Naira: A Parallel> Haskell Compiler

Sahalu Junaidu Tony Davie Kevin Hammond

Division of Computer Science, University of St. Andrews

{sahl,ad,kh}@dcs.st-and.ac.uk

Abstract

Naira is a compiler for a parallel dialect of Haskell, compiling to a dataflow-inspired parallel
abstract machine. Unusually (perhaps even uniquely), Naira has itself been parallelised
using state-of-the-art tools developed at Glasgow and St Andrews. This paper reports initial
performance results that have been obtained using the GranSim simulator, both for the top-
level pipeline and for individual compilation stages. Our results show that a modest but

useful degree of parallelism can be achieved even for a distributed memory machine.

1 Introduction

The Naira compiler was written to explore the problems of parallelising a modern functional
language compiler [Juna97]. It compiles from a subset of Haskell [HPW92] to a RISC-like target
language that has been extended with special parallel constructs [Osth93]. The front end of the

compiler comprises about 5K lines of Haskell code organised in 18 modules.

This paper explores the process of parallelising this compiler using state-of-the-art profiling tools
that were developed at Glasgow and St Andrews [HLP95]. Our initial results are promising,
indicating that acceptable speedups can be achieved within individual compiler passes, notably
the type inference pass. There is, however, a sequential nub caused by file I/O and parsing

which limits the overall speedup that can be obtained.

The rest of this paper is structured as follows. Section 2 describes our general approach to par-
allelising the compiler, giving performance results for both the top-level pipeline and individual

compilation passes. Section 3 describes related work. Finally Section 4 concludes.

451

hecke
Pattern Lambda

Figure 1: The Structure of the Top-Level Pipeline

analThisMod fileNm stPM stTFE stCG exptNames name impVals
aTree tTree dats syns combs locals = result
where
defs = mkDefs fileNm stPM combs
liftedDefs = [Lift fileNm stPM defs
typeList = tcModule fileNm stTFE exptNames tTree syns liftedDefs

intLang = optimiseParseTree fileNm exptNames stCG aTree liftedDefs
result = showModule name impVals dats exptNames (intLang, typelist)
strat res = parList rnf combs ‘par’

parList rnf defs ‘par’

parList rnf liftedDefs ‘part
parList rnf typelist ‘part
parList rnf intLang ‘par’

y

Figure 2: The Top-Level Compiler Function: analyseModule

2 Parallelisation

We use a top-down parallelisation methodolody, as outlined in [THLP98], starting with the
top-level pipeline, then proceeding to parallelise successive pipeline stages. We concentrate on
parallelising the four main compiler passes — the pattern matcher, lambda lifter, type checker,
and the optimiser. These passes are parallelised in a data-oriented fashion by annotating the
intermediate data structures used to communicate results between the passes. We have exper-
imented with two common data structures for these intermediate structures: lists and binary

trees.

452

2.1 Unique Name Servers

Data dependency can be a significant hindrance to exploiting parallelism effectively. In Naira,
unique name servers are used to help break data dependencies and so expose additional paral-
lelism. Qur early experiences with some name supply mechanisms suggest that a simple name
server similar to that of Hancock [Peyt87] is acceptable, and more complex name servers such

as those described by Augustsson et al. [ARS94] are not needed.

2.2 The Top-Level Pipeline

The overall top-level pipeline structure of the compiler is as depicted in Figure 1. The first,
analysis pass consists of the lexical analyser and the parser. The next four passes implement
the pattern matching compiler, the lambda lifter, the type checker and the intermediate lan-
guage optimiser respectively. The detailed organisation and implementation of these passes are

described elsewhere [Juna97].

Each compiler pass operates on an intermediate parse-tree which is modified to produce the
input to the next compiler pass. The outputs of the type-checker and optimiser passes are
merged within the final back-end pass. The pipeline is parallelised by defining data-oriented
evaluation strategies [THLP98] on these intermediate structures. Choosing the correct strategy
turns out to be surprisingly subtle, since we need to avoid introducing excessive speculative

evaluation, with its consequent negative effect on performance.

Figure 2 shows the function, analyseModule, that implements this top-level pipeline. It is called
immediately following symbol table construction, and passes its arguments to each compiler pass
as appropriate. The evaluation strategy strat sparks five parallel tasks, one for each of the
pipeline phases shown in Figure 1. One disadvantage of using strategies in this form (through
the using combinator) is that every intermediate value must be named. To avoid this, we
can use two binary combinators, ($|) and ($]|), for sequential and parallel function application,
respectively [THLP98]. The second argument in each case is a strategy to be applied respectively

before, or in parallel with, the function application.

Using these combinators, the code for analyseModule can be written more concisely, but perhaps

less intuitively, as in Figure 3.

In order to evaluate the compiler, we experimented with two different machine configurations: a

453

analyseModule fileNm stPM stTFE stOpt exptNames name impVals
alnfo tinfo dats syns combs =
showModule name impVals dats exptNames $||
parPair (parList rnf) (parList rnf) $
fork (optimiseParseTree fileNm exptNames stOpt alnfo,
teModule fileNm stTE exptNames tinfo syns) $||
parList rnf $
ILift fileNm stPM $|| parList rnf $
mkDefs fileNm stPM $|| parList rnf $

combs

fork (f, g) inp = (f inp, g inp)

Figure 3: analyseModule rewritten using Pipeline Strategies

Module Avg. | Speedup Module Avg. | Speedup
Par Par
MyPrelude || 4.0 (3.0) | 3.85 (2.91) MatchUtils 3.4 (2.6) | 3.32 (2.55)
DataTypes || 4.3 (3.0) | 4.17 (2.90) Matcher 2.7 (2.1) | 2.58 (2.06)
PrintUtils || 1.5 (1.5) | 1.44 (1.43) | | LambdaUtils || 2.1 (2.0) | 1.98 (1.87)
Printer 2.1 (1.3) | 2.08 (1.30) | | LambdalLift | 2.4 (2.1) | 2.36 (2.07)
Tables 3.6 (2.7) | 3.49 (2.59) || | TCheckUtils | 3.5 (3.2) | 3.46 (3.19)
LexUtils 2.9 (1.9) | 2.79 (1.83) || | TChecker 1.8 (1.8) | 1.76 (1.75)
Lexer 1.6 (1.5) | 1.50 (1.45) OptmiseUtils || 1.5 (1.4) | 1.48 (1.43)
SyntaxUtils || 3.2 (2.1) | 3.21 (2.09) Optimiser 1.1 (1.1) | 1.07 (1.06)
Syntax 1.3 (1.3) | 1.24 (1.23) || | Main 1.7 (1.7) | 1.64 (1.63)

Table 1: Top-level Pipeline: Speedup and Parallelism

low-latency shared-memory configuration, and a medium-latency distributed memory configu-
ration [Juna97]. Both configurations were for 32-processor machines. Our test input comprised

the 18 source modules for the Naira compiler itself.

Our experiments reveal that as well as being less concise, the original version of analyseModule
is also less efficient than the new version. For our 18 sample input modules, we found that the

second version was up to 20% more efficient than the first. There were, however, two cases where

454

[GrAnSim front MyPrelude.hs +RTS -H45M -Z -F2s -bP -bp: Average Parallelism = 442]
80

tasks

72

64

56 |

48 |

40

32

24

16 |

8

0
8017630 16035260 24052890 32070520 40088152 48105784 56123416 64141048 72158680

(W running O runnable M blocked Runtime = 80176300 |

Figure 4: Top-Level Pipeline compiling myPrelude (Distributed Memory Machine)

the version using ($||) was inferior. Overall speedup relative to the sequential case ranges from
1.07 to 4.17 (mean: 2.41) for the shared-memory configuration, or 1.06 to 3.19 (mean: 1.96)
for the distributed memory configuration. In cases the shared-memory configuration yields
marginally greater speedup than its distributed-memory counterpart. The full set of results for
all 18 modules is given in Table 1 (shared-memory results are shown in-line, distributed-memory

results are parenthesised).

Compared with experimental results that have been previously achieved [THLY96, THLP9S],
these results are quite encouraging. These earlier studies achieved average parallelism of 1.2 on a
database-type problem [THLT96] and about 2.5 on the Lolita natural language parser [THLP9S]

at the same top-level parallelisation stage.

We now consider how to parallelise each compiler pass. Each of subsections 2.3-2.6 considers a

single pass. Section 2.7 considers the overall effect of combining all the passes.

2.3 The Pattern Matching Compiler

The pattern matching compiler transforms function definitions that use equational patterns

into equivalent ones involving case expressions with simple variable patterns., as described by

455

mkDefs fileNm env [] = []
mkDefs fileNm env | =
mkAppend $|| parPair (parList rnf)(parList rnf) $
fork2 (checkAdjDefs fileNm env,
mkDefs fileNm env) $|| parPair (parList rnf)(parList rnf) $
partition (sameDef (head 1)) $|| parList rwhnf $ 1

Figure 5: The Pattern Matching Compiler: mkDefs

[Lift fileNm stPM defs =
id $|| parList rnf $
lifter.triplet1 $||
parTriple (parList rnf)(parList rnf)(parList rnf) §
scopeAnalysis fileNm stPM [] [] initNS 1 $|| parList rnf $ defs

Figure 6: The Lambda Lifter: 1Lift

Peyton Jones [Peyt87]. This transformation is primarily performed for efficiency purposes.

Once the definitions within a module have been parsed, the pattern matching transformation
can be applied to each of these definition independently. The pattern matching compiler is
implemented using the function mkDefs (Figure 5), whose arguments are the file name, a pattern

matching symbol table and the list of definitions output from the parser.

This definition of mkDefs provides an initial top-level parallelisation in which the analysis of
each binding proceeds in parallel with that of the others. In order to provide additional finer-
grained parallelism, we have tried three further parallelisation steps: compiling local pattern
definitions in parallel with their top-level parents; parallelising heavily used auxiliary functions
and changing the parse tree representation to be a list rather than a binary tree. None of these

made any significant difference to the overall performance, based on our 18 input modules.

2.4 The Lambda Lifter

The lambda lifter is fairly conventional, comprising a scope analyser, a renamer, a dependency
analyser, and the final lifting operation. As usual, this transformation is relevant only for

(mutually) recursive top level bindings and for function definitions which have local definitions.

456

tcModule fileNm env exptNames tyList syns defs =
tyList H topDefsTypes

where

(ns0,nst) = split initNS

tlds = map defld defs
auxFnv = mkTypeVars tlds ns0
topDefsTypes =

tcTopDefs fileNm env auzEnv exptNames initSubs nsl syns defs

Figure 7: The Type Checker: tcModule

The two main functions, scopeAnalysis and lifter, which collectively perform the bulk of
the computation in the lambda lifting process are combined into a two-stage pipeline. The
first stage performs scope analysis, also incorporating the renamer and dependency analyser.
The second stage (1ifter) computes the transitive closure of each function’s free variables and
performs appropriate substitutions. Parallelising this pipeline leads to a modest performance
improvement: average parallelism improves to 1.1 overall for eight of our input modules with

consequent modest speedup.

Because the renamer simply associates an identifier with a small integer, and since only lo-
cally defined identifiers are renamed (the parser would have reported any name clashes amongst
top level identifiers), it performs very little work, and is thus not suitable for parallelisation.
Although, in comparison, the dependency analyser performs a relatively large amount of com-
putation, since it is based on sequential graph algorithms, unfortunately it cannot be easily

parallelised.

In the second pipeline stage, the lambda lifter collects free variables, forms and solves equa-
tions [John87] in order to determine the complete set of free variables for each function. It
transpires that for our sample programs, this is not an expensive process, since each local bind-
ing contains very few local definitions, and so it is not worth parallelising. This is a consequence
of separating the source definitions into minimal dependency groups in order to aid type check-

ing [Peyt87].

We conclude that, as for the pattern matching compiler, there is minimal scope for parallelisation

within this compiler pass.

457

Module Avg. | Speedup Module Avg. | Speedup
Par Par
MyPrelude | 7?7 (3.3) | 77 (3.26) MatchUtils 77 (3.3) | 77 (3.23)
DataTypes | 77 (2.2) | 77 (2.21) Matcher 77 (2.1) | 77 (2.07)
PrintUtils 77 (1.4) | 77 (1.40) LambdaUtils || ?7 (1.7) | 7?7 (1.63)
Printer 77 (2.0) | 77 (2.01) LambdalLift 77 (2.2) | 77 (2.16)
Tables 77 (2.4) | 77 (2.33) TCheckUtils || 77 (2.2) | 7?7 (2.14)
LexUtils 77 (2.3) | 77 (2.22) TChecker 77 (1.8) | 77 (1.71)
Lexer 77 (1.5) | 77 (1.43) OptimiseUtils || 7?7 (1.2) | 7?7 (1.15)
SyntaxUtils || 77 (3.2) | 77 (3.15) Optimiser 77 (1.2) | 77 (1.23)
Syntax 77 (1.2) | 77 (1.23) Main 77 (1.6) | 77 (1.61)

Table 2: Type Checker (Initial Parallelisation): Speedup and Parallelism for Distributed Memory

2.5 The Type Checker

Cost-centre profiling [SaPe95] reveals that, as is often the case, the type checker is the most
expensive part of the compiler, both in terms of space usage and runtime. In fact it is more
expensive than all the other compiler passes put together. This is largely because the type
checking process incorporates complex sub-algorithms such as unification. The effectiveness of
our overall parallelisation therefore depends significantly on how much useful parallelism can be

extracted from the type checker.

The function tcModule (Figure 7) is used to implement the type inference algorithm for a
collection of definitions in a module. The first three arguments to this function are the file
name, the type environment and a list of exported values. The final arguments contain the

types of imported values, a list of type synonyms and the list of definitions in the module.

As in standard polymorphic type checking algorithms, tcModule initially associates each bound
name with an assumed type creating an auxiliary environment, auxEnv. These assumed types
usually become specialised as unifications and substitutions are performed. Inferred types
are also checked against user-declared type signatures in accordance with the usual Haskell

rules [HPW92].

The type checker can be parallelised using a parallel name server and by distributing substitu-

tions to avoid sequentialising the inference process. For intance, to type check two quantities

458

tcLocalDefs fileNm env subs ns syns [] = ([],[],5ubs)
tcLocalDefs fileNm env subs ns syns (VDef(IdPat id) args e:defs) =
(id:idsL, infTy:tysL,subsf) ‘using* strat

where
(ns0,nsl) = split ns
(infTy,subsl) = typeCheck fileNm id (mkLam args e) env subs syns nsl

(idsL,tysL,subs{) = tcLocalDefs fileNm env subs nsQ syns defs
strat res = parTriple rnf (parList rnf) rwhnf res

Figure 8: Type Inference for Local Definitions: tcLocalDefs

mkUnify syns t1 t2 = (subs,theTy)
where subs = unify (OK []) (expandSynonyms syns t1)(expandSynonyms syns t2)
the Ty = mkTheType subs t1 12

Figure 9: Type Unification: mkUnify

dy and djy, we analyse them simultaneously in the current type environment, each returning a
type and a substitution record. If a variable v common to both d; and d; is assigned (possibly
different) types t; and ¢; from these two independent operations, ¢; and ¢z will be unified in the

presence of the resulting substitutions and the unified type will be associated with v.

Table 2 shows the average parallelism and speedup figures that we obtain from this initial
parallelisation (due to lack of time, only distributed-memory results are available in this draft

paper). These results reveal promising speedup, similar to those for the top-level pipeline.

There are three obvious avenues for further exploitation of parallelism. These are:

1. inside local definitions;
2. on calls to frequently used functions; and

3. at other expression constructs.

We will consider each of these in turn.

The first step is to add strategic code to the function tcLocalDefs (Figure 8) so as to create
additional parallel threads to infer the types of the locally defined identifiers. The strategic code

459

[GrAnSim front MyPrelude.hs +RTS -H45M -Z -F2s -bP -bp32 -bl2000 -bG -by2 -b-M Average Parallelism = 446]
78

tasks

63

56 |

49

42

35 |

28 |

21 |

14

e

I,
11
ilh 1
8800990 17601980 26402970 35203960 44004952 52805944 61606936 70407928 79208920

(W running O runnable M blocked Runtime = 88009900 |

Figure 10: Type Checking myPrelude — Step 2 (Distributed Memory Machine)

parTriple rnf (parList rnf) rwhnf res ensures the creation of parallel tasks for res, the
result of tcLocalDefs. This modification leads to a modest increase in parallel activity, but no

significant increase in speedup [Juna97].

In the second step, we introduce parallelism in the unification algorithm. It is clear that type uni-
fication is one of the most costly operations during type inference, and so should yield significant
parallelism. Figure 9 shows the sequential unification algorithm. The function expandSynonyms
ensures that type synonyms within the types being unified are replaced before unification pro-
ceeds, while mkTheType obtains the unified type on successful unification or generates an error
message on unification failure. We introduce parallelism here by sparking a child task to carry
out unification on sub-trees, by applying the strategic code below to each call of mkUnify inside

the type checker.

Figure 10 shows the activity profile that results when compiling MyPrelude using this setup.
Overall performance is slightly improved compared with the first parallelisation step. In the
third and final step, we compose substitutions in parallel as for mkUnify. This is important
since substitutions are composed very frequently in the Naira compiler. The corresponding
speedup results are shown in Table 3. Overall speedups range from 1.11 to 4.24 (mean: 2.43)
for our shared-memory configuration; 0.75 to 2.05 (mean: 2.05) for the distributed-memory

configuration. It is not clear why the Optimiser module yields a slow-down for the distributed-

460

Module Avg. | Speedup Module Avg. | Speedup
Par Par
MyPrelude || 6.3 (6.1) | 3.70 (3.57) MatchUtils 6.4 (6.0) | 3.39 (3.17)
DataTypes || 7.1 (4.2) | 4.24 (2.55) Matcher 6.8 (5.1) | 2.64 (1.93)
PrintUtils || 2.2 (1.9) | 1.48 (1.23) || | LambdaUtils || 3.4 (3.2) | 2.01 (1.87)
Printer 3.4 (3.1) | 2.13 (1.95) || | LambdalLift || 4.2 (6.8) | 2.39 (2.06)
Tables 6.6 (5.1) | 3.58 (2.71) || | TCheckUtils || 6.1 (4.4) | 3.26 (2.58)
LexUtils 9.1 (7.3) | 2.85 (2.40) || | TChecker 2.7 (2.7) | 1.66 (1.64)
Lexer 5.2 (4.6) | 1.60 (1.40) OptimiseUtils || 2.6 (3.2) | 1.50 (1.41)
SyntaxUtils || 4.5 (4.3) | 3.26 (3.10) Optimiser 1.2 (4.5) | 1.11 (0.75)
Syntax 1.9 (1.8) | 1.26 (1.23) || | Main 5.5 (5.2) | 1.67 (1.51)

Table 3: Type Checker (Final Parallelisation): Speedup and Parallelism

memory machine, but communications costs presumably dominate this particular computation.

2.6 The Optimiser

The optimisation pass specialises general function applications (using arity information to short-
circuit argument satisfaction checks [Peyt92]) and transforms case-expressions to a simplified

form better suited for code generation.

One task is created to collect arity information for the module in parallel with optimising the
module (producer/consumer parallelism). Since once arity information is available there are no
data dependencies between the defintions, all parse tree simplications can then be performed in

parallel.

Once again, it transpires that this compiler pass is not computationally intensive, and so there
is little advantage to the parallelisation process. Indeed, the resulting activity profiles are very

similar to those for the pattern matcher and lambda lifter (Sections 2.3 and 2.4).

461

Module Avg. | Speedup Module Avg. | Speedup
Par Par
MyPrelude 7.9 (7.7) | 3.97 (3.88) MatchUtils 6.9 (4.7) | 3.43 (2.35)
DataTypes 8.3 (8.1) | 4.37 (4.28) Matcher 7.4 (7.3) | 2.63 (2.61)
PrintUtils || 2.6 (2.5) | 1.60 (1.56) || | LambdaUtils || 4.4 (4.3) | 2.40 (2.23)
Printer 3.7 (3.7) | 2.18 (2.16) || | LambdalLift || 3.4 (3.4) | 2.40 (2.37)
Tables 7.1 (7.2) | 3.56 (3.55) TCheckUtils || 5.6 (5.3) | 3.80 (3.74)
LexUtils 10.1 (9.6) | 2.88 (2.78) || | TChecker 2.9 (2.8) | 2.18 (1.57)
Lexer 5.5 (5.3) | 1.61 (1.58) OptimiseUtils || 3.5 (3.5) | 1.55 (1.49)
SyntaxUtils || 4.7 (2.7) | 3.26 (1.86) Optimiser 2.4 (2.3) | 1.12 (1.08)
Syntax 2.0 (2.0) | 1.27 (1.26) || | Main 5.5 (5.1) | 1.73 (1.51)

Table 4: Overall Parallelisation

2.7 Overall Parallelisation

In the preceding sections we have shown how to parallelise the top-level pipeline and our four
main compiler passes. In this section we consider the effect of combining all our parallel opti-

misations.

Table 4 shows the results that are obtained when all our parallelisations were used. Com-
pared with the results of Table 3, we observe that there is some interference between individual
parallelisations, and so the overall performance is not as high as might be predicted. Overall
speedups range from 1.12 to 4.37 (mean: 2.46) for the shared-memory configuration, or 1.08
to 4.28 (mean: 2.32) for the distributed-memory configuration when all parallelisation code is
enabled. This represents a slight improvement over simply parallelising the top-level pipeline.

Once again performance is not significantly degraded for the distributed-memory configuration.

3 Related Work

While there have been many successful attempts to produce parallelising compilers for pure
functional languages (e.g. [THMT96, NSvEP91, Sked91]), we know of no similar attempt to
parallelise a complete working compiler. There have, however, been a few attempts to consider

individual compiler stages. For example, Hammond has described a parallel type inference

462

algorithm based on using monads to exploit parallelism within type graphs at a finer granularity

than that described here [Hamm90].

4 Conclusions and Further Work

Using the GranSim simulator, we have demonstrated that speedup can be achieved within a
functional language compiler, even in the relatively harsh environment of a distributed mem-
ory machine. As expected, the overall speedup we have achieved so far is useful rather than
dramatic. Unusually, the speedups achieved for the shared-memory configuration are not sig-
nificantly greater than for the distributed-memory configuration. While this may reflect a good
parallel decomposition with low communication overheads, it may also indicate that hard data
dependencies (probably within the top-level pipeline) comprise a major limitation on the overall

parallel potential of the problem. This would repay further investigation.

Clearly the most important parallelisation step from the results we have obtained so far is
the parallelisation of the top-level pipeline. While we had hoped to achieve better results from
parallelising individual compiler passes (and may still do so with further effort), this does support

the contention that it is possible to achieve modest performance improvement for modest effort.

Of the individual compiler passes, the type checker was clearly the most productive from a paral-
lel perspective, yielding performance equivalent to that obtained from parallelising the top-level
pipeline in isolation. This is because its cost dominates that of the overall compilation process.
Other passes are relatively cheap, and therefore give less overall improvement. Unfortunately, it
has so far proved impossible to combine the speedup obtained from the type-checker with that

obtained from the top-level pipeline.

Careful study of the parallelism profiles reveals that file I/O and parsing accounts for a significant
part of the remaining sequential component to the computation (and therefore by Amdahl’s law
represents a major limitation on further optimisation). Parallelising [/O can be quite difficult,

and is probably beyond the scope of the work reported here.

Our experiences with parallelising individual compiler passes has shown that even with the tools
available it is quite hard to understand and predict the performance of the compiler. Small
changes in the parallelisation code can also lead to significant changes in parallel behaviour for
some inputs. Clearly, there is a need for even better parallel performance monitoring tools.

Parallel cost-centre profiling may be a step in this direction [HHLT97].

463

We note that Naira is an experimental compiler rather than a state-of-the-art optimised compiler
like the Glasgow Haskell compiler. While it would be interesting to start from the basis of a
compiler such as this, and our results would naturally be more directly useful to a number of real
users, the fact that GHC is already highly optimised for sequential compilation inevitably makes
it a much harder proposition than Naira to parallelise successfully. We hope that the directions
we have explored will help focus any available parallelisation effort in production compilers such

as this.

It remains for us to investigate further to determine whether our performance results can be
easily improved upon, and to demonstrate similar speedups in a real system rather than a

simulation.

References

[ARS94] L Augustsson, M Rittri and D Synek, “On Generating Unique Names”. Journal of
Functional Programming, 4(1), pp.117-123, January, 1994.

[HHLT97] K Hammond, CV Hall, H-W Loidl and PW Trinder, “Parallel Cost Centre Profil-
ing”. In 1997 Glasgow Workshop on Functional Programming, Ullapool, Scotland,
September 1997.

[HLP95] K Hammond, H-W Loidl and AS Partridge, “Visualising Granularity in Parallel
Programs: A Graphical Winnowing System for Haskell”. In HPFC’95—Conf. on
High Performance Functional Computing, pp. 208-221, Denver, CO, April 10-12,
1995.

[HPWO92] P Hudak, SL Peyton Jones, and PL. Wadler (eds.), “Report on the Programming
Language Haskell Version 1.27. ACM SIGPLAN Notices 27(5), May 1992.

[Hamm90] K Hammond, “Efficient Type Inference Using Monads”. In Draft Proceedings, 1990
Glasgow FP Workshop, Ullapool, Scotland, August 1990.

[John87] T Johnsson, Compiling Lazy Functional Languages. Ph.D. Thesis, Department of
Computer Science, Chalmers University of Technology, G oteborg, Sweden, 1987.

[Juna97] S Junaidu A Parallel Functional Language Compiler for Message Passing Multi-
computers. Forthcoming PhD thesis, School of Mathematical and Computational
Sciences, St Andrews University, Scotland, 1997.

464

[NSvEP91] EGJMH Nécker, JEW Smetsers, MCJD van Eekelen and MJ Plasmeijer, “Concur-

[Osth93]

[Peyt87]

[Peyt92]

[SaPe95]

[Sked91]

[THL*96]

[THM™96]

[THLPYS]

rent Clean”. In Proc. PARLF ’91, Springer-Verlag LNCS 506, pp. 202-219.

G Ostheimer, Parallel Functional Programming for Message Passing Multiproces-
sors. PhD Thesis, Department of Mathematical and Computational Sciences, St.
Andrews University, Scotland, 1993.

SL Peyton Jones, The Implementation of Functional Programming Languages. Pren-

tice Hall International, 1987.

SL Peyton Jones, “Implementing Functional Languages on Stock Hardware: the
Spineless Tagless G-machine”. Journal of Functional Programming, 2(2), pp. 127-
202, 1992.

PM Sansom and SL Peyton Jones, “Time and Space Profiling for Non-strict Higher
Order Functional Languages”. In Proc. 22nd ACM Symposium on Principles of

Programming Languages, San Francisco, Carlifornia, January 1995.

S Skedzielewski, “Sisal”. In Parallel Functional Languages and Compilers, Frontier

Series, ACM Press, New York 1991.

PW Trinder, K Hammond, H-W Loidl, SL Peyton Jones, and J Wu, “A Case Study
of Data-intensive Programs in Parallel Haskell”. In Proc. 1996 Glasgow Workshop
on Functional Programming 1996, Ullapool, Scotland, July 8-10.

PW Trinder, K Hammond, JS Mattson Jr., AS Partridge and SL. Peyton Jones,
“GUM: A Portable Parallel Implementation of Haskell”. In PLDI ’96 — Program-
ming Languages Design and Implementation, pp. 78-88, Philadelphia, PA, May 1996.

PW Trinder, K Hammond, HW Loidl and SL Peyton Jones “Algorithm + Strategy

= Parallelism”. To appear in Journal of Functional Programming, 1998.

465

