
Naira� A Parallel� Haskell Compiler

Sahalu Junaidu Tony Davie Kevin Hammond

Division of Computer Science� University of St� Andrews

fsahl�ad�khg�dcs�st�and�ac�uk

Abstract

Naira is a compiler for a parallel dialect of Haskell� compiling to a data�ow�inspired parallel

abstract machine� Unusually �perhaps even uniquely�� Naira has itself been parallelised

using state�of�the�art tools developed at Glasgow and St Andrews� This paper reports initial

performance results that have been obtained using the GranSim simulator� both for the top�

level pipeline and for individual compilation stages� Our results show that a modest but

useful degree of parallelism can be achieved even for a distributed memory machine�

� Introduction

The Naira compiler was written to explore the problems of parallelising a modern functional

language compiler �Juna���� It compiles from a subset of Haskell �HPW��� to a RISC�like target

language that has been extended with special parallel constructs �Osth���� The front end of the

compiler comprises about �K lines of Haskell code organised in 	
 modules�

This paper explores the process of parallelising this compiler using state�of�the�art pro�ling tools

that were developed at Glasgow and St Andrews �HLP���� Our initial results are promising�

indicating that acceptable speedups can be achieved within individual compiler passes� notably

the type inference pass� There is� however� a sequential nub caused by �le IO and parsing

which limits the overall speedup that can be obtained�

The rest of this paper is structured as follows� Section � describes our general approach to par�

allelising the compiler� giving performance results for both the top�level pipeline and individual

compilation passes� Section � describes related work� Finally Section � concludes�

��	

Analysis Pattern
matcher

lambda
lifter

Type
checker

Lambda
lifter Back end

Optimiser

Figure 	� The Structure of the Top�Level Pipeline

analThisMod �leNm stPM stTE stCG exptNames name impVals

aTree tTree dats syns combs locals � result

where

defs � mkDefs �leNm stPM combs

liftedDefs � lLift �leNm stPM defs

typeList � tcModule �leNm stTE exptNames tTree syns liftedDefs

intLang � optimiseParseTree �leNm exptNames stCG aTree liftedDefs

result � showModule name impVals dats exptNames �intLang � typeList�

strat res � parList rnf combs �par �

parList rnf defs �par �

parList rnf liftedDefs �par �

parList rnf typeList �par �

parList rnf intLang �par �

��

Figure �� The Top�Level Compiler Function� analyseModule

� Parallelisation

We use a top�down parallelisation methodolody� as outlined in �THLP�
�� starting with the

top�level pipeline� then proceeding to parallelise successive pipeline stages� We concentrate on

parallelising the four main compiler passes � the pattern matcher� lambda lifter� type checker�

and the optimiser� These passes are parallelised in a data�oriented fashion by annotating the

intermediate data structures used to communicate results between the passes� We have exper�

imented with two common data structures for these intermediate structures� lists and binary

trees�

���

��� Unique Name Servers

Data dependency can be a signi�cant hindrance to exploiting parallelism e�ectively� In Naira�

unique name servers are used to help break data dependencies and so expose additional paral�

lelism� Our early experiences with some name supply mechanisms suggest that a simple name

server similar to that of Hancock �Peyt
�� is acceptable� and more complex name servers such

as those described by Augustsson et al� �ARS��� are not needed�

��� The Top�Level Pipeline

The overall top�level pipeline structure of the compiler is as depicted in Figure 	� The �rst�

analysis pass consists of the lexical analyser and the parser� The next four passes implement

the pattern matching compiler� the lambda lifter� the type checker and the intermediate lan�

guage optimiser respectively� The detailed organisation and implementation of these passes are

described elsewhere �Juna����

Each compiler pass operates on an intermediate parse�tree which is modi�ed to produce the

input to the next compiler pass� The outputs of the type�checker and optimiser passes are

merged within the �nal back�end pass� The pipeline is parallelised by de�ning data�oriented

evaluation strategies �THLP�
� on these intermediate structures� Choosing the correct strategy

turns out to be surprisingly subtle� since we need to avoid introducing excessive speculative

evaluation� with its consequent negative e�ect on performance�

Figure � shows the function� analyseModule� that implements this top�level pipeline� It is called

immediately following symbol table construction� and passes its arguments to each compiler pass

as appropriate� The evaluation strategy strat sparks �ve parallel tasks� one for each of the

pipeline phases shown in Figure 	� One disadvantage of using strategies in this form �through

the using combinator� is that every intermediate value must be named� To avoid this� we

can use two binary combinators� ��j� and ��jj�� for sequential and parallel function application�

respectively �THLP�
�� The second argument in each case is a strategy to be applied respectively

before� or in parallel with� the function application�

Using these combinators� the code for analyseModule can be written more concisely� but perhaps

less intuitively� as in Figure ��

In order to evaluate the compiler� we experimented with two di�erent machine con�gurations� a

���

analyseModule �leNm stPM stTE stOpt exptNames name impVals

aInfo tInfo dats syns combs �

showModule name impVals dats exptNames � jj

parPair �parList rnf � �parList rnf � �

fork �optimiseParseTree �leNm exptNames stOpt aInfo�

tcModule �leNm stTE exptNames tInfo syns� � jj

parList rnf �

lLift �leNm stPM � jj parList rnf �

mkDefs �leNm stPM � jj parList rnf �

combs

fork �f � g� inp � �f inp� g inp�

Figure �� analyseModule rewritten using Pipeline Strategies

Module Avg� Speedup

Par�

MyPrelude ��� ����� ��
� ����	�

DataTypes ��� ����� ��	� ������

PrintUtils 	�� �	��� 	��� �	����

Printer ��	 �	��� ���
 �	����

Tables ��� ����� ���� ������

LexUtils ��� �	��� ���� �	�
��

Lexer 	�� �	��� 	��� �	����

SyntaxUtils ��� ���	� ���	 ������

Syntax 	�� �	��� 	��� �	����

Module Avg� Speedup

Par�

MatchUtils ��� ����� ���� ������

Matcher ��� ���	� ���
 ������

LambdaUtils ��	 ����� 	��
 �	�
��

LambdaLift ��� ���	� ���� ������

TCheckUtils ��� ����� ���� ���	��

TChecker 	�
 �	�
� 	��� �	����

OptmiseUtils 	�� �	��� 	��
 �	����

Optimiser 	�	 �	�	� 	��� �	����

Main 	�� �	��� 	��� �	����

Table 	� Top�level Pipeline� Speedup and Parallelism

low�latency shared�memory con�guration� and a medium�latency distributed memory con�gu�

ration �Juna���� Both con�gurations were for ���processor machines� Our test input comprised

the 	
 source modules for the Naira compiler itself�

Our experiments reveal that as well as being less concise� the original version of analyseModule

is also less e�cient than the new version� For our 	
 sample input modules� we found that the

second version was up to ��� more e�cient than the �rst� There were� however� two cases where

���

front MyPrelude.hs +RTS -H45M -Z -F2s -bP -bp:

running runnable blocked
0 8017630 16035260 24052890 32070520 40088152 48105784 56123416 64141048 72158680

ta
sk

s 80

72

64

56

48

40

32

24

16

8

0

Average Parallelism = 4.2

Runtime = 80176300

GrAnSim

Figure �� Top�Level Pipeline compiling myPrelude �Distributed Memory Machine�

the version using ��jj� was inferior� Overall speedup relative to the sequential case ranges from

	��� to ��	� �mean� ���	� for the shared�memory con�guration� or 	��� to ��	� �mean� 	����

for the distributed memory con�guration� In cases the shared�memory con�guration yields

marginally greater speedup than its distributed�memory counterpart� The full set of results for

all 	
 modules is given in Table 	 �shared�memory results are shown in�line� distributed�memory

results are parenthesised��

Compared with experimental results that have been previously achieved �THL���� THLP�
��

these results are quite encouraging� These earlier studies achieved average parallelism of 	�� on a

database�type problem �THL���� and about ��� on the Lolita natural language parser �THLP�
�

at the same top�level parallelisation stage�

We now consider how to parallelise each compiler pass� Each of subsections ������� considers a

single pass� Section ��� considers the overall e�ect of combining all the passes�

��� The Pattern Matching Compiler

The pattern matching compiler transforms function de�nitions that use equational patterns

into equivalent ones involving case expressions with simple variable patterns�� as described by

���

mkDefs �leNm env � � � � �

mkDefs �leNm env l �

mkAppend � jj parPair �parList rnf ��parList rnf � �

fork� �checkAdjDefs �leNm env �

mkDefs �leNm env� � jj parPair �parList rnf ��parList rnf � �

partition �sameDef �head l�� � jj parList rwhnf � l

Figure �� The Pattern Matching Compiler� mkDefs

lLift �leNm stPM defs �

id � jj parList rnf �

lifter�triplet� � jj

parTriple �parList rnf ��parList rnf ��parList rnf � �

scopeAnalysis �leNm stPM � � � � initNS 	 � jj parList rnf � defs

Figure �� The Lambda Lifter� lLift

Peyton Jones �Peyt
��� This transformation is primarily performed for e�ciency purposes�

Once the de�nitions within a module have been parsed� the pattern matching transformation

can be applied to each of these de�nition independently� The pattern matching compiler is

implemented using the function mkDefs �Figure ��� whose arguments are the �le name� a pattern

matching symbol table and the list of de�nitions output from the parser�

This de�nition of mkDefs provides an initial top�level parallelisation in which the analysis of

each binding proceeds in parallel with that of the others� In order to provide additional �ner�

grained parallelism� we have tried three further parallelisation steps� compiling local pattern

de�nitions in parallel with their top�level parents� parallelising heavily used auxiliary functions

and changing the parse tree representation to be a list rather than a binary tree� None of these

made any signi�cant di�erence to the overall performance� based on our 	
 input modules�

��� The Lambda Lifter

The lambda lifter is fairly conventional� comprising a scope analyser� a renamer� a dependency

analyser� and the �nal lifting operation� As usual� this transformation is relevant only for

�mutually� recursive top level bindings and for function de�nitions which have local de�nitions�

���

tcModule �leNm env exptNames tyList syns defs �

tyList �� topDefsTypes

where

�ns� �ns� � � split initNS

tIds � map defId defs

auxEnv � mkTypeVars tIds ns�

topDefsTypes �

tcTopDefs �leNm env auxEnv exptNames initSubs ns� syns defs

Figure �� The Type Checker� tcModule

The two main functions� scopeAnalysis and lifter� which collectively perform the bulk of

the computation in the lambda lifting process are combined into a two�stage pipeline� The

�rst stage performs scope analysis� also incorporating the renamer and dependency analyser�

The second stage �lifter� computes the transitive closure of each function�s free variables and

performs appropriate substitutions� Parallelising this pipeline leads to a modest performance

improvement� average parallelism improves to 	�	 overall for eight of our input modules with

consequent modest speedup�

Because the renamer simply associates an identi�er with a small integer� and since only lo�

cally de�ned identi�ers are renamed �the parser would have reported any name clashes amongst

top level identi�ers�� it performs very little work� and is thus not suitable for parallelisation�

Although� in comparison� the dependency analyser performs a relatively large amount of com�

putation� since it is based on sequential graph algorithms� unfortunately it cannot be easily

parallelised�

In the second pipeline stage� the lambda lifter collects free variables� forms and solves equa�

tions �John
�� in order to determine the complete set of free variables for each function� It

transpires that for our sample programs� this is not an expensive process� since each local bind�

ing contains very few local de�nitions� and so it is not worth parallelising� This is a consequence

of separating the source de�nitions into minimal dependency groups in order to aid type check�

ing �Peyt
���

We conclude that� as for the pattern matching compiler� there is minimal scope for parallelisation

within this compiler pass�

���

Module Avg� Speedup

Par�

MyPrelude �� ����� �� ������

DataTypes �� ����� �� ����	�

PrintUtils �� �	��� �� �	����

Printer �� ����� �� ����	�

Tables �� ����� �� ������

LexUtils �� ����� �� ������

Lexer �� �	��� �� �	����

SyntaxUtils �� ����� �� ���	��

Syntax �� �	��� �� �	����

Module Avg� Speedup

Par�

MatchUtils �� ����� �� ������

Matcher �� ���	� �� ������

LambdaUtils �� �	��� �� �	����

LambdaLift �� ����� �� ���	��

TCheckUtils �� ����� �� ���	��

TChecker �� �	�
� �� �	��	�

OptimiseUtils �� �	��� �� �	�	��

Optimiser �� �	��� �� �	����

Main �� �	��� �� �	��	�

Table �� Type Checker �Initial Parallelisation�� Speedup and Parallelism for Distributed Memory

��� The Type Checker

Cost�centre pro�ling �SaPe��� reveals that� as is often the case� the type checker is the most

expensive part of the compiler� both in terms of space usage and runtime� In fact it is more

expensive than all the other compiler passes put together� This is largely because the type

checking process incorporates complex sub�algorithms such as uni�cation� The e�ectiveness of

our overall parallelisation therefore depends signi�cantly on how much useful parallelism can be

extracted from the type checker�

The function tcModule �Figure �� is used to implement the type inference algorithm for a

collection of de�nitions in a module� The �rst three arguments to this function are the �le

name� the type environment and a list of exported values� The �nal arguments contain the

types of imported values� a list of type synonyms and the list of de�nitions in the module�

As in standard polymorphic type checking algorithms� tcModule initially associates each bound

name with an assumed type creating an auxiliary environment� auxEnv� These assumed types

usually become specialised as uni�cations and substitutions are performed� Inferred types

are also checked against user�declared type signatures in accordance with the usual Haskell

rules �HPW����

The type checker can be parallelised using a parallel name server and by distributing substitu�

tions to avoid sequentialising the inference process� For intance� to type check two quantities

��

tcLocalDefs �leNm env subs ns syns � � � �� �� � ��subs�

tcLocalDefs �leNm env subs ns syns �VDef �IdPat id� args e�defs� �

�id �idsL� infTy �tysL�subs� � �using � strat

where

�ns� �ns� � � split ns

�infTy �subs� � � typeCheck �leNm id �mkLam args e� env subs syns ns�

�idsL�tysL�subs� � � tcLocalDefs �leNm env subs ns� syns defs

strat res � parTriple rnf �parList rnf � rwhnf res

Figure
� Type Inference for Local De�nitions� tcLocalDefs

mkUnify syns t� t� � �subs �theTy�

where subs � unify �OK � �� �expandSynonyms syns t� ��expandSynonyms syns t� �

theTy � mkTheType subs t� t�

Figure �� Type Uni�cation� mkUnify

d� and d�� we analyse them simultaneously in the current type environment� each returning a

type and a substitution record� If a variable v common to both d� and d� is assigned �possibly

di�erent� types t� and t� from these two independent operations� t� and t� will be uni�ed in the

presence of the resulting substitutions and the uni�ed type will be associated with v�

Table � shows the average parallelism and speedup �gures that we obtain from this initial

parallelisation �due to lack of time� only distributed�memory results are available in this draft

paper�� These results reveal promising speedup� similar to those for the top�level pipeline�

There are three obvious avenues for further exploitation of parallelism� These are�

	� inside local de�nitions�

�� on calls to frequently used functions� and

�� at other expression constructs�

We will consider each of these in turn�

The �rst step is to add strategic code to the function tcLocalDefs �Figure
� so as to create

additional parallel threads to infer the types of the locally de�ned identi�ers� The strategic code

���

front MyPrelude.hs +RTS -H45M -Z -F2s -bP -bp32 -bl2000 -bG -by2 -b-M

running runnable blocked
0 8800990 17601980 26402970 35203960 44004952 52805944 61606936 70407928 79208920

ta
sk

s 78

63

56

49

42

35

28

21

14

7

0

Average Parallelism = 4.6

Runtime = 88009900

GrAnSim

Figure 	�� Type Checking myPrelude � Step � �Distributed Memory Machine�

parTriple rnf �parList rnf� rwhnf res ensures the creation of parallel tasks for res� the

result of tcLocalDefs� This modi�cation leads to a modest increase in parallel activity� but no

signi�cant increase in speedup �Juna����

In the second step� we introduce parallelism in the uni�cation algorithm� It is clear that type uni�

�cation is one of the most costly operations during type inference� and so should yield signi�cant

parallelism� Figure � shows the sequential uni�cation algorithm� The function expandSynonyms

ensures that type synonyms within the types being uni�ed are replaced before uni�cation pro�

ceeds� while mkTheType obtains the uni�ed type on successful uni�cation or generates an error

message on uni�cation failure� We introduce parallelism here by sparking a child task to carry

out uni�cation on sub�trees� by applying the strategic code below to each call of mkUnify inside

the type checker�

Figure 	� shows the activity pro�le that results when compiling MyPrelude using this setup�

Overall performance is slightly improved compared with the �rst parallelisation step� In the

third and �nal step� we compose substitutions in parallel as for mkUnify� This is important

since substitutions are composed very frequently in the Naira compiler� The corresponding

speedup results are shown in Table �� Overall speedups range from 	�		 to ���� �mean� �����

for our shared�memory con�guration� ���� to ���� �mean� ����� for the distributed�memory

con�guration� It is not clear why the Optimiser module yields a slow�down for the distributed�

���

Module Avg� Speedup

Par�

MyPrelude ��� ���	� ���� ������

DataTypes ��	 ����� ���� ������

PrintUtils ��� �	��� 	��
 �	����

Printer ��� ���	� ��	� �	����

Tables ��� ���	� ���
 ����	�

LexUtils ��	 ����� ��
� ������

Lexer ��� ����� 	��� �	����

SyntaxUtils ��� ����� ���� ���	��

Syntax 	�� �	�
� 	��� �	����

Module Avg� Speedup

Par�

MatchUtils ��� ����� ���� ���	��

Matcher ��
 ���	� ���� �	����

LambdaUtils ��� ����� ���	 �	�
��

LambdaLift ��� ���
� ���� ������

TCheckUtils ��	 ����� ���� ����
�

TChecker ��� ����� 	��� �	����

OptimiseUtils ��� ����� 	��� �	��	�

Optimiser 	�� ����� 	�		 ������

Main ��� ����� 	��� �	��	�

Table �� Type Checker �Final Parallelisation�� Speedup and Parallelism

memory machine� but communications costs presumably dominate this particular computation�

��� The Optimiser

The optimisation pass specialises general function applications �using arity information to short�

circuit argument satisfaction checks �Peyt���� and transforms case�expressions to a simpli�ed

form better suited for code generation�

One task is created to collect arity information for the module in parallel with optimising the

module �producerconsumer parallelism�� Since once arity information is available there are no

data dependencies between the de�ntions� all parse tree simplications can then be performed in

parallel�

Once again� it transpires that this compiler pass is not computationally intensive� and so there

is little advantage to the parallelisation process� Indeed� the resulting activity pro�les are very

similar to those for the pattern matcher and lambda lifter �Sections ��� and �����

��	

Module Avg� Speedup

Par�

MyPrelude ��� ����� ���� ���

�

DataTypes
�� �
�	� ���� ����
�

PrintUtils ��� ����� 	��� �	����

Printer ��� ����� ��	
 ���	��

Tables ��	 ����� ���� ������

LexUtils 	��	 ����� ��

 ����
�

Lexer ��� ����� 	��	 �	��
�

SyntaxUtils ��� ����� ���� �	�
��

Syntax ��� ����� 	��� �	����

Module Avg� Speedup

Par�

MatchUtils ��� ����� ���� ������

Matcher ��� ����� ���� ����	�

LambdaUtils ��� ����� ���� ������

LambdaLift ��� ����� ���� ������

TCheckUtils ��� ����� ��
� ������

TChecker ��� ���
� ��	
 �	����

OptimiseUtils ��� ����� 	��� �	����

Optimiser ��� ����� 	�	� �	��
�

Main ��� ���	� 	��� �	��	�

Table �� Overall Parallelisation

��� Overall Parallelisation

In the preceding sections we have shown how to parallelise the top�level pipeline and our four

main compiler passes� In this section we consider the e�ect of combining all our parallel opti�

misations�

Table � shows the results that are obtained when all our parallelisations were used� Com�

pared with the results of Table �� we observe that there is some interference between individual

parallelisations� and so the overall performance is not as high as might be predicted� Overall

speedups range from 	�	� to ���� �mean� ����� for the shared�memory con�guration� or 	��

to ���
 �mean� ����� for the distributed�memory con�guration when all parallelisation code is

enabled� This represents a slight improvement over simply parallelising the top�level pipeline�

Once again performance is not signi�cantly degraded for the distributed�memory con�guration�

� Related Work

While there have been many successful attempts to produce parallelising compilers for pure

functional languages �e�g� �THM���� NSvEP�	� Sked�	��� we know of no similar attempt to

parallelise a complete working compiler� There have� however� been a few attempts to consider

individual compiler stages� For example� Hammond has described a parallel type inference

���

algorithm based on using monads to exploit parallelism within type graphs at a �ner granularity

than that described here �Hamm����

� Conclusions and Further Work

Using the GranSim simulator� we have demonstrated that speedup can be achieved within a

functional language compiler� even in the relatively harsh environment of a distributed mem�

ory machine� As expected� the overall speedup we have achieved so far is useful rather than

dramatic� Unusually� the speedups achieved for the shared�memory con�guration are not sig�

ni�cantly greater than for the distributed�memory con�guration� While this may re�ect a good

parallel decomposition with low communication overheads� it may also indicate that hard data

dependencies �probably within the top�level pipeline� comprise a major limitation on the overall

parallel potential of the problem� This would repay further investigation�

Clearly the most important parallelisation step from the results we have obtained so far is

the parallelisation of the top�level pipeline� While we had hoped to achieve better results from

parallelising individual compiler passes �and may still do so with further e�ort�� this does support

the contention that it is possible to achieve modest performance improvement for modest e�ort�

Of the individual compiler passes� the type checker was clearly the most productive from a paral�

lel perspective� yielding performance equivalent to that obtained from parallelising the top�level

pipeline in isolation� This is because its cost dominates that of the overall compilation process�

Other passes are relatively cheap� and therefore give less overall improvement� Unfortunately� it

has so far proved impossible to combine the speedup obtained from the type�checker with that

obtained from the top�level pipeline�

Careful study of the parallelism pro�les reveals that �le IO and parsing accounts for a signi�cant

part of the remaining sequential component to the computation �and therefore by Amdahl�s law

represents a major limitation on further optimisation�� Parallelising IO can be quite di�cult�

and is probably beyond the scope of the work reported here�

Our experiences with parallelising individual compiler passes has shown that even with the tools

available it is quite hard to understand and predict the performance of the compiler� Small

changes in the parallelisation code can also lead to signi�cant changes in parallel behaviour for

some inputs� Clearly� there is a need for even better parallel performance monitoring tools�

Parallel cost�centre pro�ling may be a step in this direction �HHLT����

���

We note that Naira is an experimental compiler rather than a state�of�the�art optimised compiler

like the Glasgow Haskell compiler� While it would be interesting to start from the basis of a

compiler such as this� and our results would naturally be more directly useful to a number of real

users� the fact that GHC is already highly optimised for sequential compilation inevitably makes

it a much harder proposition than Naira to parallelise successfully� We hope that the directions

we have explored will help focus any available parallelisation e�ort in production compilers such

as this�

It remains for us to investigate further to determine whether our performance results can be

easily improved upon� and to demonstrate similar speedups in a real system rather than a

simulation�

References

�ARS��� L Augustsson� M Rittri and D Synek� On Generating Unique Names!� Journal of

Functional Programming� ��	�� pp�		��	��� January� 	����

�HHLT��� K Hammond� CV Hall� H�W Loidl and PW Trinder� Parallel Cost Centre Pro�l�

ing!� In ���� Glasgow Workshop on Functional Programming� Ullapool� Scotland�

September 	����

�HLP��� K Hammond� H�W Loidl and AS Partridge� Visualising Granularity in Parallel

Programs� A Graphical Winnowing System for Haskell!� In HPFC��	
Conf� on

High Performance Functional Computing� pp� ��
���	� Denver� CO� April 	��	��

	����

�HPW��� P Hudak� SL Peyton Jones� and PL Wadler �eds��� Report on the Programming

Language Haskell Version 	��!� ACM SIGPLAN Notices ������ May 	����

�Hamm��� K Hammond� E�cient Type Inference Using Monads!� In Draft Proceedings� ����

Glasgow FP Workshop� Ullapool� Scotland� August 	����

�John
�� T Johnsson� Compiling Lazy Functional Languages� Ph�D� Thesis� Department of

Computer Science� Chalmers University of Technology� G oteborg� Sweden� 	�
��

�Juna��� S Junaidu A Parallel Functional Language Compiler for Message Passing Multi�

computers� Forthcoming PhD thesis� School of Mathematical and Computational

Sciences� St Andrews University� Scotland� 	����

���

�NSvEP�	� EGJMH N"ocker� JEW Smetsers� MCJD van Eekelen and MJ Plasmeijer� Concur�

rent Clean!� In Proc� PARLE ���� Springer�Verlag LNCS ���� pp� �����	��

�Osth��� G Ostheimer� Parallel Functional Programming for Message Passing Multiproces�

sors� PhD Thesis� Department of Mathematical and Computational Sciences� St�

Andrews University� Scotland� 	����

�Peyt
�� SL Peyton Jones� The Implementation of Functional Programming Languages� Pren�

tice Hall International� 	�
��

�Peyt��� SL Peyton Jones� Implementing Functional Languages on Stock Hardware� the

Spineless Tagless G�machine!� Journal of Functional Programming� ����� pp� 	���

���� 	����

�SaPe��� PM Sansom and SL Peyton Jones� Time and Space Pro�ling for Non�strict Higher

Order Functional Languages!� In Proc� ��nd ACM Symposium on Principles of

Programming Languages� San Francisco� Carlifornia� January 	����

�Sked�	� S Skedzielewski� Sisal!� In Parallel Functional Languages and Compilers� Frontier

Series� ACM Press� New York 	��	�

�THL���� PW Trinder� K Hammond� H�W Loidl� SL Peyton Jones� and J Wu� A Case Study

of Data�intensive Programs in Parallel Haskell!� In Proc� ��� Glasgow Workshop

on Functional Programming ���� Ullapool� Scotland� July
�	��

�THM���� PW Trinder� K Hammond� JS Mattson Jr�� AS Partridge and SL Peyton Jones�

 GUM� A Portable Parallel Implementation of Haskell!� In PLDI ��
 Program�

ming Languages Design and Implementation� pp� �
�

� Philadelphia� PA� May 	����

�THLP�
� PW Trinder� K Hammond� HW Loidl and SL Peyton Jones Algorithm � Strategy

� Parallelism!� To appear in Journal of Functional Programming� 	��
�

���

