1
6

SHIFT INSTRUCTIONS

LOGICAL SHIFT INSTRUCTIONS

 ARITHMETIC SHIFT INSTRUCTIONS

(for unsigned operands)

 (for signed operands)

SHL
(Shift Left)

 SAL
(Shift Arithmetic Left)

SHR
(Shift Right)

 SAR
(Shift Arithmetic Right)

· Syntax:

SXX Destination , Count

where:

(i) Destination is either a register or memory operand.

(ii) Count is either 1 or the CL register for the 8086 Processor. (If the destination is to be shifted more than once, the number of shifts is put in CL)

(iii) Count is an immediate 8-bit value or the CL register for 80186 and higher Intel Processors.

· The value in CL does not change when a shift instruction is executed.

· A shift count is a modulo-32 count. Hence, a shift count of 32 or more will shift data count % 32 times.

· Shift instructions affect CF, OF, PF, SF, and ZF. The AF flag is undefined.

· SHL is equivalent to SAL

· The 80386 and higher Intel processors also have double-precision shift instructions:

SHLD Destination, Source, count

SHRD Destination, Source, count

 Both instructions function with two 16- or 32-bit registers, or with one 16-bit or 32-bit memory operand with a

 register of the same size.

SHL (SHIFT LEFT)

SHL shifts the msb into the Carry Flag; the current value of the Carry Flag is lost. Each of the remaining bits is shifted left and 0 is shifted into the lsb.

CF

	
	
	
	
	 .
	 .
	 .
	
	
	
	
	 0

If the count operand is greater than 1, OF is undefined. If the count is 1, OF is cleared when the highest bit of the destination and the CF have the same value after the shift; otherwise it is set.

Example:

MOV CL , 3

SHL BL , CL

Effect:

CF

BL

	b5
	
	b4
	b3
	b2
	b1
	b0
	0
	0
	0

· Shifting left a Destination operand n times multiplies it by 2n
· Multiplication by a non-multiple of 2 can be achieved by a combination of SHL, MOV, ADD, or SUB instructions. Such multiplications are usually more efficient than multiplications using the MUL (Multiplication) instruction. Example: Multiply AX by 19 (i.e., AX *(16 + 2 + 1))

PUSH BX

PUSH CX

MOV BX , AX

SHL BX , 1

; BX := AX * 2

ADD BX , AX

; BX := AX * 3

MOV CL , 4

SHL AX , CL

; AX := AX * 16

ADD AX , BX

; AX := AX * 19

POP CX

POP BX

· Note: Multiple shifts performed by using 1 as a count are more efficient than those performed by using the CL register as a count. For example:

SHL AX , 1

SHL AX , 1

SHL AX , 1

SHL AX , 1

is more efficient than:

MOV CL , 4

SHL AX , CL

SHR (SHIFT RIGHT)

SHR shifts the lsb into the Carry Flag; the current value of the Carry Flag is lost. Each of the remaining bits is shifted right and 0 is shifted into the msb.

CF

	0
	
	
	
	 .
	 .
	 .
	
	
	
	
	

If the count operand is greater than 1, OF is undefined. If the count is 1, the OF is set to the same value as the highest bit of the destination operand.

Example:

SHR AL , 1

Effect:

AL

CF

	0
	a7
	a6
	a5
	a4
	a3
	a2
	a1
	
	a0

· Shifting right a Destination operand n times divides it by 2n. If the value of the Destination is odd, the division is approximate.

Example: For odd numbers a right shift by 1 halves the number and rounds down to the nearest integer:

MOV BL , 00000101B

; BL := 5

SHR BL , 1

; BL := 2

· Note: SHR does not preserve the sign of a negative operand; because the sign bit is changed to 0. Thus, SHR cannot be used to perform division on negative numbers.

SAR (SHIFT ARITHMETIC RIGHT)

SAR shifts the lsb into the Carry Flag; the current value of the Carry Flag is lost. Each of the remaining bits is shifted right and, in addition, the lsb is shifted into itself.

CF

	
	
	
	
	 .
	 .
	 .
	
	
	
	
	

If count is greater than 1, OF is undefined; otherwise it is cleared.

SAR divides the destination operand by 2count except that negative values are rounded toward negative infinity, rather than toward 0.

Example:

MOV CL , 3

SAR AL , CL

Effect:

AL

CF

	a7
	a7
	a7
	a7
	a6
	a5
	a4
	a3
	
	a2

Note: SAR preserves the sign of both positive and negative operands. Example:

MOV DL , -15

; DL := 11110001B

SAR DL , 1

; DL := 11111000B i.e., DL := -8

note that the result is rounded down:

-15 / 2 = -7.5

-8

SHRD (Shift Right Double) and SHLD (Shift Left Double)
SHLD Destination, Source, count

SHRD Destination, Source, count

 Both instructions function with two 16- or 32-bit registers, or with one 16-bit or 32-bit memory operand with a

 register of the same size. Count is an immediate 8-bit value or a value in CL.
 Each instruction affects CF, SF, ZF, and PF,. OF and AF are undefined.

Example:

SHRD AX, BX, 12

 Logically shifts AX right by 12 positions. The rightmost 12 bits of BX shift into the leftmost 12 bits of AX.

 The contents of BX remain unchanged.

Example:

SHLD EBX, ECX, 16

 Logically shifts EBX left by 16 positions. The leftmost 16 bits of ECX shift into the rightmost 16 bits of EBX.

 The contents of ECX remain unchanged.

SIGNED AND UNSIGNED OVERFLOW WITH RESPECT TO SHL (OR SAL)

· The Carry Flag (CF) is set if there is unsigned overflow. Unsigned overflow occurs if the result is too large to fit into the destination operand. In a program unsigned overflow can be detected by a construct of the form:

Flag modifying instruction

JC UNSIGNED_OVERFLOW

.

.
; action if there is no unsigned overflow

.

JMP DONE

UNSIGNED_OVERFLOW:

.

.
; action if there is unsigned overflow

.

DONE:

· The Overflow Flag (OF) is set if there is signed overflow. The Carry Flag is irrelevant for signed operations. Signed overflow occurs if the result is too large to fit into the destination operand or if the destination sign bit changes. In a program unsigned overflow can be detected by a construct of the form:

Flag modifying instruction

JO SIGNED_OVERFLOW

.

.
; action if there is no signed overflow

.

JMP DONE

SIGNED_OVERFLOW:

.

.
; action if there is signed overflow

.

DONE:

· If an overflow occurs as a result of SHL, SAL, ADD, or SUB then the result in the destination operand is wrong; however the result of an overflow resulting from the multiplication instructions MUL or IMUL may or may not be wrong depending on how the programmer interprets the result.

· The Overflow Flag (OF) and the Carry Flag (CF) accurately indicate signed and unsigned overflow, respectively, for a single left shift; but not for multiple left shifts. For example, consider:

MOV AX , 0FFFFH

SHL AX , 1

(a) if the contents of AX are treated as unsigned, there is unsigned overflow because the Carry Flag is set.

(b) If the contents of AX are treated as signed, there is no signed overflow because the sign of the destination has not changed; the Overflow Flag is cleared. Although the Carry Flag is set it is irrelevant for signed operations.

AX :
1111111111111111B

-1

 SHL AX , 1

AX:
1111111111111110B

-2

· For multiple left shifts the Carry Flag and the Overflow Flag may not accurately reflect whether an unsigned overflow or a signed overflow, respectively, has occurred or not. Example, consider:

MOV BL , 80H

; BL := 10000000B

MOV CL , 2

SHL BL , CL

(a) If the contents of BL are treated as unsigned, then unsigned overflow occurs although the Carry Flag is cleared. The result 00000000B in BL is wrong:

80H = 128D and 128 * 4 = 512 > 255 (the maximum unsigned 8-bit value)

(b) If the contents of BL are treated as signed, then signed overflow occurs although the Overflow Flag is cleared:

80H = -1 * 27 = -128 and -128 * 4 = -516 < -128 (the minimum 8-bit unsigned value)

ROTATE INSTRUCTIONS

ROL (Rotate Left), ROR (Rotate Right), RCL (Rotate through Carry Left), RCR (Rotate through Carry Right)

· Syntax:

RXX Destination , Count

where:

(i) Destination is either a register or memory operand.

(ii) Count is either 1 or the CL register for the 8086 Processor (If the destination is to be rotated more than once, the number of rotates is put in CL)

(iii) Count is an immediate 8-bit value or the CL register for 80186 and higher Intel Processors.

· The value in CL does not change when a rotate instruction is executed.
· A rotate count is a modulo-32 count. Hence, a rotate count of 32 or more will rotate data count % 32 times.
· Rotate instructions affect only CF and OF.
· In single-bit rotates, OF is set if the operation changes the high-order (sign) bit of the destination operand. If the sign bit retains its original value, OF is cleared. On multi-bit rotates, the value of OF is always undefined. Rotates with a 0 count do not affect OF or CF.
ROL (ROTATE LEFT)

ROL shifts the msb into both the Carry Flag and the lsb; the current value of the Carry Flag is lost. Each of the remaining bits is shifted left.

 CF

	
	
	
	
	 .
	 .
	 .
	
	
	

Example:

MOV CL , 4

ROL AL , CL

Effect:

 CF

AL

	a4
	
	a3
	a2
	a1
	a0
	a7
	a6
	a5
	a4

ROR (ROTATE RIGHT)

ROR shifts the lsb into both the Carry Flag and the msb; the current value of the Carry Flag is lost. Each of the remaining bits is shifted right.

CF

	
	
	
	 .
	 .
	 .
	
	
	
	

Example:

ROR BL , 1

Effect:

BL

CF

	b0
	b7
	b6
	b5
	b4
	b3
	b2
	b1
	
	b0

RCL (ROTATE THROUGH CARRY LEFT)

RCL shifts the msb into the Carry Flag. The current value of the Carry Flag is shifted into the lsb. Each of the remaining bits is shifted left.

 CF

	
	
	
	
	 .
	 .
	 .
	
	
	

RCR (ROTATE THROUGH CARRY RIGHT)

RCR shifts the lsb the Carry Flag. The current value of the Carry Flag is shifted into the lsb. Each of the remaining bits is shifted right.

CF

	
	
	
	 .
	 .
	 .
	
	
	
	

Note: Usually before executing RCL or RCR, the Carry Flag is set or cleared by any one of:

(1) Shift instructions (SHL, SHR, SAL, SAR)

(2) CLC (Clear Carry Flag), STC (Set Carry Flag), CMC (Complement Carry Flag)

(3) Any other instruction which modifies the Carry Flag.

Example:

STC

RCR BL , 1

Effect:

BL

CF

	1
	b7
	b6
	b5
	b4
	b3
	b2
	b1
	
	b0

Example:

CLC

MOV CL , 3

RCL AL , CL

Effect:

 CF

AL

	a5
	
	a4
	a3
	a2
	b1
	b0
	0
	b7
	b6

Example: Count the number of 1 bits in BX, such that BX is preserved, leave the count in AL

PUSH CX

MOV AL , 0

MOV CX , 16

START:
ROL BX , 1

JNC NEXT

; Jump if CF = 0

INC AL

NEXT:
LOOP START

POP CX

In combination with the Shift instructions, RCL or RCR can be used to move bits from one operand to another:

Example:

(a) Write program fragment to reverse the contents of AL.

We shift left the bits of AL, one at a time, and put them in BL such that we end up with:

	AL
	0
	0
	0
	0
	0
	0
	0
	0

	BL
	a0
	a1
	a2
	a3
	a4
	a5
	a6
	a7

We then copy BL to AL

PUSH BX

PUSH CX

 CF
 (1)

 0

MOV CX , 8

 AL

L1:
SHL AL , 1

 (3)

RCR BL , 1

(2)

LOOP L1

 BL

MOV AL , BL

POP CX

POP BX

(b) Write a program fragment to make the high three bits of CL equal to the high three bits of AL and the low 5 bits of CL equal to the low 5 bits of BL.

This problem was solved using logical instructions as:

PUSH BX

MOV CL , AL

AND CL , 11100000B

AND BL , 00011111B

OR CL , BL

POP BX

 It can be solved as:

PUSH AX

PUSH BX

PUSH DX

MOV CX , 3

L1:
SHL AL , 1

RCL DL , 1

LOOP L1

; DL := d4d3d2d1d0a7a6a5

MOV CL , 3

SHL BL , CL

; BL := b4b3b2b1b0000

MOV CX , 5

L2:
SHL BL , 1

RCL DL , 1

LOOP L2

; DL := a7a6a5b4b3b2b1b0

MOV CL , DL

POP DX

POP BX

POP AX

BINARY AND HEXADECIMAL I/O ROUTINES

1. Binary output

Write a procedure to output the contents of BX in binary.

The pseudo-code algorithm is:

for 16 times do

 ROL BX , 1

 if(CF = 1)then

output: '1'

 else

output: '0'

 endif

endfor

output: 'B'

WRITE_BINARY16 PROC uses AX CX

 ;Outputs the contents of BX in binary.

MOV AH , 02H

MOV CX , 16

 L1:
ROL BX , 1

JC L2

MOV DL , '0'

JMP L3

 L2:
MOV DL , '1'

 L3:
INT 21H

LOOP L1

MOV DL , 'B'

INT 21H

RET

WRITE_BINARY16 ENDP

2. Hexadecimal output.

Write a procedure to display the contents of BX in hexadecimal.

The algorithm uses the conversions:

DecimalNumber(0, 1, 2, . . . ,9) + 30H

 HexadecimalDigit('0', '1', '2', . . . ,'9')

DecimalNumber(10, 11, 12, 13, 14, 15) + 37H

 HexadecimalDigit('A', 'B', 'C', 'D', 'E', 'F')

 There are 4 hexadecimal digits in a 16-bit operand. The algorithm displays one hexadecimal digit of BX at a time:

for 4 times do

 MOV DL , BH

; put the current two highest hex digits of BX in DL

 Shift DL 4 times to the right

; leave the current highest hex digit of BX in DL

 if((DL) (9)then

(DL) := (DL) + 30H

; convert to hex digit in {'0', '1', '2', . . . , '9'}

 else

(DL) := (DL) + 37H

; convert to hex digit in {'A', 'B', 'C', 'D', 'E', 'F'}

 endif

 output: (DL)

 Rotate BX left 4 times

; put the next hex digit in the highest 4 bits of BX

endfor

output: 'H'

WRITE_HEXADECIMAL16 PROC uses AX CX DX

;Outputs the contents of BX in hexadecimal

MOV AH , 02H

MOV CX , 4

 L1:
MOV DL , BH

PUSH CX

MOV CL, 4

SHR DL , CL

CMP DL , 9

JA LETTER

ADD DL , 30H

JMP L2

LETTER: ADD DL , 37H

 L2: INT 21H

ROL BX , CL

POP CX

LOOP L1

MOV DL , 'H'

INT 21H

RET

WRITE_HEXADECIMAL16 ENDP

3. Binary input (with no input validity checking)

Write a program fragment to read a binary value in the BX register. Assuming no invalid input and that 16 ASCII binary digits are read, the pseudo-code algorithm is:

MOV BX , 0

for 16 times do

 {

 Read: Binary_ASCII_digit

 Binary_digit := Binary_ASCII_digit - 30H

; Convert ASCII digit to binary value

 SHL BX , 1

; Create an insertion point at bit 0 of BX

 Insert bit 0 of Binary_digit at bit zero of BX

 }

This algorithm can be translated into the following assembly language fragment:

MOV AH , 01H

MOV BX , 0

MOV CX , 16

 L1:
INT 21H

SUB AL , 30H

SHL BX , 1

OR BL , AL

LOOP L1

Note that AL can only have the value 00000000B or 00000001B, thus all bits shifted out of bit zero of BX are not modified by the instruction OR BL , AL.

4. Binary input (with input validity checking)
Write a procedure to input a binary value in the BX register. The reading should stop if either 16 binary digits have been read or if the "Enter" key (ASCII code: 0DH) is pressed. For any invalid input, the procedure should beep and give the user a chance of entering another value. If only 0DH is entered the procedure should set the Carry Flag.

The pseudo-code algorithm is:

MOV BX , 0

MOV CX , 0

; CX counts the number of valid binary digits

do

 { Read: ch

 if(ch = 0DH)then

break ;

 else if(ch = '0' or ch = '1')then

 {

 ch := ch - 30H

; convert ch to binary value

 SHL BX , 1

; shift a zero at bit zero of BX

 Insert bit zero of ch at bit zero of BX

 INC CX

 }

 else

 {

 Beep ;

Move back the cursor ;

 }

 } while((CX) (16)

if((CX) = 0)then

 STC

; set the Carry Flag

else

 CLC

; clear the Carry Flag

endif

READ_BINARY16 PROC uses AX CX DX

;Reads a 16-bit binary value into the BX register

MOV BX , 0

MOV CX , 0

 START:
MOV AH , 01H

INT 21H

CMP AL , 0DH

JE END_DO_WHILE

CMP AL , '0'

JE VALID

CMP AL , '1'

JE VALID

JMP INVALID

 VALID: AND AL , 0FH

; this conversion is equivalent to SUB AL , 30H

SHL BX , 1

OR BL , AL

INC CX

JMP NEXT

 INVALID:

MOV AH , 02H

; beep

MOV DL , 07H

;

INT 21H

;

MOV DL , 08H

; backspace

INT 21H

;

 NEXT: CMP CX , 16

JE END_DO_WHILE

JMP START

 END_DO_WHILE:

JCXZ NO_INPUT

CLC

JMP DONE

 NO_INPUT:

STC

 DONE:

RET

READ_BINARY16 ENDP

7. Hexadecimal input (with no input validity checking)

Write a program fragment to read a hexadecimal value in the BX register. Assuming no invalid input and that 4 ASCII hexadecimal digits are read, the pseudo-code algorithm is:

MOV BX , 0

for 4 times do

 {

 Read: Hexadecimal_ASCII_digit

 Convert Hexadecimal_ASCII_digit to numeric value.

 MOV CL , 4

; Shift zeroes in bits 0 through 3 of BX

 SHL BX , CL

;

 Insert the numeric value in bits 0 through 3 of BX

 }

To convert a hexadecimal ASCII digit to a numeric value the following conversions are used:

character in {'0' , '1' , '2' , . . . , '9'}

-30H

digit in {0 , 1 , 2 , . . . , 9}

character in {'A' , 'B' , 'C', . . . , 'F'}

-37H

digit in {10 , 11 , 12 , . . . , 15}

character in {'a' , 'b' , 'c', . . . , 'f'}

-57H

digit in {10 , 11 , 12 , . . . , 15}

Thus the previous pseudo-code algorithm can be translated into the following assembly language fragment:

MOV AH , 01H

MOV CX , 4

MOV BX , 0

L1:
INT 21H

CMP AL , ‘9’

JBE L2

CMP AL , ‘F’

JBE L3

SUB AL , 57H

JMP L4

L2:
SUB AL , 30H

JMP L4

L3:
SUB AL , 37H

L4:
PUSH CX

MOV CL , 4

SHL BX , CL

OR BL , AL

POP CX

LOOP L1

Note that AL can only have binary values of the form 0000XXXX where X is a binary digit. Thus all bits shifted out of bits zero through 3 of BX are not modified by the instruction OR BL , AL.

8. Hexadecimal input (with input validity checking)
Write a procedure to input a hexadecimal value in the BX register. The reading should stop if either 4 hexadecimal digits have been read or if the "Enter" key (ASCII code: 0DH) is pressed. For any invalid input, the procedure should beep and give the user a chance of entering another value. If only 0DH is entered the procedure should set the Carry Flag.

The pseudo-code algorithm is:

MOV BX , 0

MOV CL , 4

MOV CH , 0

; counts the number of hexadecimal digits read

do

 {

 Read: character

 if(character = 0DH)then

break ;

 else if(character is a hexadecimal digit)then

 {

 Convert character to binary

 INC CH

 SHL BX , CL

; shift zeroes in the lowest 4 bits of BX

 Insert character in the lowest 4 bits of BX

 }

 else

 {

 Beep ;

 Move the cursor back ;

}

 endif

 } while ((CH) (4)

if((CH) = 0)then

 STC

else

 CLC

endif

READ_HEXADECIMAL16 PROC uses AX CX DX

;Reads a 16-bit hexadecimal value into the BX register

MOV BX , 0

MOV CL , 4

MOV CH , 0

 START:
MOV AH , 01H

INT 21H

CMP AL , 0DH

JE END_DO_WHILE

CMP AL , '0'

JB INVALID

CMP AL , '9'

JBE VALID1

CMP AL , 'A'

JB INVALID

CMP AL , 'F'

JBE VALID2

CMP AL , 'a'

JB INVALID

CMP AL , 'f'

JBE VALID3

JMP INVALID

VALID1: SUB AL , 30H

JMP INSERT

VALID2: SUB AL , 37H

JMP INSERT

VALID3: SUB AL , 57H

INSERT: INC CH

SHL BX , CL

OR BL , AL

JMP NEXT

INVALID: MOV AH , 02H

; beep

MOV DL , 07H

;

INT 21H

;

MOV DL , 08H

; backspace

INT 21H

;

 NEXT:
CMP CH , 4

 JB START

 END_DO_WHILE:

CMP CH , 0

JE NO_INPUT

CLC

 JMP DONE

 NO_INPUT:

 STC

 DONE:

 RET

READ_HEXADECIMAL16 ENDP

