PAGE
1

Fetch-Decode-Execute Cycle

Computer Function

· The basic function of a computer is program execution

· When a program is run the executable binary file is copied from the disk drive into memory

· The process of program execution is the retrieval of instructions and data from memory, and the execution of the various operations

· Program execution stops only when the computer is switched off; while the machine is on, the cycle is continuous! (an infinite loop)

· Program execution is performed by Control Unit (CU) of the CPU

· The task of the Control Unit is the instruction cycle (sometimes called the fetch-decode-execute cycle, or just the fetch-execute cycle)

· The control unit is also in charge of coordinating the activities inside the CPU and the interaction with the outside. It is doing this by issuing in each clock cycle the appropriate control signals.
· A set of control signals activates the micro-operations which have to be executed in a given control step.
· The instruction cycle consists of the tasks: the fetch cycle, the decode cycle, the execute cycle, and the interrupt cycle

· The sequence of actions of the instruction cycle can be seen in the following diagram:

[image: image1.jpg]T%

Interrupt

Micro-Operations

· The lowest level atomic operations that a computer performs are micro operations

· At each stage during the instruction cycle, a series of micro operations are performed

· For example, the execution cycle has various different sets of micro operations to perform the various arithmetic and logic operations

The Fetch Cycle

· The first phase of the instruction cycle

· Special purpose CPU registers are involved:

· MAR: the Memory Address Register specifies the address in memory for a read or write operation

· MDR: the Memory Data Register (or MBR: the Memory Buffer Register) is used to contain the value to be stored in memory or the last value read from memory

· PC: the Program Counter holds the address of the next instruction to be fetched

· IR: the Instruction Register is used to contain the the opcode of the last instruction

· The sequence of micro code actions of the Fetch cycle are:

0. Move the contents of PC into MAR

1. Move the contents of the memory address given by the value of MAR, and store the data in MDR

2. Increment the value of PC

3. Move the contents of MDR into IR

1. Special note: it is possible that some op code may be stored in more than a single memory address (thus requiring several fetches...)

The Decode (Indirect) Cycle

· The fetch cycle is responsible for setting up the instructions - next, the operands of the instruction must be fetched from memory

· The process can be quiet involved, as an instruction may have several operands spanning several memory cells

· Basically this step involves converting "indirect" addresses (like variables) to "direct" addresses specifying the exact location in memory at which to find the data

· In short, the actions of the Indirect cycle are:

· For each of the operands which need to be decoded:

· Perform a series of memory reads (in the style of the fetch cycle)

· Replace the indirect addresses with direct addresses

The Execute Cycle

· For each op code, a particular sequence of micro operations are performed (the sequence will be different for each op code)

· The micro code for a particular instruction could be rather complex.

The Interrupt Cycle

· After the execute cycle is completed, a test is made to determine if an interrupt was enabled (e.g. so that another process can access the CPU)

· if not, instruction cycle returns to the fetch cycle

· if so, the interrupt cycle might performs the following tasks: (simplified...)

· Copy the current value of PC into MDR

· Copy SP into MAR

· Copy the interrupt-routine-address into PC

· Copy the contents of the address in MDR into indicated Stack memory cell

· Continue the instruction cycle within the interrupt routine

· After the interrupt routine finishes, the PC-save-address is used to reset the value of PC and program execution can continue
ASYNCHRONOUS VS SYNCHRONOUS DATA TRANSFERS

· Aynchronous data transfer: A data transfer in which one device initiates the transfer and waits until the other device responds.

· Example: The CPU issues a Read request and waits for memory to issue an MFC (Memory Function Complete) signal

· Synchronous data transfer: A device initiates the transfer and waits for a specified number of clock cycles.

INSTRUCTION AND DATA CACHES

To improve the CPU performance, the CPU can be organized as:

[image: image2.jpg]Input/

ASSUMPTIONS

In our discussion on Control Steps we will the use the following assumptions:

1. Each instruction is one byte long.

2. Each instruction occupies one addressable location.

3. Data fetched from memory requires a single fetch.

4. We will use offset addresses as if they are the actual physical addresses.

5. There are no instruction and data caches.

6. There is no instruction pre-fetch queue.

7. The fetch-decode-execute cycle is not interrupted.

8. The memory bus is asynchronous.

CLASSIFICATION OF CPUs

CPUs can be classified according to the number of their CPU buses:

1. Single-bus CPU

2. 2-bus CPU

3. 3-bus CPU

SINGLE-BUS CPU

Micro-operations and Control Signals

In order to allow the execution of a micro-operation, one or several control signals have to be issued; they allow the corresponding data transfer and/or computation to be performed.

Examples:

a) signals for transferring content of register R0 to R1:

R0out, R1in

b) signals for adding content of A to that of R0 (result in C):

R0out, Add, Cin

c) signals for reading a memory location [R3]:

R3out, MARin, Read, WMFC

• The CPU executes an instruction as a sequence of control steps. In each control step one or

 several micro-operations are executed.

• One clock pulse triggers the activities corresponding to one control step => for each clock

 pulse the control unit generates the control signals corresponding to the micro-operations to be

 executed in the respective control step.
[image: image3.jpg](31.0)

31 0
RO ?
[3232bt | 32 31
— general — |« PC
| purpose _{
[registers _je—>
R31
R
A
h A l MA &,
A B
To memory subsystem
ALU y
c - > MD R
c [a— TEMP
>

Control steps for instruction fetch and increment PC:

1.
PCout, MARin, Read, ALU(C=B+1), Cin
2.
Cout, PCin, WMFC

3.
MDRout, IRin
Note: The control signals that are shown in a particular step are the ones that are on at the given time and all others not listed are off. The order in which control signals are written in a particular step is irrelevant. The sequence is from step to step, not from left to right.

--

Example1: Control steps for:
SUB R2, 50H

1.

2.

3.

4. R2out, Ain
5. Immediate-field-of-IRout, ALU(C = A – B), Cin, Set Flags

6. Cout, R2in, End

Note: The "Set Flags" or "Set CC" control line causes the flags (or condition codes) to be affected by the specified ALU operation. The addition, in the standard fetch sequence, is not something that should change the flags. So we didn't list "Set Flags" on that control step. Without Set Flags, the flags stay as they were despite whatever use we make of the ALU.

Using a Register for input and output in the same control step

This is possible if the register is a master-slave-flip-flop register, so that it can be set in the same cycle that its previous value can be used.

For example, we could add three numbers by leaving the sum of two of them in the register C: Suppose we want to calculate the offset address for the indirect memory operand: ARRAY[BX + SI + 2]. This can be done as:

4.
BXout, Ain
5.
SIout, Add, Cin
6.
Displacement-field-ofIRout, Ain
7.
Cout, Add, Cin

We will assume that all of our registers are master-slave unless otherwise specified.

--

Example2: Control steps for: ADD R1, [R3]

1.

2.

3.

4. R3out, MARin, Read

5. R1out, Ain, WMFC

6. MDRout, ALU(C=A+B), Cin, Set Flags

7. Cout, R1in, End

--

Example3: Control steps for: XOR VAR1, R4

1.

2.

3.

4. Offset-field-of-IRout, MARin, Read, WMFC

5. MDRout, Ain
6. R4out, XOR, Cin, Set Flags

7. Cout, MDRin, Write, End

--

Example4: (Unconditional Jump) Control steps for: JMP L2

1.

2.

3.

4. PCout, Ain
5. Displacement-field-ofIRout, ALU(C=A+B), Cin
6. Cout, PCin, End

--

Example5: (Conditional Jump) Control steps for: JZ L1

1.

2.

3.

4. PCout, Ain, if ZF = 0 then End

5. Displacement-field-of-IRout, ALU(C=A+B), Cin
6. Cout, PCin, End

TWO-BUS CPU

[image: image4.jpg]EE
Abus Bbus
(“In bus’) S 0 o _ (Outbus?)
3z, e
32 general
purpose
registers
b e

a1
A o
PC b
s MA R
Memory bus
[«e———
MDR }———
> A
A
ALU
C

Control steps for instruction fetch and increment PC:

1.
PCout, ALU(C=B), MARin, Read

2.
ALU(C=B+1), PCin, WMFC

3.
MDRout, ALU(C=B), IRin
--

Example1: Control steps for:
SUB R2, 50H

1.

2.

3.

4. R2out, ALU(C=B), Ain
5. Immediate-field-of-IRout, ALU(C = A – B), R2in, Set Flags, End

--

Example2: Control steps for: ADD R1, [R3]

1.

2.

3.

4. R3out, ALU(C=B), MARin, Read

5. R1out, ALU(C=B), Ain, WMFC

6. MDRout, ALU(C=A+B), R1in, Set Flags, End

--

Example3: Control steps for: XOR VAR1, R4

1.

2.

3.

4. Offset-field-of-IRout, ALU(C=B), MARin, Read, WMFC

5. MDRout, ALU(C=B), Ain
6. R4out, XOR, MDRin, Set Flags, Write, End

--

Example4: (Unconditional Jump) Control steps for: JMP L2

1.

2.

3.

4. PCout, ALU(C=B), Ain
5. Displacement-field-ofIRout, ALU(C=A+B), PCin, End

--

Example5: (Conditional Jump) Control steps for: JZ L1

1.

2.

3.

4. PCout, ALU(C=B), Ain, if ZF = 0 then End

5. Displacement-field-of-IRout, ALU(C=A+B), PCin, End

THREE-BUS CPU

[image: image5.jpg]Chbus Abus Bbus
TEWP
32 -
31)
RO
32 general e
purpose L ginined
registers
s
>
Rt

> PC >
— e MA P, -
< Memory bus
Rt Bie o MDR, >
3
ALY

Control steps for instruction fetch and increment PC:

1. PCout, MARinB, Read, ALU(C=B+1), PCin, WMFC

2. MDRout, ALU(C=B), IRin
--

Example1: Control steps for:
SUB R2, 50H

1.

2.

3. R2outA, Immediate-field-of-IRoutB, ALU(C = A – B), R2in, Set Flags, End

--

Example2: Control steps for: ADD R1, [R3]

1.

2.

3.
R3outB, MARinB, Read, R1outA, WMFC

4. MDRout, ALU(C=A+B), R1in, Set Flags, End

--

Example3: Control steps for: XOR VAR1, R4

1.

2.

3. Offset-field-of-IRout, MARinB, Read, WMFC

4. MDRout, ALU(C=B), TEMPin
5. TEMPoutA, Ain, R4outB, XOR, MDRin, Set Flags, Write, End

--

Example4: (Unconditional Jump) Control steps for: JMP L2

1.

2.

3. PCout, ALU(C=B), TEMPin
4. TEMPoutA, Displacement-field-ofIRout, ALU(C=A+B), PCin, End

--

Example5: (Conditional Jump) Control steps for: JZ L1

1.

2.

3. PCout, ALU(C=B), TEMPin
4. TEMPoutA, if ZF = 0 then End

5. Displacement-field-of-IRout, ALU(C=A+B), PCin, End

EXECUTION OF COMPLEX INSTRUCTIONS

We define a complex instruction as an instruction whose execution requires several passes through the ALU. Examples of such instructions are: REP MOVSB, REPNE SCASB, and REPE CMPSB

· Repeat Prefix
A string instruction processes only a single byte, word, or double-word of the destination and/or source string; but it may be preceded by a repeat prefix. This causes the instruction to be repeated a number of times specified in the CX register. After each execution of the instruction CX decrements by one, until it becomes zero, at which point control is transferred to the next sequential instruction.
	Repeat prefix
	Meaning
	Repetition condition

	REP
	Repeat
	Repeat while CX > 0
while(CX (0){
 Execute string instruction;
 CX (CX – 1;
 }

	REPE , REPZ
	Repeat while equal , Repeat while zero
	Repeat while ZF = 1 and CX > 0
while(CX (0){
 Execute string instruction;
 CX (CX – 1;
 if(ZF = 0)
 exit loop;
 }

	REPNE , REPNZ
	Repeat while not equal , Repeat while not zero
	Repeat while ZF = 0 and CX > 0
while(CX (0){
 Execute string instruction;
 CX (CX – 1;
 if(ZF = 1)
 exit loop;
 }

Note:

· The decrement of CX does not affect the flags.
· If CX = 0, a string instruction preceded by any repeat prefix will not be executed; control is transferred to the next sequential instruction. If CX < 0, a run-time error occurs.

Assume:

· CX, ES, DI and the Direction Flag have been initialized properly.

· The processor has an internal ZFcx flag that is set if the value of CX is zero.

· A microprogrammed control unit with the microroutine for REPNE SCASB starting at address 27.

· A single-bus CPU given in the diagram on the next page.

[image: image6.jpg]31 0

RO A
[T 1828Ribit 32 31 0
— general — P =" S ge T
. plrpose .]
s registers < >

R31
| e] i
; B S
X ‘é Y

To memory subsystem —>»

«—>| MDR |«

& TEMP

The control steps for:

 REPNE SCASB

for the above single-bus CPU are given below.

Note: For simplicity, the partial microinstructions are not written as zeroes and ones.

0.
PCout, MARin, Read, ALU(C=B+1), Cin
1.
Cout, PCin, WMFC

2. MDRout, IRin
3. (JMP to starting address of appropriate microroutine
; 27 in this case

27. if ZFcx = 1 then End

28. ALout, Ain
29. DIout, MARin, Read, WMFC, if DF = 0 then ALU(C = B + 1)
30. if DF = 1 then ALU(C = B – 1), Cin
31. Cout, DIin
32. CXout, ALU(C = B - 1), Cin
33. Cout, CXin,

34. MDRout, ALU(C = A – B), Set Flags

35. if ZF = 1 then End

36. (JMP to Microinstruction with address 27

Note: In a hardwired control unit, the execution of complex instructions can be achieved by using a step counter with a Load input that can be reset to a particular value n, where Tn is the time slot for the first microinstruction following the last fetch microinstruction.

Decode

TEMP

