. Niyato, E. Hossain, and J. Diamond, "IEEE802.16/WiMAX-based broadband wireless access and its application for telemedicine / e-health services," *IEEE Wireless Communications Magazine*, vol. 14, no.1, pp. 72–83, Feb. 2007.
- OPNET Modeler software [Online]. Available: http://www.opnet.com/products/modeler/home.html (June 2008).
- OPNET WiMAX (802.16e) model user guide [Online]. Available http://www.opnet.com/WiMAX_Academic (March 2008).
- H. Juan, H. Huang, C. Huang, and T. Chiang, "Scalable video streaming over mobile WiMAX," *Proc. ISCAS 2007*, New Orleans, Louisiana, May 2007, pp. 3463–3466.
- F. Yousaf, K. Daniel, and C. Wietfeld, "Performance evaluation of IEEE 802.16 WiMAX link with respect to higher layer protocols," *Proc. IEEE ISWCS 2007*, Trondheim, Norway, Oct. 2007, pp. 180–184.