PAGE
4

Repetition (Loop) Statements

Introduction: Compound statements and Increment/Decrement operators
· Compound Assignment Operators

Let operator be an arithmetic operator, then the assignment statement:

 variableX = variableX operator expression;

 is equivalent to the compound assignment statement:

 variableX operator= expression;

 Examples:

	Assignment statement
	Compound assignment statement

	x = x + 45;
	x += 45;

	y = y - (3*a - b * c);
	y -= 3*a - b * c;

	time = time * sqrt(z);
	time *= sqrt(z);

	average = average / count;
	average /= count;

	digit = digit % 10;
	digit %= 10;

· Post- and Pre- increment and decrement operators (++, --)
 Syntax:

 ++variable

 variable++

 --variable

 variable--

 The unary increment operator ++ adds one to its operand; whereas the unary decrement
 operator -- decrements one from its operand.

	Expression
	comment
	Equivalent assignment
	Equivalent compound assignment

	++variable
	Prefix increment
	variable = variable + 1
	variable += 1

	variable++
	Postfix increment
	variable = variable + 1
	variable += 1

	--variable
	Prefix decrement
	variable = variable - 1
	variable -= 1

	variable--
	Postfix decrement
	variable = variable - 1
	variable -= 1

· Precedence and Associativity Rules

The precedence and associativity rules that include increment, decrement, and compound
assignments are:
	
	
	Operators
	Order of Evaluation

of operands with same precedence

(Associativity)

	Higher Priority

Low Priority
	1
	(expression) ,

function calls, postfix increment/decrement ++, --
	Left to right

	
	2
	unary +, unary –

!

(type), prefix increment/decrement ++, --
	Right to left

	
	3
	*, /, %
	Left to right

	
	4
	binary +, binary -
	Left to right

	
	5
	<, <=, >, >=
	Left to right

	
	6
	==, !=
	Left to right

	
	7
	=, +=,-=,*= ,/=,%=
	Right to left

 The expressions

 ++variable

 and

 variable++

 are equivalent if each is not mixed with other expressions; however if they are mixed then for
 ++variable, the variable is first incremented and the new value is then used in the expression.
 For variable++, the current value of variable is used in the expression, then variable is
 incremented.

 Example:
	int x = 2, y;

y = 3 + ++x;

printf("x = %d, y = %d", x, y);

output:

 x = 3, y = 6
	int x = 2, y;

y = 3 + x++;

printf("x = %d, y = %d", x, y);

output:

 x = 3, y = 5

 The expressions

 --variable

 and

 variable--

 are equivalent if each is not mixed with other expressions; however if they are mixed then for
 --variable, the variable is first decremented and the new value is then used in the
 expression. For variable--, the current value of variable is used in the expression, then
 variable is decremented.

 Example:
	int x = 5, y;

y = 3 * --x;

printf("x = %d, y = %d", x, y);

output:

 x = 4, y = 12
	int x = 5, y;

y = 3 * x--;

printf("x = %d, y = %d", x, y);

output:

 x = 4, y = 15

 Note: Avoid using the increment and decrement operators in expressions in which the
 variables to which they are applied appear more than once. The evaluation of such
 expressions is compiler-dependent:
 int a = 5, b = 2, c;

 c = a * b + ++a;
· while-statement
A while-statement is used to execute a statement or a compound-statement zero or more times as long as the while-condition is true:

while(condition)

 while-body

The while-body can be a simple statement in which case it must be terminated by a semicolon or it may be a compound-statement in which case it should not be terminated by a semicolon:
	Simple statement while-body
	Compound-statement while-body

	while(condition)

 statement;
	while(condition)

 compound-statement

	 [image: image1.png]while-body

 Examples:

	while-loop
	output

	int n = 1;

while(n <= 10){

 printf("%d ", n);

 n += 2;

 }
	1 3 5 7 9

	int k = 12;

while(k > 6)

 printf("%d ", k--);
	12 11 10 9 8 7

	int num = 2;

printf("number\tsquare root\tsquare\n");

while(num <= 5){

 printf("%d\t%.2f\t%2d\n", num, sqrt(num), num * num);

 num++;

}
	number square root square
2 1.41 4
3 1.73 9
4 2.00 16
5 2.24 25

· Sentinel controlled loops
In a program, a sentinel is a value that marks the end of a series of data values; but is not a data value itself. Sentinels may be used to control loops:
Example: Write a C program fragment that prompts for and reads student grades in a quiz. It then calculates and displays the average. Use a negative value or a value greater than 100 as the sentinel.
int count = 0;

double grade, sumOfGrades = 0.0;

printf("Enter grade#%d (< 0 or > 100 to terminate)\n", count+1);

scanf("%lf", &grade);

while(grade >= 0 && grade <= 100){

 count++;

 sumOfGrades += grade;

 printf("Enter grade#%d (< 0 or > 100 to terminate)\n", count+1);

 scanf("%lf", &grade);

}

if(count == 0)

 printf("Error: No valid grade entered\n");
else

 printf("Average = %.2f\n", sumOfGrades / count);

Exampe: Modify the above C program fragment such that it also displays the maximum and minimum grade.
int count = 0;

double grade, sumOfGrades = 0.0;

printf("Enter grade#%d (< 0 or > 100 to terminate)\n", count+1);

scanf("%lf", &grade);
double max = grade; // Assume the first grade is the max

double min = grade; // Assume the first grade is the min

while(grade >= 0 && grade <= 100){

 count++;

 sumOfGrades += grade;
 if(grade > max)

 max = grade;

 else if(grade < min)

 min = grade;

 printf("Enter grade#%d (< 0 or > 100 to terminate)\n", count+1);

 scanf("%lf", &grade);
}

if(count == 0)

 printf("Error: No valid grade entered\n");

else{
 printf("Average = %.2f\n", sumOfGrades / count);
 printf("Maximum = %.2f\n", max);

 printf("Minimum = %.2f\n", min);

}

· Infinite while-loops
A while-loop condition that never evaluates to false results in an infinite while-loop i.e., a loop that does not terminate. This is a form of logical error.

Example:

 double x = 20.0;

 while(x > 10.0){

 printf("%.2f\n", x);

 x += 3.0;

 }
 Note: The body of a while loop is not executed when the loop-condition is false before
entering the loop. Thus, the body of a while loop is executed ZERO or more times. We next
 discuss the do-while statement in which the body of the loop is executed ONE or more
 times.

· do-while statement

A do-while statement is used to execute a statement or a compound-statement one or more times as long as the do-while condition is true:

do
 do-while body

 while(condition);

The do-while body can be a simple statement in which case it must be terminated by a semicolon or it may be a compound-statement in which case it MUST NOT be terminated by a semicolon:

	Simple statement do-while body
	Compound-statement do-while body

	do
 statement;

while(condition);
	do

 compound_statement

while(condition);

	 [image: image2.png]do-while body

Examples:

	do-while loop
	output

	int n = 1;

do{

 printf("%d ", n);

 n += 2;

 } while(n <= 10);
	1 3 5 7 9

	int x = 25;
do
 printf("%d ", x -= 5);
while(x > 0);
	20 15 10 5 0

Example: Write a C program fragment that helps a child learn multiplication. The fragment displays two integers to be multiplied. The child is then given three chances to provide the correct answer.

int num1 = 7, num2 = 6, response, count = 0;
printf("What is %d * %d ?\n", num1, num2);
do{
 scanf("%d", &response);
 count++;
 if((response != num1 * num2) && (count < 3))
 printf("Wrong response. Please try again\n");
} while((response != num1 * num2) && (count < 3));
if(response != num1 * num2)
 printf("Sorry ! You were not successful\n");
else
 printf("Congratulations ! You got the correct answer\n");
· for-statement
A for-statement is usually used to repeat a statement or a compound-statement if the number of repetitions is known. The body of a for-loop may be executed zero or more times.
 for(initialization; condition; update)

 for-body
The for-body can be a simple statement in which case it must be terminated by a semicolon, or it may be a compound-statement in which case it should not be terminated by a semicolon:

	Simple statement for-body
	Compound-statement for-body

	for(initialization; condition; update)

 statement;

	for(initialization; condition; update)

 compound_statement

	 [image: image3.png]initialization

false

true

for-body

|

update

 Examples:

	for-loop
	output

	int k;
for(k = 7; k <= 12; k++)
 printf("%d ", k);
	7 8 9 10 11 12

	int x ;

for(x = 8; x > 2; x--)
 if(x % 2 == 0)

 printf("%d is even\n", x);
 else

 printf("%d is odd\n", x);
	8 is even
7 is odd

6 is even

5 is odd

4 is even

3 is odd

	int counter = 1;

int factorial = 1;

for(counter = 1; counter <= 5; counter++)

 factorial = factorial * counter;

printf("factorial of 5 is %d", factorial);
	factorial of 5 is 120

· Updating a loop control variable within the loop body

In a loop like:
 int k;
 for(k = 7; k <= 12; k++)
 printf("%d ", k);
 the variable k that controls the number of iterations (repetitions) of the loop is called the loop control variable. Modify a loop control variable in the loop body may lead to logical or runtime errors.
 Example: The following loop iterates two times only:

int k;

for(k = 7; k <= 12; k++)

{

printf("%d ", k);

k = k + 2;

}
If the statement k = k + 2 is replaced by k = 2 the loop becomes an infinite loop.

· Equivalent loops

A loop can always be converted to an equivalent loop of a different type. Examples:
	loop
	equivalent loop

	for(initialization;condition; update)

{

 statement1;

 statement2;

 . . .
 statementN;

}
	initialization;
 while(condition)

 {

 statement1;

 statement2;

 . . .
 statementN;

 update;

 }

	do{
 statement1;

 statement2;

 . . .

 statementN;

 update;

 } while(condition);
	 statement1;

 statement2;

 . . .

 statementN;

 update;

 while(condition){
 statement1;

 statement2;

 . . .

 statementN;

 update;

 }

 For example: The following do-while loop:

 int n = 1;

 double x = 0, s;

 do{

 s = 1.0 / (n * n);

 x = x + s;
 printf("x = %f\n", x);
 n++;

 } while(s > 0.01);

is equivalent to the while-loop:

 int n = 1;

 double x = 0, s;

 s = 1.0 / (n * n);

 x = x + s;
 printf("x = %f\n", x);
 n++;

 while(s > 0.01){

 s = 1.0 / (n * n);

 x = x + s;
 printf("x = %f\n", x);
 n++;

 }
· Nested loops
A loop statement may contain in its body one or more loop statements.

There are two types of nested loops:

· Independent nested loops

· Dependent nested loops

A nested loop is independent of its outer loop or loops if its initialization or its condition or its update does not depend on any outer loop or loops.

Example of independent nested loops:
	Independent nested loops
	Output:

	int m, n;

for(m = 5; m >= 1; m--){

 printf("m is now %d\n", m);

 for(n = 1; n <= 4; n++)

 printf("n = %d ", n);

 }
	m is now 5
n = 1 n = 2 n = 3 n= 4

m is now 4

n = 1 n = 2 n = 3 n= 4

m is now 3

n = 1 n = 2 n = 3 n= 4

m is now 2

n = 1 n = 2 n = 3 n= 4

m is now 1

n = 1 n = 2 n = 3 n= 4

A nested loop is dependent of its outer loop or loops if its initialization or its condition or its update depends on one or more outer loops.

Example of dependent nested loops:
	Dependent nested loops
	Output:

	int k, m;
for(k = 1; k <= 7; k++){
 for(m = 1; m <= k; m++){
 printf("%d", m);
 }
 printf("\n");
}
	1
12

123

1234

12345

123456

1234567

Example: Write a C program that prompts for and reads three quiz grades for each student in a class of four students. The program then computes and displays the average for each student. Your program must be easily modifiable to handle any number of students and quizzes.
 #include <stdio.h>
 #include <stdlib.h>
 #define NUMSTUDENTS 4
 #define NUMQUIZES 3
 int main(void){
 double grade, studentTotal, studentAverage;
 int m, n;
 for(m = 1; m <= NUMSTUDENTS; m++)
 {
 studentTotal = 0.0;
 for(n = 1; n <= NUMQUIZES; n++)
 {
 printf("Enter QuizGrade#%d for student#%d\n", n, m);
 scanf("%lf", &grade);
 studentTotal += grade;
 }
 studentAverage = studentTotal / NUMQUIZES;
 printf("The average for student#%d is %.2f\n", m, studentAverage);
 }
 system("pause");
 return 0;
}
Exercise: Modify the above program such that it also computes and displays the class average.
· The break and continue statements

A break statement can only appear in a switch or loop statement. Its syntax is:

break;

A break statement forces an immediate break, or exit from an enclosing switch, while, do-while, or for-loop.

Example:

 while(count <= 10){

printf("Enter an integer (< 75): ");

scanf("%d", &num);

if(num >= 75){

 prinft("\nOut of range");

 break;

 }

 sum += num;

 count++;

 }

 /* break jump here if executed, even if the above loop is nested inside another loop */
Note: There are some programming situations where a break statement is used to break out of an infinite loop:

 Example:

while(1){

 printf("Enter an integer (0 to exit): ");

 scanf("%d", &num);

 if(num == 0)
 break;

 sum += num;

 }
A continue statement can only appear within a loop body. Its syntax is:

continue;

When a continue statement is executed in a loop, the next iteration of the loop is immediately started.
Example:

 while(count < 30){

printf("Enter a grade: ");

scanf("%lf", &grade);

if(grade < 0 || grade > 100){

 prinft("\nInvalid grade: Not counted");

 continue;

 }

 total += grade;

 count++;
 /* continue jumps here if executed */
 }

Note: The continue statement is not necessary; if its condition is reversed, an equivalent loop that does not have the continue statement is obtained:

 while(count < 30){

printf("Enter a grade: ");

scanf("%lf", &grade);

if(grade >= 0 && grade <= 100){
 total += grade;

 count++;
 }else

 prinft("\nInvalid grade: Not counted");

 }

[image: image4.png]

