PAGE
1

HEAP MEMORY MANAGEMENT
Memory areas
In languages like C or Java, the memory used by a program can be allocated from three different areas:

• A static area, which is laid out at compilation time, and allocated when the program starts,

• A stack, from which memory is allocated and freed dynamically, in LIFO order,

• A heap, from which memory is allocated and freed dynamically, in any order.

 [image: image1.emf]
Location of data
Each of the areas presented before is useful to store different kinds of data:

• Global variables and constants go into the static area,

• Local variables and method parameters go into the stack,

• All data outliving the method which created them go into the heap. In Java, objects are stored in the

 heap.
The memory management techniques we discuss in this lecture apply exclusively to the management of the heap.

Management of free memory
· The memory manager is part of the Operating System. It must keep track of which parts of the heap are free, and which parts are allocated. To keep track of free memory a memory manager uses a data structure called free list.
A free list is a data structure that keeps track of free memory blocks in a scheme for dynamic memory allocation.

· Functions of a Memory manager:

· allocates heap memory needed by programs.

· releases (deallocates) heap memory no longer needed by programs.

· defragments heap memory.

A memory manager supports the following two allocation and deallocation operations:
· acquire(size): searches for a contiguous block of size bytes from the heap and returns a reference to that block. It throws an exception if such a block does not exist.

· release(address, size): returns the block of size bytes starting at address to the heap for reuse

The aim of allocation is to find a free block big enough to satisfy the request, and possibly split it

in two if it is too big: one part is then returned as the result of the allocation, while the other is put

back in the free list.
On deallocation, adjacent free blocks can be combined to form bigger free blocks.

Problems faced in memory allocation:
· Memory fragmentation:

· External fragmentation

 Memory wasted outside allocated blocks

· Internal fragmentation

Memory wasted inside allocated block(s). Results when memory allocated is larger than memory requested.

[image: image2.emf]

· Overhead: Additional memory that must be allocated, above and beyond that requested by programs, in order to provide for the management of the heap. For example, it may require a few words of memory to describe the location of each allocated memory block.
Allocation policies
Whenever a block of memory is requested, there will in general be several free blocks big enough

to satisfy the request. A policy must therefore be used to decide which of those candidates to choose.

There are several such policies: first fit, next fit, best fit, worst fit, etc.

First fit chooses the first block in the free list big enough to satisfy the request, and split it if necessary.

Next fit is like first fit, except that the search for a fitting block will start where the last one stopped,

instead of at the beginning of the free list.

Best fit chooses the smallest block bigger than the requested one.

Worst fit chooses the biggest, with the aim of avoiding the creation of too many small fragments – but doesn’t work well in practice.

Some Free list implementations
· Free list common implementations:

· singly-linked list

· doubly-linked list

· Singly-linked list implementation of free-list:

· nodes must be sorted in increasing order of start addresses of free blocks so that adjacent free memory blocks can be combined.

· acquire() operation is O(n); release() operation is O(n); where n is the number of free blocks in the heap.
· In order to free a block, the node before the node corresponding to the block to be freed must be searched in the free list. Searching for the node has complexity O(n).
Example: Assume that the node structure of singly-linked free-list is:

 [image: image3.jpg]
Suppose the initial state of the heap is:

[image: image4.jpg]
where the shaded areas are allocated blocks. The corresponding free-list is:

[image: image5.jpg]
The operation acquire(700) using the first-fit allocation policy will result in:
[image: image6.jpg]
The corresponding free-list is:

 [image: image7.jpg]
The operation release(400, 1100) , i.e., release 400 bytes starting at address 1100, will result in:

[image: image8.jpg]
The corresponding free-list is:

[image: image9.jpg]
The operation release(900, 2300) will result in:

[image: image10.jpg]
The corresponding free-list is:

 [image: image11.jpg]
· Doubly-linked list implementation of free-list:

· nodes are not sorted according to start addresses of free blocks.

· acquire() operation is O(n); release() operation is O(1)

The release operation does not combine adjacent free blocks. It simply prepends a node corresponding to a freed block at the front of the free list. This operation is thus O(1). Adjacent free blocks are combined by acquire().

The acquire operation traverses the free list in order to find a free area of a suitable size. As it does so it also combines adjacent free blocks.

Boundary Tags

Boundary tags are data structures on the boundary between blocks in the heap from which storage is allocated. The use of such tags allows blocks of arbitrary size to be used, they also make it easier to combine adjacent free blocks. The tag describes for each block, how big it is, its status (allocated or free), and the addresses of its neighbours.

 [image: image12.jpg]
Example: Assume the node structure of a doubly-linked free-list is:
 [image: image13.jpg]
Suppose the initial state of the heap is:

[image: image14.jpg]
where the shaded areas are allocated blocks and the grayed areas are boundary tags [To simplify the discussion, we are ignoring space occupied by boundary tags]. The corresponding free-list is:
[image: image15.jpg]
The operation release(400, 4000) will result in:

[image: image16.jpg]
Notice that the adjacent free blocks starting from address 3200 to 4700 are not combined at this stage. The node corresponding to the freed block is appended at the front of the free-list:
[image: image17.jpg]
The nodes x, y, and z correspond to the three free blocks that have not yet been combined. (Notice that the nodes of the free-list are now not arranged in increasing order of start addresses)
The operation acquire(600) using the first-fit allocation policy will first result in the combination of the three adjacent free blocks (from address 3200 to 4700):

[image: image18.jpg]
At this point the corresponding free list is:

[image: image19.jpg]
The required 600 bytes are then allocated, resulting in:

[image: image20.jpg]
 allocated

The corresponding free list is:

[image: image21.jpg]
 (Notice that the nodes of the free-list are now not arranged in increasing order of start addresses)

