ICS 102 Lab 05: Console I/O and Introduction to Text-File I/O
Objectives:
· Introduction to I/O Streams
· Review of Console Output
· Console Input using Scanner and System.in.read()
· Introduction to Text-File I/O using Scanner, FileReader, and FileInputStream
1. I/O Streams
A stream is the flow of data between a program and some I/O device or file.
	[image:]
A stream can represent many different kinds of sources and destinations, including disk files, devices, other programs, and memory arrays.
Streams support many different kinds of data, including simple bytes, primitive data types, and objects.
The standard I/O streams
Among the facilities provided by the java.lang.System class are the standard input, standard output, and error output streams. The standard input streams are used for reading character data. The standard output streams are used for printing.
· System.in is an InputStream object that is typically connected to keyboard input of console programs.
· System.out is a PrintStream object. It normally outputs the data you write to it to the computer screen.
· System.err is a PrintStream object. It normally outputs the data you write to it to the computer screen. By convention, this output stream is used to display error messages.

The java.lang.System class creates these I/O streams automatically for us when our application begins execution. Each of these streams is public and static so that we can access them directly without having to create an instance of the System class.

Together, the monitor and keyboard are often referred to as the console.

2. Console output

We have covered console output in the previous labs:
	Statement Syntax
	Examples

	System.out.print(String);
	System.out.print(“Dhahran”);
System.out.print(“Speed = ” + speed + “ km/hr”);

	System.out.print(Expression);
	System.out.print(12 + 8);

	System.out.println(String);

	System.out.println(“Dhahran”);
System.out.println(“Speed = ” + speed + “ km/hr”);

	System.out.println(Expression);
	System.out.println(12 + 8);

	System.out.printf(String);
	System.out.printf(“Dhahran%n”);

	System.out.printf(FormatString, ListOfExpressions);
	System.out.printf(“x = %d, y = %d, x*y = %d%n”, x, y, x * y);

	System.out.format(String);
	System.out.format(“Dhahran\n”);

	System.out.format(FormatString, ListOfExpressions);
	System.out.format(“x = %d, y = %d, x*y = %d%n”, x, y, x * y);

By convention, the System.err stream is used to display error messages. Example:
 System.err.println(“Error: The input file does not exist”);
3. Using Java's Scanner Class to Read Console Input
The java.util.Scanner class provides a wrapper class that encapsulates an input stream. An object of this class provides a number of methods for reading lines and values of various types.
In Java, the variable System.in is an InputStream that is connected to the keyboard. System.in is a byte stream so you cannot read from it directly if you want to read character strings. Hence, you must wrap a Scanner object around System.in to handle string oriented I/O from the keyboard:
 Scanner scannerObject = new Scanner(System.in);

A Scanner object breaks its input into tokens using a delimiter pattern, which by default is whitespace. The resulting tokens may then be converted into values of different types using the various next methods:

	Method
	Effect when reading from keyboard

	int nextInt()
	Skips leading delimiters in the input buffer and then consumes and returns the next token. If the next token cannot be converted to the method’s return type or is out of range, InputMismatchException is thrown. Trailing delimiters are not removed from the input buffer.

	long nextLong()
	

	float nextFloat()
	

	double nextDouble()
	

	String next()
	Skips leading delimiters in the input buffer, then consumes and returns the next token as a string. Trailing delimiters are not removed from the input buffer.

	String nextLine()
	Reads the rest of the current line and returns it as a string. The line terminator character at the end of the line is consumed but is not appended to the string.

Discarding a Scanner

When you have finished using a Scanner, you should close it using the close method:
 void close()
This closes the Scanner and allows Java to reclaim the Scanner's memory.

Note: Closing the console is not necessary, but it is a good habit. If we were reading a file, which is common with Scanner, closing it would be important.
Steps for console based user input:
1. Use the System.in InputStream object to create a Scanner object. Since the Scanner class is not in the java.lang package, import it by adding one of the following statements at the top of your program: import java.util.Scanner; or import java.util.*;
 Scanner keyboard = new Scanner(System.in);

2. Display a prompt to the user for the desired data.
 System.out.print("Please input . . . : ");

3. Use an appropriate Scanner object method to read the input from the user:

	Input to be read
	Sample statement

	int
	int num1 = keyboard.nextInt();

	long
	long num2 = keyboard.nextLong();

	float
	float num3 = keyboard.nextFloat();

	double
	double num4 = keyboard.nextDouble();

	word
	String str1 = keyboard.next();

	line
	String str2 = keyboard.nextLine();

4. Do the required processing with the input received from the user.
5. Close the input stream:
 keyboard.close();

Example:
	import java.util.Scanner;
public class ConsoleInput1{
 public static void main(String[] args){
 int year1, year2;
 String name;
 Scanner kybrd = new Scanner(System.in);
 System.out.println("Please enter your full name: ");
 name = kybrd.nextLine();
 System.out.println("Please enter your year of birth: ");
 year1 = kybrd.nextInt();
 System.out.println("Please enter current year: ");
 year2 = kybrd.nextInt();
 System.out.println("Mr. " + name + " you are " +
 (year2 - year1) + " years old.\n");
 }
}

Problem of nextLine() with a left-over line terminator
The Scanner methods nextInt(), nextLong(), nextFloat(), nextDouble(), and next(), do not consume trailing delimiters. If one of these methods reads a token at the end of the current line, and then a nextLine() is issued, the nextLine() will consume the new line character at the end of the current line and return an empty string; the next input line will not be read.
Example:
	import java.util.Scanner;
public class ConsoleInput3{
 public static void main(String[] args){
 String word, sentence;
 Scanner kybrd = new Scanner(System.in);
 System.out.println("Please enter a single word: ");
 word = kybrd.next();
 System.out.println("Please enter a sentence: ");
 sentence = kybrd.nextLine();
 System.out.println("The word is " + word);
 System.out.println("The sentence is " + sentence);
 }
}

	User input:
	Effect:

	happy
	Please enter a single word:
happy
Please enter a sentence:
The word is happy
The sentence is

Solution: The solution to the problem depicted above is to introduce a statement, before sentence = kybrd.nextLine(), that will remove or skip the line terminator left in the input buffer by kybrd.next(). Use a dummy nextLine() statement:
 kybrd.nextLine();
alternatively, use the statement:
 kybrd.skip(“.*\\r\\n”);
	import java.util.Scanner;
public class ConsoleInput3{
 public static void main(String[] args){
 String word, sentence;
 Scanner kybrd = new Scanner(System.in);
 System.out.println("Please enter a single word: ");
 word = kybrd.next();
 kybrd.nextLine(); // dummy
 System.out.println("Please enter a sentence: ");
 sentence = kybrd.nextLine();
 System.out.println("The word is " + word);
 System.out.println("The sentence is " + sentence);
 }
}

Reading one character at a time from the keyboard
Java's Scanner class does not have a built in method to read from a Scanner character-by-character. To read a character, read a string and then extract the first character of the string:
Scanner scanner = new Scanner(System.in);
char character = scanner.next().charAt(0);
or
char character = scanner.nextLine().charAt(0);
or
char ch = scanner.findInLine(".").charAt(0);
// returns a single character string that matches any character
An alternative way of reading a character is to use System.in.read():
char ch = (char) System.in.read();
Example:
	import java.util.Scanner;

public class CharInput{
 public static void main(String[] args){
 Scanner scanner = new Scanner(System.in);
 String str1;
 char ch;
 System.out.println("Enter a string: ");
 str1 = scanner.nextLine();
 System.out.println("Enter a character: ");
 ch = scanner.nextLine().charAt(0);
 boolean flag = str1.contains(ch+"");

 System.out.println("It is " + flag + " that \"" + str1 +
 "\" contains " + ch);
 }
}

3. File I/O
Introduction: Checked and Unchecked Exceptions
Exceptions are errors that may be generated by the Java system when something goes wrong with a program. Java exception classes are organised into a class hierarchy. The hierarchy is created by having one (or more) exception class extend another exception class. The first exception becomes a subclass of the second.
At the top of the exception hierarchy is the Throwable class. The Throwable class has two subclasses: the Error and Exception classes. These classes, and subclasses thereof, are used to create an instance of the appropriate error or exception along with information about the exception:
· The Error class and its subclasses handle error situations from within the JVM itself and so are outside our control as programmers.
· The Exception class and its subclasses are what concern us more as programmers and these can be split into two categories:
1. Runtime exceptions: Are exceptions that are not checked for by the compiler and for this reason are also known as unchecked exceptions.
2. Checked exceptions: Are exceptions that are checked for by the compiler and if present and not caught or declared method’s throws clause, or will give a compiler error.
[image:]
Figure: The Java exception hierarchy. Types in red, and their subclasses, are unchecked.
The syntax of declaring an Exception:
Method Type methodName(parameters) throws ExceptionType1, ExceptionType2, . . ., ExceptionTypeN {
 ...
}
Note: If a method can throw either a certain exception A, or any subclasses of A, then it is enough to declare in the method declaration that the method throws A. It is then allowed to throw subclasses of A from the method too. For example, in Java FileNotFoundException is a subclass of IOException, if a method throws IOException, it also throws FileNotFoundException.
Example:
 public static void main(String[] ags) throws IOException {
 // A statement may cause FileNotFoundException
 . . .
 }
The syntax of try-catch block that is used to catch an exception:
 try{
 . . .
 statementThatMayCauseException;
 . . .
 } catch(ExceptionType e){
 Code to handle the exception
 }
 If an exception occurs, the statements in the catch block that follow the statement that caused the exception are not executed; control is transferred directly to the catch block. If no exception occurs, all statements in the catch block are executed and the statements in the catch block are not executed.
Note: if you decide to catch (using try-catch) a certain exception in the hierarchy, then you will automatically catch all subclasses of that exception too. For example, in Java FileNotFoundException is a subclass of IOException, if you catch IOException, which is the superclass of FileNotFoundException, you will also catch FileNotFoundException.
Example:
 try{
 // A statement that may cause FileNotFoundException
 . . .
 } catch(IOException e){ // May use IOException of FileNotFoundException
 System.out.err(e);
 System.exit(1);
 }
Note: If you do catch an exception, do not add it to the throws clause in the method header.
File Input
Data can be read from a variety of different sources, including data files stored on devices such as hard disk drives and CD drives. The file will need to be opened and a Scanner will be attached to the file object. The discussion and examples in this lab explain the procedure when the file to be read is a text file that has valid ASCII characters to represent the data.
Steps for text-file input:
1. Use a File object to create a Scanner object. Since the Scanner class and File class are not in the java.lang package, import them by adding one of the following statements at the top of your program:
 import java.util.Scanner; // or import java.util.*;
 import java.io.File; // or import java.io.*;
 File file = new File(fileNameString);
 Scanner inFile = new Scanner(file);

 Note: These statements may be combined:
 Scanner inFile = new Scanner(new File(fileNameString));

 The statement new Scanner(file) may throw a checked exception FileNotFoundException; you must either throw the exception (or its superclass IOException) or catch it (or catch IOException). Whatever exception class is used, it must be imported from java.io package. Example:

	import java.util.*;
import java.io.*;
public class MyFileIO{
 public static void main(String[] args) throws IOException {
 File myFile = new File(“D:\\Workarea\\input.txt”);
 Scanner inFile = new Scanner(myFile);
 // ...
 }
}

	import java.util.*;
import java.io.*;
public class MyFileIO{

 public static void main(String[] args){
 File myFile = new File(“D:\\Workarea\\input.txt”);
 try{
 Scanner inFile = new Scanner(myFile);
 // ...
 } catch(IOException e){
 System.out.err(e);
 System.exit(1); // terminate the program
 }
 // . . .
 }
}

Note:
· If the text-file to be read is in the same folder as the Java program, the full path need not be specified. Example:
		 “input.txt”
· Single forward slashes may be used for the file path. Example
 “D:/Workarea/input.txt”
· The file path may be read from the console. Example:
 System.out.print("Enter the file name: ");
 String fileName = scanner.nextLine();
 File file = new File(fileName);
 Scanner inFile = new Scanner(file);
2. Use an appropriate Scanner object method to read the input from the file. Example:
double speed = inFile.nextDouble();
	The next methods of a scanner object that is connected to a file behave like the scanner object connected to System.in with the addition that if an attempt is made to read and there are no more tokens in the input file, a NoSuchElementException is thrown.
3. Do the required processing of the data read from the file.
4. When you have finished reading from the file, close the input stream. Example
 inFile.close();
Closing a stream when it is no longer needed is very important. This practice helps avoid serious resource leaks.
 Example:
	import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
//Finds max of three numbers read from input file numbers.txt
public class FileRead{
 public static void main(String[] args)throws
 FileNotFoundException{
 double num1, num2;
 int num3;
 File myFile = new File("numbers.txt");
 Scanner myScanner = new Scanner(myFile);
 num1 = myScanner.nextDouble();
 num2 = myScanner.nextDouble();
 num3 = myScanner.nextInt();
 System.out.printf("Max = %.2f%n",
 Math.max(num1, Math.max(num2, num3)));
 myScanner.close();
 }
}

Reading one character at a time from a file
Java's Scanner class does not have a built in method to read from a Scanner character-by-character. Each of the following techniques may be used to read a string and then extract the first character of that string:
Scanner inFile = new Scanner(myFile);
char character = inFile.next().charAt(0);
or
char character = inFile.nextLine().charAt(0);
or
char ch = inFile.findInLine(".").charAt(0);
// returns a one letter string that matches any character
An alternative way is to use the read method of a FileReader or a FileInputStream:

Example:
	import java.io.FileReader;
import java.io.IOException;

public class ReadCharacter {
 public static void main(String[] args) throws IOException {
 FileReader freader = new FileReader("data.txt");
 char ch;
 ch = (char) freader.read();
 System.out.println(ch);
 freader.close();
 }
}

	import java.io.*;
public class Test {
 public static void main(String[] args){
 File file = new File("data.txt");
 try{
 FileInputStream fis = new FileInputStream(file);
 char ch = (char) fis.read();
 System.out.println(ch);
 fis.close();
 }catch(IOException ioe){
 System.err.println(ioe);
 }
 }
}

Writing to a File
To write to a file, the print(), println(), printf() or format() methods of the PrintWriter class may be used. The PrintWriter class is defined in the java.io package. Some constructors of the PrintWriter class are:
PrintWriter(File file)
PrintWriter(String fileName)
PrintWriter(OutputStream out)

Example:
	import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;
public class FileWrite {
 public static void main(String[] args) throws IOException {
	File myfile = new File("Example.txt");
 PrintWriter pwriter = new PrintWriter(myfile);
	pwriter.println("Riyadh");
 	pwriter.println("Abha");
	pwriter.println(22.85);
	pwriter.println(‘A’);
	pwriter.print(true);
 pwriter.close();
 // For convenience, let the user know that the file has been created
 System.out.println("The file has been created.");
 }
}

Note: If a file is opened for writing and it does not exist, it is created. If it exists, its current contents are erased.

Appending data to a text file
1. Create a java.io.FileWriter object using one of the constructor:
 FileWriter(String fileName, boolean append)
 FileWriter(File file, boolean append)

 with the append parameter set to true.
2. Wrap the FileWriter object in a PrintWriter
	import java.io.File;
import java.io.PrintWriter;
import java.io.FileWriter;
import java.io.IOException;
public class FileAppend {
 public static void main(String[] args) throws IOException {

 File myfile = new File("Example.txt");
 FileWriter fwriter = new FileWriter(myfile, true);
 PrintWriter pwriter = new PrintWriter(fwriter);
 pwriter.println("Jubail");
 pwriter.println("Hafr Al-Batin");
 pwriter.println(22.85);
 pwriter.println('B');
 pwriter.print(false);
 pwriter.close();
 // For convenience, let the user know contents appended to file
 System.out.println("Contents appended to file.");
 }
}

After using a PrintWriter object, you should free the resources it was using by closing the output stream using the close() method.

Note: A file that is opened for appending is created if it does not exist.

Additional methods

We will use the following methods after you have covered the lectures on selection and loops.

Some of the boolean methods of the Scanner class are:
	Method
	Effect

	boolean hasNext()
	Returns true if this scanner has another token in its input. The scanner does not advance past any input.

	boolean hasNextLine()
	Returns true if there is another line in the input of this scanner. The scanner does not advance past any input.

	boolean hasNextInt()
	Returns true if the next token in this scanner's input can be interpreted as an int value. The scanner does not advance past any input.

	boolean hasNextLong()
	Returns true if the next token in this scanner's input can be interpreted as a long value. The scanner does not advance past any input.

	boolean hasNextFloat()
	Returns true if the next token in this scanner's input can be interpreted as a float value. The scanner does not advance past any input.

	boolean hasNextDouble()
	Returns true if the next token in this scanner's input can be interpreted as a double value. The scanner does not advance past any input.

Checking the Existence of a File
If you try to open a file that does not exist, you will receive an error: java.io.FileNotFoundException
Therefore, before opening a file, you may want to check first whether it exists by using the exists() method of the File class.

Exercises

Exercise01: Write a pseudo-code algorithm and then translate it into a Java program that prompts for and reads the length [cm] and width [cm] of a rectangle. It then displays on the screen the length, width, area, and perimeter of the rectangle.

Sample program runs:
	[image:]
	[image:]

Exercise02:
(a) Write a pseudo-code algorithm to find and write the volume V of a cylinder [in cubic cm] given its surface area S [in square cm] and radius r [in cm] as inputs. The inputs will be from a text-file and the output will be in another text-file.
(b) Translate the pseudo-code algorithm in (a) into a complete Java program that reads the surface area and radius of a cylinder from a file input.txt, it then calculates and writes the volume of the cylinder to a text-file output.txt. The volume must be written with an appropriate message and in two decimal places.
	[image:]
	

Sample inputs and outputs:
	input
	output

	175.93 2.0
	Volume = 150.80 cubic cm

	400.0 4.5
	Volume = 613.72 cubic cm

Exercise03: A text-file data.txt contains two words on the first line: word1 and word2. The next two lines of the file contain two sentences. Write a pseudo-code algorithm and then translate it into a Java program that reads the two words and the two sentences. It then writes to another text-file the two sentences with each word1, if any, replaced by word2.
Hint: Refer to string replace() method in Lab04 Document.

Sample data.txt:
	oranges bananas
I like oranges; but there were no oranges in the shop.
Apples and oranges are expensive.

Exercise04: Create two files file1.txt and file2.txt, each containing four lines of text. Write a Java program that appends the contents of file1.txt to file2.txt. After the appending is done, your program must display the contents of file2.txt on the screen.
Page 11 of 13

image3.png

image4.png

image5.jpeg

image1.jpeg

image2.png

