ICS 202 Homework#2 (Term 091)
Due: Wednesday, 11th November 2009
Question#1: [Application of linked-lists: Memory Management]

Read the provided Heap Memory Management document and then answer the following questions [Consult the Instructor if there is anything you do not understand in the document]:

(a) What is the main job of a memory manager?

(b) What is a free-list?

(c) What are the advantages of the doubly-linked list implementation of free-list compared to the singly-linked list implementation?

(d) Briefly explain why the release operation is O(1) in the doubly-linked list implementation of free-list.

(e) Mention two types of fragmentation in memory management.

(f) Why must the nodes in the singly-linked list implementation of free-list be sorted in increasing order of start addresses of free memory blocks?
Question#2: Application of doubly-linked list: Implementation of a double-ended queue

(a) Using an instance of MyDoublyLinkedList as the underlying data structure, implement a double-ended queue data structure called MyDeQueue that extends MySearchableContainer and implements DeQueue interface:

public interface DeQueue extends Container{

public abstract Object getFirst();

public abstract Object getLast();

public void addToFront(Object obj);

public void addToRear(Object obj);

public Object removeFromFront();
 public Object removeFromRear();
 }

An instance of MyDeQueue has the following behaviour: values can be inserted and removed from the front and the rear of the queue, and the contents of the queue can be printed from front-to-rear and from rear-to-front. You must implement the following methods, except where indicated otherwise:

	public MyDeQueue()
	Constructor: It creates an empty MyDoublyLinkedList instance; this is the underlying data structure of MyDequeue container

	public Object getFirst()
	Returns the first node's data without deleting the node

	public Object getLast()
	Returns the last node's data without deleting the node

	public void addToFront (Object obj)
	Adds a new node containing obj as data to the front of this queue

	public void addToRear (Object obj)
	Adds a new node containing obj as data to the end of this queue

	public Object removeFromFront ()
	Removes the front node of this queue and returns it's data

	public Object removeFromRear()
	Removes the rear node of this queue and returns it's data

	public String toString()
	Constructs a string representation of the queue, from front to rear, and returns it. DON’T IMPLEMENT, USE THE toString METHOD INHERITED FROM AbstractContainer

	public String toStringReversed()
	Constructs a string representation of the queue, in reverse order, from rear to front, and returns it

	public Iterator iterator()
	Returns a forward iterator for this queue. DON’T IMPLEMENT, USE THE iterator METHOD INHERITED FROM AbstractContainer

	public Iterator reverseIterator()
	Returns a reverse iterator for this queue

	public boolean isMember(Comparable obj)
	Returns true if a node that has obj as data is present in this queue; otherwise, it returns false. Searches from front to rear

	public Comparable find(Comparable obj)
	Returns a reference to the first node with obj as data, if a node that has obj as data is present in this queue; otherwise it returns null.

Note: For DoublyLinkedList use the following partial definition:
public class DoublyLinkedList{

 protected Element head, tail;

 //. . .

 public class Element {

 Object data;

 Element next, previous;

 Element(Object obj, Element next, Element previous){

 data = obj; this.next = next;

 this.previous = previous;

 }

 public Object getData(){return data;}

 public Element getNext(){return next;}

 public Element getPrevious(){return previous;}

 // . . .

 }

}
Note: You may include the above methods in this DoublyLinkedList class, and then use them in your MyDequeue; however DON’T INCLUDE IN YOUR SOLUTION ANY METHOD THAT IS NOT REQUIRED.
(b) Write a menu driven console program to test MyDequeue
