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Abstract

In principle� pure functional languages promise straightforward architecture�independent
parallelism� We investigate the validity of this claim in the context of our highly�portable
implementation of an implicitly�parallel functional language� the GUM implementation of
Glasgow Parallel Haskell �GpH�� We discuss architecture independence at two levels� low�
level �i�e� the implementation� and high�level �i�e� the programmer��

Low�level architecture independence is achieved by chosing a message�passing model for
GUM� and implementing it using portable C and a widely�supported message�passing library
like PVM� In fact GUM is largely independent of the message�passing library� and has been
adapted to use MPI and the CM�� CMMD libraries as well as PVM� As a result� GUM is
easily ported� and is currently available on seven platforms including shared�memory ma�
chines� distributed�memory machines� and networks of workstations� We provide indicative
measurements of how e�cient and e�ective our architecture�independent runtime system is
across a range of architectures�

The GpH programming model provides higher�level architecture independence� The par�
allelism in GpH is mainly implicit� and hence relatively small parts of the program need to
be changed for a new architecture� The coordination that is required is expressed with a new
high�level construct� evaluation strategies� Evaluation strategies provide a clean separation
between algorithm and coordination� easing the task of changing either facet to suit new par�
allel environments� Moreover� GpH programs can systematically be developed for multiple
target architectures� using a suite of simulation� pro	ling and visualisation tools� Much of the
development is architecture�independent but� once a particular target architecture has been
selected� the tools are parameterised to support tuning for that architecture� We demonstrate
the systematic development of two real programs to the point of achieving good speedups on
four architectures�

Index terms Parallel Functional Programming� Architecture�independence

Note to referees� The measurements on the seven architectures reported here are very recent�
and we hope to analyse them more thoroughly for the �nal submission� We also hope to include
more measurements� in particular of the Naira compiler on other architectures and parfact on a
new AP���� port�

� Introduction

The goal of architecture�independent parallel programming is to deliver reasonable performance
across a range of architectures� with minimal e�ort required to move from one to another� There
are good reasons in principle to hope that a purely�functional language might be a good ��t� with
this goal	

� Mainly�implicit parallelism� The fewer aspects of parallelism explicit in a program�
the less that needs to be changed when a program is transferred from one architecture to






another� Compared with other parallel approaches� many pure functional languages contain
little explicit control of parallel behaviour	 they rely instead on the compiler and runtime
system to extract and exploit parallelism� The programmer still has to write a parallel
algorithm and� typically� control a few aspects of the parallelism explicitly� We discuss in
Section ���� how functional languages allow the control of parallelism to be expressed in a
modular� non�invasive� and largely architecture�independent way�

� Deterministic parallelism� Functional languages ensure the absence of race conditions
and deadlocks� The program is guaranteed to give the same result� every time it is run�
and on every architecture� This is a huge boon to developers	 non�repeatable� architecture�
dependent bugs are extraordinarily di�cult to �nd� Furthermore� the algorithm can be
developed once� on a sequential architecture� and the parallelism added later without com�
promising the algorithm  assuming it was indeed a parallel algorithm in the �rst place�

� Dynamic resource allocation� In many parallel functional�language implementations
the run�time system is responsible for mapping both data and threads to processors� and for
scheduling the threads� In some systems� including GUM� the runtime system can also choose
how many threads to exploit� These systems relieve the programmer from the task of spec�
ifying exactly what computations are to be executed where� with bene�ts for architecture�
independent programming� and costs for execution e�ciency� Both bene�ts and costs are
hard to quantify�

So much for the theory� How does it work out in practice� In this paper we describe our
experience of using GpH� a parallel implementation of the functional language Haskell� along with
a suite of simulation and pro�ling tools that go with it� GpH� short for Glasgow Parallel Haskell�
extends Haskell with two parallelism primitives �Section ��� GUM� short for Graph Reduction on
a Uni�ed Model� is the parallel runtime system that supports GpH�

The focus of the paper is on �a� the architecture independence of GUM and �b� the systematic
development of applications with irregular parallelism and complex data structures for multiple
architectures� The Naira Compiler �Section ��� is a good example of our target applications� For
such applications� a programmer may well accept less than 
��� machine utilisation in exchange
for substantially reduced programming e�ort� Functional programming aims at this corner of the
marketplace�

We claim that GpH supports architecture�independent parallel programming in the following
ways	

� GUM is itself highly portable� because it uses a message�passing model and is implemented
using the tried�and�tested technology of portable C and a message�passing library such as
PVM� GUM is currently available on seven platforms� ranging from shared�memory ma�
chines� distributed�memory machines� massively�parallel machines� and networks of work�
stations� GUM is constructed to be largely independent of the message�passing library�
and ports have used PVM �PVM���� MPI �MPI���� and the CM�� native �CMMD� library
�Section ��
��

Portability is not enough� of course� GUM is a sophisticated piece of software because
it automatically manages many of the parallel aspects of a GpH program	 including the
distribution of work� data and garbage over the processors� As a result it is very easy �and
not uncommon� to build a runtime system for a parallel functional language with absolutely
atrocious performance� So we also have to ask about the e�ciency and e�ectiveness of the
runtime system on a range of architectures� Can an architecture�independent runtime system
be made e�cient compared to the best sequential implementations� Is it possible to achieve
good absolute speedups on each architecture for programs with good parallel behaviour�

The measurements reported in Section ��� indicate that GUM is e�cient and capable of
delivering good speedups� at least for simple demonstration programs� across the range of
architectures� The best results are an e�ciency of ���� and a speedup by a factor of �� on
�� processors for a simple benchmark program with good parallelism�
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� Deterministic parallelism means that it is possible to systematically develop real GpH pro�
grams for multiple architectures �Section ��
�� The development is supported by a suite of
dynamic analysis tools �Section ����� Much of the development is independent of the even�
tual target architecture� but once this has been determined the tools are parameterised to
support tuning for that architecture� Much of the development occurs in a familiar worksta�
tion environment� and the architecture�independent phase of the development can be reused
when targeting a new architecture�

� We demonstrate the systematic development of two real programs	 an accident blackspot
analysis and the Naira compiler� Blackspots is relatively small �
��K lines�� has simple
parallel structure and achieves good wall�clock speedups on an SMP and on three networks
of workstations �Section ��
�� Naira is larger ��K lines� and involves elaborate symbolic
computation� Despite having complex irregular parallelism it delivers wall�clock speedups
on a network of workstations� and simulated speedups on an SMP and a DMP architecture
�Section �����

� Because parallelism in GpH is mainly implicit� relatively small amounts of code are re�
quired to describe the parallelism in a program� We illustrate this for both Blackspots and
Naira �Section ��� More signi�cantly� the coordination that is required is expressed in a
new high�level construct� evaluation strategies� The idea behind strategies is explained in
another paper �THLP���� and outlined in Section ���� Evaluation strategies permit a high�
level speci�cation of coordination� and provide a clean separation between algorithm and
coordination� easing the task of changing either to suit a new architecture�

The remainder of this paper is structured as follows� Section � outlines the low�level architecture�
independence of the GUM runtime system� and some measurements of its e�ciency and speedups
on a range of architectures� Section � describes the GpH programming model� and its implica�
tions for developing programs for multiple architectures� Section � outlines our multi�architecture
program development model� and the programming environment that supports the development�
Section � describes the development of two programs using the model� Section � surveys related
work� focusing on functional approaches� Section � Concludes�

� Low�level Architecture Independence of GUM

��� GUM Runtime System

GUM is an architecture�independent runtime system for GlasgowParallel HaskellGpH �THMPP����
a parallel variant of the Haskell lazy functional language� At the time we designed GUM we
needed to develop programs on both shared�memory MIMD �SMP�� and distributed�memory
MIMD �DMP� architectures� To support this objective the runtime system needs an abstract
machine�model appropriate to both architectures� and hence it�s name	 Graph�reduction for a
Uni�ed Machine�model �GUM�� The machine�model chosen is message�passing� which is the obvi�
ous choice for massively parallel machines �MPPs�� and our earlier experience constructing runtime
systems on SMPs lead us to believe that it is also suitable for them �Mat����

To achieve an architecture�independent runtime system we elected to extend our sequential
multi�threaded runtime system� already written in portable C� with a message�passing library� We
initially selected the PVM library �PVM���� The resulting system is a parallel graph�reduction
engine� The price of architecture independence is relatively�high message�processing costs	 e�g�
approximately ���� machine instructions are required to receive a message� Such a cost is accept�
able for MPP and workstation�network architectures where communications latency is already
high� but less so on low�latency DMPs and SMPs� The raised communication costs impact on
the GpH language supported by GUM	 requiring that thread granularities are larger to o�set the
communications cost�

GUM�s parallel structure is straightforward� There is a system manager and a collection of
workers� so�called Processing Elements �PEs�� Each PE has a copy of both the program and
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Class� and Processors Comms� Compiler Operating
Architecture Package Version System
MPP
CM�� �� CMMD ����
DMP
IBM SP�� 
� MPI ��
� AIX
SMP
Sun�SMP � PVM ���� Solaris �
Workstation�net
Sun���
� 
� PVM ���� SunOS ��
��
Sun�
� 
� MPI ��
� Solaris �����
Digital Alpha 
� PVM ���� OSF ���
Intel Pentium � PVM ���� Linux ��
������
����SMP

Table 
	 Con�guration Summary

the multi�threaded runtime system� and one PE is distinguished as holding the �main�thread��
At the start of the program the system manager spawns the PEs� synchronises them� and then
program execution starts on the main�thread PE� During execution PEs automatically distribute
work� data and garbage using just six messages	 three to transfer work� two to transfer data and
one to recover garbage� The main�thread signals the end of the program to the system manager
which then supervises the shut�down of the PEs� We do not attempt to support fault tolerance
or dynamic re�con�guration on these networks� as is done by� e�g� the Cilk system �BJKL����� A
full description of GUM can be found in �THMPP����

GUM is available on a seven machines drawn from several classes of parallel architecture� It is
available on an MPP	 the CM��� on a DMP	 the IBM SP��� on an SMP	 the SunSPARCserver�
and on several networks of workstations� as summarised in Table 
�

GUM is designed to be independent of the message�passing library� and there are two aspects
to this independence� The �rst is that GUM only uses a small number of common communication
patterns� Moreover� only point�to�point communication is used during execution of the GpH
program� broadcast and barrier synchronisation are also used� but only during initialisation and
�nalisation� and hence an e�cient implementation is not essential� The second aspect of message�
passing library independence is that a layered architecture is used to isolate the use of message�
passing routines to just � of the 
�� modules in the runtime system� The independence from
any speci�c message�passing library has been exploited to construct versions of GUM that use
MPI �MPI��� and the CM�� CMMD native libraries� as outlined in column three of Table 
�

GUM can be tuned for a new architecture in several ways� For example it is possible to
specify the message�size� and typically the higher the communications latency of the machine�
the larger the message�size chosen� In making such decisions we are guided by experiments that
simulate architectures with a range of latencies �LoHa���� It is also possible to specify the sizes of
GUM internal structures� For example it is possible to ensure that heap allocation occurs within
hardware caches� Such control is especially important when moving between ���bit and and ���
bit architectures� We have not yet systematically exploited these tuning capabilities across the
machines�

��� Measuring GUM on Multiple�architectures

It is easy to port GUM to a new architecture because it uses tried and tested technology	 C and
a message�passing library� However� GUM is a sophisticated program� and a far more signi�cant
question is	 does GUM perform well on a range of architectures� More precisely� is GUM e�cient
compared to the best optimised sequential implementations� and does it deliver good absolute
speedups on each architecture� Absolute speedup compares parallel runtime with the runtime
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of the optimised sequential version of the program� whereas relative speedup compares with the
parallel program run on a single processor�

We investigate these issues by measuring a simple benchmark program with good parallel
behaviour on each architecture� The measurements indicate GUM�s potential on the architectures	
if GUM does not deliver good e�ciency and speedups for this benchmark on an architecture then
there is no point in developing real programs for that architecture� Section ��
 gives measurements
of real programs on multiple architectures� We have not attempted to benchmark GUM thoroughly
on every architecture�

The benchmark used in this section� parfact� sums a range of integers� and the GpH code
is included in Appendix A� The parfact program uses a divide�and�conquer paradigm� with a
granularity threshold to indicate when to evaluate sub�tasks sequentially rather than dividing
them� It was originally used to study task granularity on two architectures �THMPP���� For
the purposes of the experiments described here we maintain the cuto� at a setting that gives
both acceptable granularity and a reasonable number of tasks ������� but make no attempt to
determine optimal granularity for each architecture�

����� Experimental Setup

We have used several machine con�gurations	 one MPP� a ���processor Connection Machine
CM��� one DMP� a 
��processor IBM SP��� one SMP� a ��processor Sun SparcServer� and four
workstation networks as summarised in Table 
�

As far as possible� the workstation networks are homogeneous� i�e� all of the processors are the
same� and communications are symmetric� e�g� all of the processors are on the same Ethernet sub�
net� The Sun���PVM network comprised a group of 
� Sun ��
� workstations� The Alpha�PVM
network consisted of a group of 

 DEC ��������LX workstations running at 
��MHz� plus a
single Digital AlphaStation ��� running at ���MHz� The Pentium�PVM network comprised one
���MHz Intel Pentium MMX processor� one dual ���MHz Intel Pentium MMX board with two
processors� and one 
��MHz Intel Pentium MMX processor� Finally� the Sun�
��MPI network
comprised 
� mixed Sun�� and Sun�
� workstations on the same subnet plus � on a second subnet�

Several versions of the GHC compiler are used on the di�erent platforms� Most of the PVM�
based systems and the Connection Machine use GHC version ����� which e�ciently compiles
Haskell version 
��� The MPI systems use GHC version ��
�� and the Pentium system uses GHC
version ����� which both compile Haskellversion 
��� Both the latter ports are recently completed
parallel ports� and some caveats apply�

All measurements reported here are given in terms of real �elapsed� time used by the program�
and represent the average of several measurements �normally at least ��� As far as possible� timing
runs were made on systems with minimal other load� While elapsed time is more variable than
CPU time� especially for the workstation networks where neither processors nor networks are
dedicated� some such measure is required to account for the costs of both communication and
computation�

����� E�ciency

Table � gives the sequential runtimes and parallel e�ciency �measured as the ratio of the se�
quential and single�processor parallel execution times� for the factorial program on all the host
architectures� For the more mature PVM�based systems� the e�ciency is high� in the range of
��� to ���� The MPI systems show slightly lower e�ciency in the range of ��� to ���� perhaps
re�ecting the immaturity of these ports�

The sequential runtimes are obtained using the same level of optimisation as the parallel
runtimes� For the systems using the older GHC���� compiler �Sun�SMP� Digital Alpha� and Sun�
��� this is maximum optimisation� For the recent ports �SP��� Sun�MPI and Pentium�� however�
we must use minimal optimisation to avoid a loss of parallelism through unwanted optimisation�
The unoptimised �gures are starred in the table� While intended primarily as indicators of system
performance� the �gures give a rough indication of the relative performance of the architectures
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Class and Architecture Sequential Runtime �s� Parallel E�ciency
DMP
IBM SP�� �
�
�� ���
SMP
Sun�SMP PVM ���� ���
Workstation�net
Alpha PVM 
��� ���
Sun�� PVM ���� ���
Sun�
� MPI 
����� ���
Pentium PVM �
�
� ���

Table �	 Single�Processor E�ciency	 Parfact� starred �gures are without optimisation

within the starred or unstarred groups� Sequential times and e�ciency �gures are not available
for the Connection Machine CM���

����� Speedup

Figure 
 shows the relative and absolute speedups that are obtained for parfact on each archi�
tecture with up to 
� processors� Figure � shows detail of relative speedup up to � processors plus
the relative speedups obtained on the CM�� up to �� processors� Absolute speedup �gures are not
available for either the CM���

All the systems show good relative speedup up to � processors� as can be seen from Figure ��
and most show satisfactory relative speedup beyond that� The CM��� Sun�SMP and Pentium
systems all show acceptable speedup up to the number of processors that are available �in fact the
performance of the Pentium network and the Sun�SMP is nearly identical on this example�� The
CM�� also achieves the very good relative speedup of ���
 on �� processors� without appearing to
approach a limit� indicating that GUM is capable of massive parallelism�

For most of the workstation networks and the SP�� DMP a limit on performance is clearly
being approached� This limit is about � �relative� in the case of the SP��� or around � �relative�
for the Sun�
� MPI port� In the latter case� this limit is not unexpected since this occurs at around
the point where communication must be directed outside the local subnet �
� processors�� It is
somewhat surprising to �nd so stringent a limit on the SP��� however� This may be a re�ection
of the small problem size�

The absolute speedup graph generally tracks the relative speedup graph� as expected� Inter�
estingly� the two MPI ports deliver almost identical absolute speedup graphs� This suggests that
the lower relative speedup for the SP�� is due to greater e�ciency of the MPI port on a single
processor�

Finally� it worth noting the super�linear relative speedup that occurs for two Sun�MPI proces�
sors �most obvious in the detail plot of Figure �� We have not yet determined the source of this
e�ect� though we suspect it may simply be a consequence of the heterogeneous network�

� Architecture�independent Programming in GpH

This section outlines the GpH programming model� and its implications for the development of
programs for multiple architectures� It starts with the basic constructs for introducing parallelism�
and outlines evaluation strategies� our new high�level mechanism for controlling parallelism within
GpH�
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��� GpH� a Mainly�implicit Language

GpH is a small extension to the standard Haskell lazy functional language� The model of par�
allelism in GpH is mainly�implicit with dynamic resource allocation� The GUM runtime system
manages most of the parallel execution� including the mapping of threads to processors� com�
munication among threads and thread synchronisation� However the model does require explicit
decomposition� i�e� the programmermust indicate those values that might usefully be evaluated by
parallel threads and� since our basic execution model is a lazy one� also the extent to which those
values should be evaluated� We term these programmer�speci�ed aspects the program�s dynamic
behaviour�

Parallelism is introduced in GpH by the par combinator� which takes two arguments that
are to be evaluated in parallel� The expression p �par� e �here we use Haskell�s in�x operator
notation� has the same value as e� and is not strict in its �rst argument� i�e� � �par� e has the
value of e� Its dynamic behaviour is to indicate that p could be evaluated by a new parallel thread�
with the parent thread continuing evaluation of e� We say that p has been sparked� and a thread
may subsequently be created to evaluate it if a processor becomes idle� Since the thread is not
necessarily created� p is similar to a lazy future �MKH�
��

Since control of sequencing can be important in a parallel functional language �Roe�
�� we
introduce a sequential composition operator� seq� If e� is not �� the expression e� �seq� e� also
has the value of e�� otherwise it is �� The corresponding dynamic behaviour is to evaluate e� to
weak head normal form �WHNF� before returning e��

��� Evaluation Strategies

Even with the simple parallel programming model provided by par and seq we �nd that more
and more code is inserted in order to obtain better parallel performance� In realistic programs the
algorithm can become entirely obscured by the dynamic�behaviour code�

Evaluation strategies use lazy higher�order functions to separate the two concerns of specifying
the algorithm and specifying the program�s dynamic behaviour� A function de�nition is split into
two parts� the algorithm and the strategy� with values de�ned in the former being manipulated
in the latter� The algorithmic code is consequently uncluttered by details relating only to the
dynamic behaviour� In fact the driving philosophy behind evaluation strategies is that it should
be possible to understand the semantics of a function without considering its dynamic behaviour�

A strategy is a function that speci�es the dynamic behaviour required when computing a value
of a given type� A strategy makes no contribution towards the value being computed by the
algorithmic component of the function	 it is evaluated purely for e�ect� and hence it returns just
the empty tuple ���

type Strategy a � a �� ��

����� Strategies Controlling Evaluation Degree

The simplest strategies introduce no parallelism	 they specify only the evaluation degree� The
simplest strategy is termed r� and performs no reduction at all� Perhaps surprisingly� this strategy
proves very useful� e�g� when evaluating a pair we may want to evaluate only the �rst element but
not the second�

r� 		 Strategy a

r� 
 � ��

Because reduction to WHNF is the default evaluation degree in GpH� a strategy to reduce a value
of any type to WHNF is easily de�ned	

rwhnf 		 Strategy a

rwhnf x � x �seq� ��
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Many expressions can also be reduced to normal form �NF�� i�e� a form that contains no redexes�
by the rnf strategy� The rnf strategy can be de�ned over both built�in and user�de�ned types� but
not over function types or any type incorporating a function type � few reduction engines support
the reduction of inner redexes within functions� Rather than de�ning a new rnfX strategy for each
data type X� it is better to have a single overloaded rnf strategy that works on any data type� The
obvious solution is to use a Haskell type class� NFData� to overload the rnf operation� Because
NF and WHNF coincide for built�in types such as integers and booleans� the default method for
rnf is rwhnf�

class NFData a where

rnf 		 Strategy a

rnf � rwhnf

For each data type an instance of NFData must be declared that speci�es how to reduce a value
of that type to normal form� Such an instance relies on its element types� if any� being in class
NFData� Consider lists and pairs for example�

instance NFData a �� NFData �a� where

rnf �� � ��

rnf �x	xs� � rnf x �seq� rnf xs

instance �NFData a NFData b� �� NFData �ab� where

rnf �xy� � rnf x �seq� rnf y

����� Data�oriented Parallelism

A strategy can specify parallelism and sequencing as well as evaluation degree� Strategies speci�
fying data�oriented parallelism describe the dynamic behaviour in terms of some data structure�
For example parList is similar to seqList� except that it applies the strategy to every element
of a list in parallel�

parList 		 Strategy a �� Strategy �a�

parList strat �� � ��

parList strat �x	xs� � strat x �par� �parList strat xs�

Data�oriented strategies are applied by the using function which applies the strategy to the
data structure x before returning it�

using 		 a �� Strategy a �� a

using x s � s x �seq� x

A parallel map is an example of data�oriented parallelism� and is used in several of the programs�
The parMap function de�ned below applies its function argument to every element of a list in
parallel� Note how the algorithmic code map f xs is cleanly separated from the strategy� The
strat parameter determines the dynamic behaviour of each element of the result list� and hence
parMap is parametric in some of its dynamic behaviour�

parMap 		 Strategy b �� �a �� b� �� �a� �� �b�

parMap strat f xs � map f xs �using� parList strat

Because evaluation strategies are written using the same language as the algorithm� they have
several other desirable properties� Strategies are powerful	 simpler strategies can be composed�
or passed as arguments to form more elaborate strategies� Strategies are extensible	 it is easy to
de�ne new application�speci�c strategies� Strategies can be de�ned over all types in the language�
and o�er some level of type safety because the normal type system applies to strategic code�
Strategies have a clear semantics� which is precisely that used by the algorithmic language� A
complete description and discussion of strategies can be found in �THLP����
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��� Multiple�architecture Implications

The model outlined above has several implications for the programmer developing programs for
multiple architectures� Because parallelism in GpH is so implicit� only small amounts of code
are required to describe the parallelism in a program� For many programs� it is only this code
that needs to be adapted for a new architecture� Moreover� strategies allow us to specify the
coordination at a high�level� and to separate algorithm and coordination thus easing the task
of changing either to suit a new architecture� We have demonstrated this for toy programs	
for example a strategy can use thresholding granularity control to select a thread granularity
appropriate to some architecture� We have not yet needed to adapt the strategies in a real
program for new architectures�

Many aspects of the execution of a GpH program are determined dynamically� including the
number of threads� and their structure� thread placement and the amount of data communicated�
GUM determines these aspects based on the resources available at runtime� and hence automat�
ically adapts to the underlying architecture� For example on an architecture with high latency
GUM will create additional threads to hide the latency� The adaption is limited� for example
performance will be poor if thread granularity is small relative to communication costs� However�
some programs will perform well on multiple architectures without changing the strategies� for
example the accident Blackspots program in Section ��


� Multi�Architecture Program Development

Unusually for a parallel language GpH is deterministic� This means that we can start with a
program without any explicit parallelism� which can be developed and tested in a sequential
environment� A parallel version of the program �constructed by inserting strategies� will always
compute the same result as the sequential version� and have the same termination properties as
long as the strategies only introduce conservative parallelism� There are no race hazards� core
dumps� and un�repeatable errors�

��� Development Model

����� Overview

Our programming model is characterised by the semi�explicit nature of parallelism in GpH� Thus�
the parallelisation of a program amounts to marking certain expression� indicating that they should
be executed in parallel� The semantics of the sequential program will not be altered by adding
these annotations�� As a result� the programmer will naturally start to develop and debug a
sequential algorithm� using such proven tools as an interpreter and a sequential time and heap
pro�ler� Alas� there no industrial strength debugger for a lazy functional language has been
developed� yet� Therefore� it is even more important to design the program as independent unit
and to test individual components separately� The high level of modularity inherent in a language
with a non�strict semantics further facilitates this process �Hug����

The development is separated into two parts	 an architecture�independent phase� that develops
adequate parallelism on a simulated idealised machine� and an architecture�dependent phase� that
tunes the parallelism for some target machine� The idealised machine used in the architecture�
independent phase has� for example� zero communication costs� and an unbounded number of
processors and is provided by our GranSim simulator� described below �Section ������� An ad�
vantage of using an idealised machine is that we know that poor parallelism is not due to artifacts
of some real machine	 if good parallelism cannot be achieved on the idealised machine it cannot

�However� two dangers remain in the parallelisation of a Haskell program� resource exhaustion and a too strict

evaluation degree� The former may cause a program to run out of memory despite succeeding in a sequential

environment� The latter may cause the program to fail or run forever because an unneeded erroneous or in�nite

data structure is evaluated in the parallel version�







be obtained on any machine� We �nd in practice that most of the development work is done in
the �rst phase� This is fortunate because it can be reused when targeting a new machine�

The �rst stage of the architecture�dependent phase is to tune the program on GranSim pa�
rameterised to emulate the target architecture� The �nal stage is to measure and tune the program
on the target architecture using the GUM runtime system �THMPP��� and pro�ling tools� Our
experiences with the parallelisation of programs such as Blackspots �LoTr���� Naira �JDH���� and
Lolita �LMT���� show that this stage typically requires only few changes� Normally the simu�
lated results under GranSim are su�ciently close to the parallel behaviour under GUM� Thus�
almost all of the development of the parallel algorithm can be performed using the simulator in
an architecture�independent way� Since the simulator can be run on a sequential workstation� the
programmer can use a familiar and rather cheap environment before bringing the program to a
real multi�processor�
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Figure �	 The Multi�Architecture Program Development Model

����� Development Stages

The program development model is summarised in Figure �� The tools used at each stage are shown
to the left of each arc� which indicates a modi�cation to the previous version of the program� These
tools are described in the next section� Note that this development process is iterative� i�e� at each
stage it is possible to fall back to an earlier stage� This may happen if an e�cient sequential
algorithm turns out to have little inherent parallelism or if an algorithm with good idealised
parallelism exhibits only poor parallelism in a realistic setup �see Section ��
��
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In the �rst stage a sequential program with some inherent parallelism is developed� In order
to exploit parallelism in later stages� the algorithm should possess some inherent parallelism� In a
functional language two expressions are inherently parallel if there is no data dependency between
them� i�e� the result of one expression is not needed by the other� This stage uses the Hugs
interpreter to test and debug individual components in the program� The next step after having
developed a correct sequential algorithm is to tune its performance to make it more e�cient�
In this stage the time and space pro�lers of GHC are of crucial importance� in order to locate
computationally expensive parts of the program� Based on this optimised version of the program
evaluation strategies are added in order to expose parallelism in the program�

The initial parallel version is measured using the GranSim simulator parameterised to emulate
an idealised machine with an in�nite number of processors� zero communication costs� no thread
overheads etc� In this stage the parallel algorithm is tuned until it exhibits a su�cient amount of
parallelism�

Next� in the �rst architecture�dependent stage� GranSim is parameterised with realistic costs
to model the characteristics of the target architecture� In this stage it might be necessary to e�g�
modify the granularity of the generated threads in order to decrease the overhead for parallelism
in the program� Finally� the parallel algorithm is executed on the real parallel machine using
GUM� It might be necessary to slightly adapt the algorithm in order to deal with speci�cs of the
parallel machine not covered by the simulator �e�g� system calls to special parallel runtime�system
operations�� However� based on our experience with large applications �LoTr��� this is rarely
necessary�

It is sometimes necessary to iterate through the development process� For example� the most
e�cient sequential version of an algorithm is not always the most e�cient parallel version� This
has to be taken into account when choosing a particular sequential algorithm to be parallelised�
Section ��
 contains an example of iteration	 an initial parallel version of the Blackspots program
is constructed� but realistic simulation of the target architecture reveals that it cannot be made
e�cient� necessitating a return to the previous stage to develop an alternative parallelisation�

��� Development Environment

Building on several strands of development over recent years we have constructed an integrated
environment for developing parallel functional programs� In particular� we make use of the in�
frastructure for developing and tuning sequential functional programs by using an interpreter� a
compiler� and sequential pro�lers� Since GpH is only a minimal extension of Haskell these tools
can be used in the �rst stages of developing a parallel program� In particular� pro�ling is useful
for analysing the performance of independent pieces of computation� whose evaluation order is
explicitly speci�ed by a strategy� The GranSim simulator� which can accurately model the GUM
runtime�system� enables the programmer to test the parallel program on a sequential worksta�
tion� without having to immediately rely on the environment provided by the parallel machine�
Since GranSim� GUM� and GranCC� a parallel pro�ler� use the same log �le format� the same
visualisation tools can be used in all cases�

����� Execution Environment

The Hugs Interpreter� Hugs �Jon��� provides an interactive� interpreted environment� for fast
development� experimentation and debugging of sequential code� Because of its user�friendly
interface and its fast turn�around time in testing modi�ed code� it is used at many universities
for introducing functional languages� An new project is combining Hugs and GHC� The resulting
environment would enable the programmer to mix interpreted modules with those compiled via
GHC� This would achieve faster execution of the programs� because already�tested modules can
be compiled� while retaining the �exibility of a simulator�

Hugs is also of special importance for debugging� In a functional language all constructs in a
program are expressions with a deterministic value� All variables have a single�assignment property
and no side�e�ects from calling other functions are possible� Clearly� such a language avoids
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many dangers of programming errors present in imperative languages� As a result� debugging
usually boils down to examining the values of certain program expressions and testing individual
subfunctions in isolation� All this can be done with an interpreter such as Hugs� Although a more
sophisticated graphical environment that traces the exact evaluation order of expressions would
be useful� we have found Hugs to be a useful tool for debugging large GpH programs�

The GHC Compiler and Sequential Runtime System� GHC �Pey��� is a state�of�the�art
optimising compiler for the non�strict purely functional language Haskell� It incorporates various
analyses phases that supply information about the program behaviour to the optimisation phase�
Detailed measurements of the pseudoknot application show that GHC produces the fastest code
of all existing Haskell compilers �HFA ����

It should be emphasised� that for GpH an unmodi�ed version of the GHC compiler can be
used� The only new constructs� par and seq� are treated as built�in operators� Thus� the parallel
program pro�ts from all sequential optimisations� which are of particular importance in such a
high�level language as Haskell� Furthermore� the maintenance of future versions of GHC and
GUM is greatly simpli�ed�

The GUM Parallel Runtime System� GUM is a portable parallel implementation of GpH�
It supports one of the �rst publicly�available robust parallel functional languages� The robustness
of GUM is demonstrated by its support of applications comprising tens of thousands of lines of
source code �LMT����� It uses an unmodi�ed version of GHC to generate optimised code� The
two additional constructs seq and par are treated as built�in constructs� which specify evaluation
order and generate parallelism� respectively� More details of the GUM implementation are given
in Section ��
� and in �THMPP����

����� Dynamic Analysis Tools

The GpH parallel programming model is dynamic	 e�g� the number and location of threads is
determined at runtime� Moreover� the dynamic threads are managed automaticallyby the runtime�
system� Therefore� it is rather di�cult to perform a static analysis that approximates the runtime
behaviour of the program� Some static analyses� such as a granularity analysis �LoHa���� are under
development� However� most of the GpH program analysis tools are currently dynamic�

Sequential Time and Space Pro�lers� Because Haskell is a high level language it is often
di�cult to predict the e�ciency of certain functions� The lazy evaluation mechanism may cause
some data structures not to be evaluated at all� On the other hand� it may cause the program to
retain big data structures� although they are not subsequently used� This is called a �space leak�
and it is a common problem in non�strict languages�

In order to aid the programmer in the performance�tuning stage of the sequential program�
time and space pro�lers are supplied together with GHC �SaPe���� Both pro�lers use the novel
approach of cost centers in order to attach computation costs and heap usage to pieces of source
code� The exact semantics of cost centers has been de�ned formally in �SaPe����

Many examples show the importance of such a sequential pro�ler for improving the performance
of programs� Using a �rst prototype implementation of the pro�ler on GHC halved both the
runtime and the heap consumption �SaPe���� The development of a large ���Kline� natural�
language processor Lolita also made use of the pro�ler� In fact� this particular use of the pro�ler
sparked research on extending the pro�ler in such a way that cost centers can be aggregated in a
post processing stage without having to re�run the program� This technology of cost center stacks
�Jarv��� is now being integrated in the next version of GHC�

The GranSim Parameterisable Parallel Simulator� In the development of a parallel pro�
gram within our software engineering environment� the highly�parameterised GranSim simula�
tor �HLP��� plays a crucial role in achieving architecture�independence� Due to the large number
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of parameters available to GranSim two di�erent simulations can be distinguished	 an idealised
and a realistic simulation� Using an idealised simulation� which assumes an unlimited number
of processors and zero communication costs� GranSim allows the programmer to hide all details
of the underlying parallel architecture� If this stage reveals a su�cient amount of parallelism in
the algorithm the programmer can then use a realistic simulation� which models details of the
processors� the interconnection network� and of the communication mechanism�

This approach of developing the parallel program on the GranSim simulator in various levels of
abstraction has been used with success in parallelising several large applications such as Lolita the
Naira compiler �see Section ����� and the Accident Blackspot program �see Section ��
�� Because
of GranSim being highly parameterised� most of the parallelisation uses under the simulator�
Only the �nal stage with some minor adjustments to the parallel architecture had to be performed
under GUM�

The main features of GranSim are �exibility� accuracy� integration into GHC� and robustness�
The following paragraphs discuss these features in turn� A complete presentation of all features
of GranSim is given in �Loi����Chapter ���

� Flexibility� In addition to the basic distinction between an idealised and a realistic sim�
ulation� GranSim provides a large set of parameters that allow the user to specify char�
acteristics of the architecture� In particular the user can specify details of the underlying
processor �such as the costs for arithmetic operations etc�� of the communication network
�in particular its latency�� certain runtime�system features �such as synchronous or asyn�
chronous communication�� Taken together the parameters allow the programmer to model
the behaviour of a range of architectures accurately�

� Accuracy� In contrast to most existing simulators for the parallel execution of functional
languages� GranSim measures time in clock cycles rather than abstraction reduction steps
in the underlying model of parallel graph reduction� This yields a far more accurate result
of the simulation� accounting for the exact costs of basic operations in the abstract machine�

� Integration into GHC� Like GUM� GranSim is fully integrated into GHC� The only
modi�cation in GHC is due to the instrumentation of the code generated by GHC� A large
portion of the code in the runtime�system of GranSim is shared with GUM� This further
ensures that the simulated execution time under GranSim is closely related to the runtime
under GUM�

� Robustness� To date� GranSim has been used in the parallelisation of such large�scale
packages� such as Lolita� which is one of the largest existing non�strict functional programs�

The GranCC Pro�ler� GranCC �HHLT��� is a pro�ler for GpH� constructed by combining
cost centers with a modi�edGranSim runtime system� WithGranCC the programmer can mark
parts of the parallel program� In the resulting pro�les the number of threads can be classi�ed by
the cost center that generated them� This additional dimension in the standard activity pro�les
adds valuable information for the programmer� Although GranCC is still in an early prototype
stage� it has proven useful in the parallelisation of Naira�

Visualisation Tools� The log �les from GranSim� as well as those from GranCC and GUM�
can be used to generate graphical information about the execution of the program� In particular�
two kinds of pro�les can be generated	 activity pro�les and granularity pro�les� The former show
the number of threads during the computation� The latter counts the number of threads classi�ed
by e�g� total runtime in the form of a histogram� In experimenting with a range of visualisations
we have found that these two classes of pro�les convey the most useful amount of information�

Activity pro�les can be generated in three levels of detail	

� An overall activity pro�le shows the activity of the whole machine� Over the runtime� as
the x�axis� the total number of running� runnable� fetching� and blocking threads is shown
as di�erently�coloured areas�
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� A per�pe activity pro�le shows the activity on each processor� The realistic setup ofGranSim
is restricted to at most �� processors� in which case this information can still be summarised
in a single picture�

� A per�thread activity pro�le presents the most detailed level of information� It shows the
state of a threads as the thickness of a horizontal line� In practice the log �le has to be
pre�processed in order to �lter out the interesting threads�

This structuring of the pro�les into a hierarchy is very useful for parallel computation� It
has also been used for example in the VISTA �Hals��� toolset� Unlike VISTA� however� our
environment only produces individual graphs and lacks the possibility of a dynamic browser� In
an ongoing project are extending the log��le format to incorporate both sequential and parallel
pro�les� with the aim of re�using tools� such as a dynamic browser� in both a sequential and a
parallel environment�

Our visualisation tools can also produce granularity pro�les� These pro�les are histograms�
usually classi�ed by the runtime of the individual threads� i�e� a granularity pro�le shows howmany
threads have a runtime within a certain interval� This information proves to be very important
in order to avoid the production of an excessive amount of �ne�grained parallelism in a GpH
program� A detailed discussion and examples of all available pro�les are given in �Loi����Section
�������

� Large Architecture�independent Programs

GpH�s multi�architecture developmentmodel and development environment� have been constructed
and re�ned by the engineering of several symbolic GpH programs� The programs are large �up to
��K lines of code�� and cover a range of application areas �LoTr���� All but one of the programs
deliver modest wall�clock speedups� and the programs have been measured on half a dozen parallel
architectures	 mainly networks of workstations� and shared�memory multiprocessors�

This section illustrates our multi�architecture development model and development environ�
ment by describing the construction of two GpH programs	 the Accident Blackspots program
is a simple data�intensive application� and Naira is a larger and more complex compiler� The
Blackspots program demonstrates architecture�independence with good e�ciency and speedups
on an SMP and on three networks of workstations� Naira achieves speedups on a network of
workstations� and on simulated SMP and DMP architectures�

��� Accident Blackspots

����� Problem Description

The University of London Centre for Transport Studies wishes to analyse road tra�c accident
data� Given a set of police accident records �modi�ed to preserve privacy� the task is to discover
accident blackspots	 locations where two or more accidents have occurred� A number of criteria
can be used to determine whether two accident reports are for the same location� Two accidents
may be at the same location if they occurred at the same junction number� at the same pair of
roads� at the same grid reference� or within a small radius of each other� The radius is determined
by the class of the roads� type of the junction etc� The problem is obviously data�intensive� and
too complex for conventional database query languages like SQL�

Locating blackspots amounts to combining several partitions of a set into a single partition�
For example if the partition on road pairs is �������������� and on grid references is
����������������� the combined partition is ������������� The problem of union�
ing disjoint sets� union �nd� has been much studied by algorithm designers as it has an interesting
sequential complexity� For n union and m �nd operations� an algorithm with an amortised com�
plexity of O�n ! F�m�n�� can be given� where F is a very small function �the inverse of the
Ackermann function� �Tar���� These RAM algorithms are not directly applicable in our applica�
tion because not all of a large data set may be randomly accessed in memory� We have adopted
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an index�� or tree�� based solution with complexity O�n log n� if n is the number of elements in
the sets� The motivation for this choice is that for very large data sets not all of the tree need be
memory resident at any time�

����� Parallelisation

Sequential Implementations The �rst stage of our development is to construct an e�cient
sequential implementation� The application was originally written at the Centre for Transport
Studies �WuHa��� in PFL and has subsequently been rewritten in Haskell� PFL is an interpreted
functional language �PoSm���� designed speci�cally to handle large deductive databases� Un�
usually for a functional language� PFL provides a uniform persistent framework for both data
and program� The PFL program uses selectors� a special bulk�data manipulating construct� and
hence an algorithm that is slightly di�erent from that used in the Haskell program� It comprises
approximately ��� lines�

The Haskell implementation constructs a binary sameSite relation containing an element for
each pair of accidents that match under one of the four conditions� The combined partition is
formed by repeatedly �nding all of the accidents reachable in sameSite from a given accident� The
program has four major phases	 reading and parsing the �le of accidents� building indices over
the accident data� constructing sameSite� and indices over sameSite� forming the partition� The
program is a ����line module� together with � library modules totaling 
��� lines�

The original data set comprises ��
� accident reports� and the programs discover 
��� multiple�
accident sites where a total of ���� accident occur� The programs are run on similar� but not
identical� workstations	 PFL on a Sun ELC� and Haskell on a Sun Sparc Classic� The runtimes
of the programs are as follows� PFL	 

�� seconds� Haskell	 
�� seconds� The faster execution of
the Haskell program is attributed to it being both compiled and highly optimised� where PFL is
an interpreted research language� More measurements of the PFL and Haskell programs� together
with a more detailed discussion can be found in �THLP����

Initial Parallel Version The next stage of our development is also architecture�independent
and entails constructing an initial parallel version of the program and measuring it with an idealised
simulator� A good initial parallel version was obtained by successively introducing parallelism�
and measuring the result� Table � summarises the results obtained when just 
��� accidents are
partitioned on an idealised ��processor machine� Work is the total number of cycles required to
evaluate the program	 it closely approximates the runtime of a sequential version of the program�
Runtime is the time required for the program to run in parallel under GranSim in this case on
� processors� Both work and runtime are measured in units of 
�� GranSim machine cycles�
Average parallelism is the parallelism averaged over the runtime	 during the execution there will
sometimes be more parallelism� and sometimes less� Speedup is relative because under GranSim
there is no �sequential� version of the program�

Version 	I
 Pipeline only� The �rst parallelisation is to convert the � phases of the program
into a pipeline� The speedup of 
�� is low because the pipeline is blocked by the trees passed
between stages�

Version 	II
 Parallel Pipeline Stages� The next parallelisation introduces parallelism
within each pipeline stage using a variety of parallel paradigms�

Version 	III
 Parallel Pipeline Stages and Preconstructed Indices� Parallelism is
further improved by merging the �rst two pipeline stages� That is� the indices on the accident
data are constructed before the program is run� and the program reads the indices from a �le
rather than constructing them�

Tune for Architecture Having obtained satisfactory parallelism on an idealised machine� for
version III� we are now ready to tune the program for our target architecture� We start by measur�
ing version III on GranSim parameterised to emulate the target ��processor SMP� Unfortunately�
as reported in table �� it delivers poor results because of the �ne grain of parallelism and the
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Parallelisation Work Run Time Average Speedup
�MCycles� �MCycles� Parallelism

Pipeline only �I� ��� ��� 
�� 
��

Par� Pipeline Stages �II� ��� 
�� ��� ���
Par� Pipeline Stages
" preconstructed Ixs �III� ��� �� ��� ���
Geographically
Partitioned �Tiled� �IV� ��� 
�� ��� ���

Table �	 Idealised ��Processor Simulation	 Blackspots

Parallelisation Work Run Time Average Speedup
�MCycles� �MCycles� Parallelism

Par� Pipeline Stages
" preconstructed Ixs �III� ��� 
�
 ��� ���
Geographically
Partitioned �Tiled� �IV� ��� 
�� ��� ���

Table �	 Realistic ��Processor SPARCserver Simulation	 Blackspots

volume of data being communicated� This motivates us to return to the previous stage in our
development method and develop a fourth parallelisation of the program�

Version 	IV
 Geographically Partitioned 	Tiled
� A very di�erent� coarse�grained� par�
allelisation can be obtained by splitting the accident data into geographical areas Each area�
or tile� can be partitioned in parallel before aggregating the results� using this standard tech�
nique �MiSc���� Accidents occurring near the edges of a tile must be treated specially� This
approach is only feasible because every accident has a grid reference and we assume that accidents
occurring more than ���m apart cannot be at the same site� Accidents occurring within 
��m of
the nominal edge between two tiles are duplicated in both tiles� and this results in a �� increase
in data volume� Because some accidents are duplicated in the borders� some multiple�accident
sites may be discovered in more than one tile� and must be combined in the aggregate result�

Version IV of the program delivers good speedups under both idealised and realistic simulation�
as detailed in Tables � and �� We can now develop this version of the program on the target
machine�

Multi�Architecture Measurements�
Data� The original data set of ��
� accident reports occupies ���Mb and is too small to get

good results on parallel machines� For the purposes of this section� the data is replicated � times�
The larger data set could be kept in larger tiles� or in more tiles of the same size� and the latter
approach is taken for the following reasons� We found that� as long as the tiles are large relative
to the border area� many smaller tiles are more e�cient than a few large tiles �LoTr���� Moreover�
peak resource usage is reduced because if there is one tile per PE then all of the �le reading
occurs at the start of the program� inducing intense network tra�c� With multiple tiles per PE
the �le reading is spread through the program execution� Multiple tiles utilise the dynamic load
management provided by GUM� demonstrating that the GpH program is independent both of the
number of PEs and of the number and size of tiles� In contrast a small number of large tiles could
be statically allocated to PEs� However it is tedious to maintain the allocation as the number of
tiles or PEs change�

The replicated data occupies 
�� Mb and is split into �� tiles with two di�erent sizes� There
are �� small tiles� each containing approximately 
��� accidents and occupying ��Kb� and � large
tiles each containing approximately ���� accidents and occupying ��Kb�

Program� Only one change is required to the GranSim version of the program to enable it
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Class and Architecture Sequential Runtime�s� E�ciency
SMP
Sun�SMP PVM 
���� ���
Workstation�net
Digital Alpha PVM ����� ���
Sun���
� PVM �
��� ���
Sun�
� MPI ����
 ���

Table �	 Single�Processor E�ciency	 Blackspots

to run under GUM� GUM processes don�t inherit �le handles from the main thread� and hence to
permit them to read �les the program uses the �unsafe� C�interface supported by Glasgow Haskell
�LaPe���� On both machines the program is warm started� i�e� it is run at least once before
measurements are taken� Warm starts reduce runtime because the data is preloaded into RAM
disk caches in the �le system�

E�ciency Table � shows sequential times and parallel e�ciency for the Blackspots program�
on four of the architectures described in section ����
� This table makes an interesting comparison
with the corresponding �gures for parfact in Table �� The parallel e�ciency is notably lower for
all platforms� except for the Sun�
� MPI which has unoptimised parfact� For Blackspots� the
fastest machine is the Sun SPARCserver� whereas for parfact� the fastest machine was the Digital
Alpha� The Sun ��
� is also much slower relatively for Blackspots than for parfact� The best
explanations of these di�erences are probably that the parfact application is su�ciently small
that the Alpha is able to keep its working set within the primary cache� where this is not possible
for Blackspots� and that the I�O performance of the SPARCserver is much better than that of
the Alpha and Sun ��
� workstation networks�

Speedups Figure � shows the relative and absolute speedups obtained for the Blackspots
application for the four architectures� The relative speedups are generally good� especially for the
two PVM workstation networks� which achieved relative speedups of 

��� �
� Suns� and ����
�
� Alphas�� The absolute speedup for the Suns is much better than for the Alphas� however�
re�ecting the greater parallel e�ciency of ��� as opposed to ���� The Sun MPI port again showed
a limit being reached of around � �relative� or � �absolute�� As with the results for parfact� there
is an unexplained super�linear spedup e�ect� this time for � processors� Further work is needed to
investigate these results�

For this application� the Sun SMP was limited to � processors� Speedup for this con�guration
is less than for the workstation networks ����� relative� ��
� absolute�� This may re�ect the
signi�cantly better overall performance � the ��processor Sun SMP is ��� faster than the 
��
processor Sun network� and marginally faster than the 
��processor Alpha network �����
s v�
�����s�� Clearly there is still a future for SMPs� though the competition fromworkstation networks
is increasing rapidly�

����� Discussion

The Blackspots program solves a real problem using real data and thus provides a realistic context
in which to illustrate our multi�architecture development model and environment� An interesting
stage in the development is that an apparently good initial parallelisation �III� proved to be
unsuitable for our target architecture� and was superseded by a coarser�grain parallelisation �IV��

The Blackspots program demonstrates architecture�independence with good wall�clock speedups
on both an SMP and three networks of workstations without requiring modi�cation� The �nal
parallelisation �IV� is extremely simple	 essentially a single task farm� with only a small amount of
irregularity in the task sizes� The program could easily be written using conventional architecture�
independent techniques� e�g� C and MPI� Thus Blackspots is not representative of the class of
symbolic programs with highly�irregular parallelism that we believe GpH is good at expressing�
The Naira program presented next is far more representative of this class of program�
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��� Naira Compiler

����� Program Description

Naira is a parallel� parallelising compiler for a rich� purely functional programming language�
It processes� and its front�end is written in� a subset the standard Haskell 
�� language with
type classes as the main feature omitted� The front�end comprises about �K lines of Haskell
code organised in 
� modules� The back end is written� following popular tradition� in the C
programming language�

The main motivation for writing Naira is to explore the prospects and problems of parallelising
a modern functional language compiler �Jun���� Another aspect is to make the compiler accept
parallelised program inputs and to generate multithreaded parallel code so that we can assess the
e�ciency of the resulting parallel code� These two aspects of Nairathat it is itself parallel and
that it generates parallel codemakes it� to our knowledge� the �rst functional language compiler
of its kind� It is currently the second largest GpH program�

����� Parallelising Naira

Sequential Implementation The e�cient sequential implementation that we parallelise was
developed over a period of � years� The front�end compiles to a graph�reducing parallel abstract
machine with a strong data�ow in�uence� The top�level structure of the compiler in terms of its
main phases is shown in Figure �� The �rst� analysis� pass consists of the lexical analyser and
the parser� The next four passes implement the pattern matching compiler� the lambda lifter�
the type checker and the intermediate language optimiser respectively� The detailed organisation
and implementation of these passes is described elsewhere �Jun���� The two�way split after the
lambda lifting pass indicates that the result of the lambda lifter can be piped simultaneously to
both the type checker and the optimiser and that these latter two phases can proceed in parallel
combining their results� using showModule� to produce the intermediate code which is input to the
code generator�

Lexer and
Parser

Pattern
matcher

lambda
lifter

Type
checker

Lambda
lifter Back end

OptimisermkDefs lLift

optimiseParseTree

tcModule

showModule

parseModule

Figure �	 The Pipeline Structure of Naira�s Main Phases

Sequential Time Pro�ling reveals that the phases of Naira have similar computational cost�
except for type checking� which is signi�cantly more expensive� Hence� in order to get good overall
performance� we must pay special attention to type checking�

Initial Parallel Version The �rst stage of parallelisation is to introduce a top�level pipeline
between the compilation phases� The laziness of the language is crucial here to ensure that the
output of one phase is made available incrementally to the next phase�s� so that the analyses in
the phases can proceed in parallel� Figure � shows the function� analyseModule� that implements
the top�level pipeline� The underlined portions show the only code that need to be added to ensure
the parallelisation of the top�level pipeline�
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analyseModule �leName modName imports exports symbTabs defs #
showModule modName impVals dats exports �jj

parPair parForceList parForceList �

fork �optimiseParseTree �leName exports stOpt aInfo�
tcModule �leName stTE exports tInfo syns� �jj parForceList �

lLift �leName stPM �jj parForceList �

mkDefs �leName stPM �jj parForceList � funs
where �stPM �stTE �stOpt� # symbTabs

�dats�syns�funs� # defs
�aInfo�tInfo�impVals� # imports

fork �f � g� inp # �f inp� g inp�
parForceList # parList rnf

Figure �	 analyseModule rewritten using Pipeline Strategies

A second� nested� level of parallelism is introduced by parallelising several phases of the com�
piler� namely the pattern matcher� lambda lifter and the intermediate language optimiser� These
are parallelised� generally� in a data�parallel manner by ensuring that the respective analyses in
each phase are applied to the de�nitions in a module in parallel�

The type checker is carefully parallelised because pro�ling has revealed that it is the most
expensive phase� We use a parallel name server to minimise data dependencies and thus avoid se�
quentialising the inference process� For instance� to typecheck two quantities d� and d�� we analyse
them simultaneously in the current type environment� each returning a type and a substitution
record� If a variable v common to both d� and d� is assigned �possibly di�erent� types t� and
t� from these two independent operations� t� and t� will be uni�ed in the presence of the result�
ing substitutions and the uni�ed type associated with v� Parallelism has been exploited at four
di�erent stages in the type checker	 in a data�parallel fashion when typechecking de�nitions in a
module� in typechecking local de�nitions in parallel with the top�level ones� on calls to frequently
used functions� and in typechecking aggregate expressions�

The initial parallel version of Naira has been measured compiling each of it�s 
� constituent
modules� and these results are summarised in Table �� The �rst two rows report the parallelism and
speedups obtained for the best and worst inputs� The third row is mean parallelism and speedup
obtained for all 
� modules� On an idealised machine Naira delivers satisfactory speedups for most
inputs� although there are some where it does not� Because of the idealised machine� we know
that the poor results for these modules are not an artifact of the underlying architecture�

Module�s� Avg� Par Speedup

Best �SyntaxUtils� ��� ��
�
Worst �Syntax� 
�� 
���
Mean �
� modules� ��� ����

Table �	 Idealised Simulation	 Naira

Tune for Architectures� We can now tune the parallelism in Naira for speci�c architectures�
We proceed by measuring its performance on a simulation of the target architecture� and adapting
it as required� In fact we have measured Naira on two architectures	 one SMP� the other DMP� The
simulated SMP has � processors� very low communications latency �
� cycles�� and communicates
lazily� i�e� individual data items are sent on demand� The simulated DMP also has � processors�
but a higher communications latency ��K cycles�� and is semi�eager in communication	 it sends
a block of related data on demand� As before� we measure the compilation of each of Naira�s
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modules� and report the best� worst and mean �gures in Table ������

Module�s� SMP DMP
Avg Par Speedup Avg Par Speedup

Best �TCheckUtils� ��� ���� ��� ����
Worst �Syntax� 
�� 
��� 
�� 
���
Mean �
� modules� ��� ���� ��� ����

Table �	 Realistic ��Processor Simulations	 Naira

As expected on small numbers of processors� the DMP results are� on average� slightly worse
than the SMP� However� the results are remarkably close for the two architectures� We interpret
this to mean that the grain of parallelism is su�ciently coarse to allow good performance on both
an SMP and a DMP�
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Figure �	 Absolute Speedups for Naira

Workstation Network Measurements We now have a version of Naira with satisfactory� if
modest� simulated parallelism for our target DMP architecture� We measure it on a network of
� Sun ������ workstations� running Solaris � and connected to a common Ethernet segment� and
Figure � shows the results� The maximum relative and absolute speedups of ���� and ���� are
achieved with �ve processors� The speedups are are in agreement with the relative speedup of
���
 predicted by GranSim for this architecture�
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� Related Work

In this paper� we have considered the two extremes of architecture independence� At a low level�
this is best characterised as portability	 a program that was originally written for one architecture
will compile and run without change on another� Performance� however� will usually be sub�
optimal� and is likely to be poor� good performance being achievable only through careful tuning
and rewriting of the program source� This level is characterised by portable library or system ap�
proaches such as PVM �PVM��� or MPI �MPI��� SOHW����� which we have exploited in our own
runtime system� and which others have integrated as external libraries into Haskell�e�g� �WiOD�����
A similar approach is the HPC!! language and toolkit �GBJGL��� that aims to provide natural
support for threads� synchronisation and RPC in a high�performance parallel version of C!!�
Since such approaches do not aim to support generic parallel programs� it is usually necessary for
the programmer to specify considerable detail about the intended parallel behaviour on a target
architecture�

High�level architecture independence frees a programmer from such low�level concerns� Indeed�
in the ideal case it should be possible to attain good performance on any target architecture
without source modi�cation or tuning� This is the goal that we have worked towards with GpH�
by exploiting the potential for highly implicit dynamic parallelism that exists within a purely
functional language�

Clearly� such an exacting goal may not be attainable for all programs	 there will inevitably
be situations where good parallel performance for an architecture or class of architectures will
require alternative algorithms �for example� where algorithms deliver good but non�scalable per�
formance�� and it will usually be necessary to accept a pragmatic tradeo� between portability and
performance� However� it should not be necessary to produce several specially tuned variants of a
single parallel algorithm in order to realise good performance on a variety of platforms�

This section surveys those architecture�independent systems and models that are most closely
related to GpH and GUM� The breadth of work in this area means that it is not possible to
survey all architecture�independent approaches to parallelism in a paper of this length� Skillicorn
and Talia have� however� produced a good parallel programming models �SkTa���� to which the
reader is referred for more general discussion of the issues and a much fuller coverage of the range
of approaches that have been proposed�

��� Portable Parallel Functional Language Systems

In a functional context we are aware of very few portable parallel implementations� and no other ap�
proaches where architecture�independence has been satisfactorily demonstrated� This sub�section
surveys portable implementations� the following sub�sections survey higher�level architecture�
independent approaches�

The majority of parallel functional language implementations have been produced in order
to investigate particular research issues in a speci�c parallel context� For example� the HDG�
machine �KLB�
� studied the use of independent closures and evaluation transformers in a dis�
tributed machine environment� Consequently� very few of these implementations have been been
ported to multiple platforms�

A notable exception is the Concurrent Clean variant of the Clean language �NSvEP�
�� a func�
tional language with a strong family resemblance to Haskell� Concurrent Clean extends Clean with
a large number of parallel control annotations� which can be used to control parallel computation
quite precisely� The language has been implemented on two architectures	 a transputer network�
and a distributed network of Macintosh workstations� where impressive performance results have
been obtained for the simple benchmarks that have been tried to date �PlvE��� GMS����

The Alfalfa�Buckwheat implementations of the Al� language were produced for distributed�
memory and shared�memory systems respectively �GoHu��� Gol���� These systems aimed to
support automatic program distribution through determining �optimal� granularity for parallel
tasks� Problems with communication cost and granularity meant that the earlier distributed�
memory system �Alfalfa� did not achieve this goal� The Buckwheat system did however meet the
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goal of automatic task distribution with good speedup for simple programs on the shared�memory
architecture�

Sisal �FMS���� is a �rst�order functional language based on data�ow techniques� Unlike
Haskell� it does not aim to be a general�purpose symbolic processing language� but targets numeric
processing� In this application domain� Sisal delivers exceptionally good performance� rivalling or
exceeding that of Fortran for much less programmer e�ort �Can���� Sisal has been implemented
on a variety of platforms� including the Cray T�D and the CM��� where it has proved possible
to achieve good absolute speedup without source code modi�cations� Indeed� in several cases
better speedup and performance has been achieved than could be obtained by using vectorised
Fortran �LANL�����

Finally� the implicitly parallel data�ow language Id has been ported to both the Monsoon
data�owmachine as well as more conventional CM�� and workstation networks �HCAA��� HLB����
Threads are introduced automatically in loop constructs� with automatic throttling through k�
bounded loops� Id has also formed the basis of a implicitly parallel functional language based on
Haskell� pH �NAH���� though no parallel implementations have yet been produced�

��� Architecture�independent Systems and Approaches

The primary problems that must be addressed by any architecture�independent system are	


� decomposition	 partitioning a program into parallel tasks�

�� mapping	 placing these tasks on multiple processors� and

�� scheduling	 deciding which of these tasks should be run and when�

Depending on how they tackle these fundamental problems� systems that aim to support
architecture�independence can be broadly classi�ed into	

� paradigmatic approaches�

� static approaches� and

� dynamic approaches�

����� Paradigmatic Approaches

Paradigmatic approaches simplify the problem of parallel programming by restricting the pro�
grammer to one or more pre�determined parallel paradigms� It is then possible to provide suit�
able implementations of those paradigms for a variety of architectures� One major advantage of
paradigmatic approaches is that the strong structuring they impose opens the prospect of con�
structing equally strong cost models� A second advantage is that partitioning and mapping are
often straightforward� The primary disadvantage is a lack of �exibility	 it will usually be necessary
to rewrite any existing program to exploit a particular paradigm� if this is in fact possible�

Data Parallelism� Data�parallelism is the epitome of the single�paradigm approach� and there
have been several data�parallel functional language implementations� including two based on
Haskell	 Data Parallel Haskell �Hil��� and CM�Haskell �KiOD���� Most data�parallel approaches
restrict data�parallelism to a single program level� the NESL language �Ble��� is interesting in
providing support for nested data parallelism�

While implementations of data�parallel languages have usually focussed on massively�parallel
machines with direct hardware support for data�parallelism� such as the Connection Machine�
data�parallelism can be exploited in many other architectural settings too� For example� NESL
has been implemented on the massively parallel CM��� a distributed�memory Cray Y�MP� and a
shared�memory Encore Multimax �BCH�����
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BSPSPMD� BSP �Bulk Synchronous Processing� �SHM��� can be viewed as a kind of data�
parallelism in which computation super�steps over a subset of the program are interspersed with
synchronised communication steps involving all active processors� Like other data�parallel ap�
proaches� architecture�independence is limited by the need to ensure regular� balanced compu�
tation steps� SPMD �Single Program Multiple Data� �SMTD���� extends this notion to allow
irregular communication during computation steps�

There have been some attempts to combine BSP�SPMD with functional languages �e�g� �Ser���
FoCh����� but we are not aware of any portable functional language implementations� or ones which
have demonstrated clear architecture independence�

Algorithmic Skeletons� Algorithmic skeletons �Col��� embrace single�paradigm approaches
such as the data�parallel approach and enhance them by providing the programmer with a �xed
repertoire of parallel templates �skeletons�� which can be parameterised to suit the parallel ap�
plication� Since skeletons are naturally described as higher�order functions� there is an ele�
gant and close �t with functional languages	 several authors have described functional skeletons
�e�g� �Col��� Rab��� Kes��� Bra�����

While such approaches can work well for suitably structured applications� e�g� the computer
vision algorithms that have been parallelised by Michaelson et al� �MiSc���� programs whose struc�
ture does not �t the pre�de�ned skeletons will exhibit little or no parallelism� There is thus a loss
of generality compared with a more dynamic approach� such as evaluation strategies�

Work in the skeleton community is presently focussed on de�ning a common set of skeletons
that is capable of capturing all common parallel paradigms� and on relaxing the constraint that
only a single skeleton can be exploited� Success in achieving the latter goal would allow skeletons
to be composed both vertically �nesting� and horizontally �pipelining�� but would require more
sophisticated cost models to be constructed� An example is the work by Darlington et al on
SCL �DGTY���� The work on shapely types is also relevant here �JaCo���� since it o�ers the
prospect of automatically choosing suitable skeletons depending on the type of the data �JCSS����

Both of the goals outlined in the previous paragraph are attained naturally by the evaluation
strategy approach� of course� albeit at the cost of introducing dynamic overhead which can perhaps
be avoided by judicious choice of skeletons and good implementation techniques�

����� Static Approaches

Static approaches rely on compilation techniques to ensure good decomposition� mapping� and
communication patterns� Once determined� these aspects cannot be changed during program
execution� The bene�ts are low dynamic overhead and straightforward cost modelling� In the
absence of dynamic load balancing� however� a highly regular programmay be required if starvation
is to be avoided�

Caliban� Most parallel functional language systems have favoured either paradigmatic or dy�
namic approaches� One in�uential exception is Caliban�Advanced Caliban �Kel��� Tay���� which
is intended to target loosely�coupled multiprocessors�

The Caliban language adds the concept of moreover clauses to a conventional functional lan�
guage �most recently a subset of Haskell �Tay����� These clauses specify behavioural information�
While there is consequently a super�cial resemblence to a using clause� the purpose of a moreover
clause is rather to describe a static process network which can then be used to map a program
to the target architecture at compile time� Di�erent host con�gurations� including ones involving
varying numbers of processors� may require recompilation from source�

To the best of our knowledge there is as yet no complete parallel implementation of Caliban
�Cox et al� describe a partial implementation on transputers �CHKLT����� and it is consequently
moot whether it is suitable for architecture�independent programming�
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����� Dynamic Approaches

Dynamic approaches use load management techniques to ensure good parallel behaviour� The
most dynamic approaches� as used by GpH� control not only the placement of parallel tasks
but also the introduction of new tasks� The advantages of such an approach are that there is a
high degree of resilience in the face of dynamically changing system characteristics� and that the
system can be rapidly ported to new platforms� The disadvantages are that dynamic overhead
is unavoidably incurred� the runtime system may be greatly complicated by the requirements of
load management� and that it may be di�cult or impossible to construct a suitable cost model�

Coordination Languages� Like evaluation strategies� coordination approaches allow the sep�
aration of behaviour and algorithm �GeCa���� However� unlike evaluation strategies� behavioural
control is achieved by the use of a meta�language �the coordination language� into which is em�
bedded the normal algorithmic language �the computation language�� It is therefore necessary to
deal with two levels of language semantics in order to completely understand the behaviour of a
parallel program� In compensation� it should be unnecessary to de�ne a new semantics for each
new binding of coordination language to computation language	 the combination of the coordina�
tion language semantics with the computation language semantics should give a precise de�nition
of parallel program behaviour�

The coordination language approach is typi�ed by Linda �GeCa��� or PCN �FoTa���� Linda
uses a shared tuple space to express communication between sequential processes written in the
computation language� whereas PCN uses three composition operators to link pairs of communi�
cation ports sequentially� in parallel� or through choice�

While the computation language is usually an imperative one such as C� there appears to be
no intrinsic reason why it should be impossible to construct� for example� a Linda binding for
Haskell	 Haskell�Linda� The implementation requirements for Haskell�Linda would be similar to
those for Concurrent Haskell �PGF���� which uses monads �Wad��� to ensure safe execution of
concurrent Haskell threads using explicit communication�

In the functional community� a similar approach has been adopted by the Eden language� which
Haskell with an explicit coordination language supporting process abstractions and communication
channels �BLOMP���� Each process has its own independent address space� Internally� a process
may be multi�threaded in order to produce multiple output streams� each of which is connected to
a di�erent communication channel� Implementation is proceeding by modifying GHC and GUM
to incorporate the necessary language and runtime system extensions�

A related development is Chakravarty et al��s GOFFIN system �CGKL���� This extends Haskell
with a constraint�logic language whose purpose to control process creation and placement� and
which like Eden possesses a formal operational semantics� Although there are no parallel imple�
mentations of GOFFIN� it may be possible to extend an existing parallel Haskell compiler with
the necessary coordination mechanism� as for Eden�

Para�Functional Approaches� Para�functional approaches extend a functional language with
control annotations to support dynamic placement and distribution �Hud���� Communication is�
however� implicit� as in the evaluation strategy approach� The para�functional approach thus
inverts the coordination language approach by incorporating the coordination language into the
computation language rather than vice�versa� The result is a more tightly coupled dynamic se�
mantics than can be obtained with a coordination language approach�

The earliest para�functional languages incorporated a separate annotation language �e�g� �Hud���
Hud�
� Sch���� but Mirani and Hudak�s �rst�class�schedules �MiHu��� use monads to attach sched�
ules to expressions� This allows schedules to be constructed as normal functional language expres�
sions of type Schedule� and permits the use of standard higher�order functions etc�

Compared with evaluation strategies� the para�functional approach allows �ner control	 it is
possible to express dynamic process networks for example� or to de�ne schedules that include
explicit task synchronisation� However� the lower level of control means that more detail must
be speci�ed� and the scope for architecture independent computation is thus reduced� It is also
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necessary to provide a full operational semantics for schedules� whereas evaluation strategies will
require only an operational semantics for par and seq� The latter appears to be much a much
simpler task� since it is not necessary to address issues of synchronisation� placement etc�

Dynamic Imperative Approaches� There have been several attempts to exploit multi�threading
in an imperative context� Many of these have used C or C!! as a base language�

CId �Nik��� exploits ideas from the Id data�ow language and implementation� CId is a simple
extension of C� that adds lightweight threads using explicit fork�join parallelism and globally
synchronised objects� Like GUM� CId provides work stealing� with automatic granularity control�
Unlike GUM� however� where lazy thread creation �MKH�
� allows task creation decisions to be
taken after those of task identi�cation� CId uses dynamic load indications to determine whether a
thread should be created immediately it is identi�ed� as with the Star	Dust �Ost��� architecture�
Such an approach allows cheap task creation� but runs the risk of starvation for less regular
programs� CId has been implemented on a small network of workstations� where performance
results are similar to those quoted in this paper for a range of small application programs�

ICC!! is a parallel version of C!! built on the portable Illinois Concert system �CDG���a��
which aims to support �ne�grained parallelism in an object�oriented setting� The Concert system
is available on a number of parallel platforms including the SGI Origin and the Cray T�D� Like
GUM� Concert supports a globally distributed� but implicit namespace� and incorporates dynamic
load management� It has been used to program a number of irregular parallel programs� achieving
good relative speedups of up to �� on a ���processor Cray T�D�

��� Discussion

Paradigmatic and static approaches allow parallelism to be speci�ed easily and costed accurately�
The loss of generality and in some cases performance may� however� limit architecture indepen�
dence� Dynamic approaches are extremely �exible� but inevitably carry some runtime overhead�

While it will almost certainly be necessary to invest signi�cant e�ort constructing new cost
models and tuning compilers for static approaches� our experience to date with our dynamic
runtime system is that it is highly resilient� and needs relatively little tuning to cover even very
di�erent classes of parallel architecture� let alone di�erence platforms within the same class� We
feel this is an important issue in architecture�independence� allowing rapid colonisation of new
parallel architectures and fast ports to future systems�

Clearly it is both possible and desirable to combine static and dynamic techniques in order
to obtain the bene�ts of both approaches� We are working on a cost model for one such hybrid
model �Loi���� The problem is rendered more complicated in our setting by the use of lazy
evaluation� which makes it di�cult to de�ne tight bounds on cost formulae� Initial results suggest�
however� that it should be possible to construct a system that is su�ciently accurate to provide
useful granularity information to a dynamic runtime system�

� Conclusion

	�� Summary

We have investigated the architecture�independence of a pure functional language with dynamic
and mainly�implicit parallelism� We have investigated the low�level architecture independence of
the GUM runtime system by measuring its e�ciency and e�ectiveness across a range of parallel
platforms� We have seen how GpH�s deterministic parallelism allows the systematic development
of large programs for multiple architectures� and followed the development of two real programs
for � architectures� We have seen that evaluation strategies isolate the algorithm from parallel
coordination� making both easier to adapt for a new architecture�
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	�� Future Work

We intend to improve and extend the GUM runtime system� and to port it to new platforms�
Many aspects of GUM could be improved� including the work�stealing algorithm and the message�
processing as suggested by measurements in �LoHa���� There are a number of obvious extensions
to GUM� e�g� to introduce thread migration� i�e� the relocation of a running thread from one
processor to another� A number of GUM ports are under way or planned� including to a Fujitsu
AP
���� a Fujitsu AP����� and a Beowulf�class system�

In the longer�term� we would like to develop a language in which the parallelism is even more
implicit than in GpH� One means of doing so would be to automatically insert strategies into a
program� guided by static analyses of the program text� Strictness analysis �AbHa��� indicates
when it is safe to introduce parallelism� and granularity analysis �Loi��� indicates when it is worth�
while to do so� The automatic insertion of strategies could be parameterised by characteristics of
the target architecture to produce a program suitable for that architecture�
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Appendix A� Source of Parfact

The following is the GpH source code for the simple test program measured in section ����

�� parfact	

�� parallel version of a factorial�like function �i�e� divide�and�conquer�

��

�����������������������������������������������������������������������������

module Main�main� where

import Parallel

pfc 		 Int �� Int �� Int �� Int

pfc x y c

� y � x � c � f� �par�

�f� �seq� �f��f���

� x �� y � x

� otherwise � pf x m � pf �m��� y

where

m � �x�y� �div� �

f� � pfc x m c

f� � pfc �m��� y c

pf 		 Int �� Int �� Int

pf x y

� x � y � pf x m � pf �m��� y

� otherwise � x

where

m � �x�y� �div� �

parfact x c � pfc � x c

main

� let x � �������

c � ����

in

appendChan stdout

�show �parfact x c��

exit done

��


