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Introduction

1. Mathematical and scientific discovery often arises from the recog-

nition of a pattern.

2. There are two main aspects of inquiry in mathematics and sci-

ence whereby new results can be discovered

• deduction, and

• induction.

3. Deduction, accepting certain statements as premises and ax-

ioms, we can deduce other statements on the basis of valid in-

ferences.

4. Induction,

• the process of discovering general laws by observation and

experimentation.

• arriving at a conjecture for a general rule by inductive rea-

soning.

• proof technique for verifying conjectures about positive inte-

gers.

The Well-Ordering Property

The validity of mathematical induction follows from the following

fundamental axiom about the set of integers.

Definition 1 A set S is well ordered if every subset has a least

element.

Note: (0, 1] is not well ordered since (0, 1] does not have a least

element.

Example: N is well ordered (under the ≤ relation)

Example: Any countably infinite set can be well ordered.

Example: The set of all positive real numbers has no least ele-

ment. For if x is any positive real number, then x/2 is a positive

real number that is less than x. However, no violation of the well-I
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ordering principle occurs because the well-ordering principle refers

only to the sets of integers and this set is not a set of integers.

Example: The set of all nonnegative integers n such that n2 < n

has no least nonnegative integer n such that n2 < n because there is

no nonnegative integer that satisfies this inequality. No violation of

the well-ordering principle occurs because the well-ordering principle

refers only to the sets that contain at least one or more elements.

Let P (x) be a predicate over a well ordered set S. The problem is to

prove ∀xP (x).

The rule of inference called The (first) principle of Mathemat-

ical Induction can sometimes be used to establish the universally

quantified assertion.

In the case that S = Z
+, the positive integers, the principle has the

following form.

P (1)

P (n) → P (n + 1)

∴ ∀xP (x)

The hypotheses are H1 : P (1) and H2 : P (n) → P (n + 1) for n

arbitrary. H1 is called The Basis Step. H2 is called The Induction

(Inductive) Step.

The Principle of Mathematical Induction

• Let P (n) be a statement which, for each positive integer n, may

either be true or false.

• To prove P (n) is true for all integers n ≥ 1, it suffices to prove

1. P (1) is true.

2. For all k ≥ 1, P (k) implies P (k + 1).

Then,

• knowing it is true for the first element means it must be true for

the element following the first or the second element.

• knowing it is true for the second element implies it is true for

the third and so forth.
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Therefore,induction is equivalent to modus ponens applied a count-

able number of times!!

General Case

• For all n that belong to Z, P (n) is true for all n ≥ n0 if

1. P (n0) is true.

2. For all k ≥ n0, P (k) implies P (k + 1).

• n0 is called the basis of induction and it may be any integer.

Three Steps to a Proof using Induction

1. Basis of Induction

Show that P (n0) is true.

2. Inductive Hypothesis

Assume P (k) is true for k ≥ n0.

3. Inductive Step

Show that P (k +1) is true on the basis of the inductive hypoth-

esis.

Example: To determine a formula for the sum of the first n pos-

itive integers.

Let S(n) =

n
∑

k=1

k = 1 + 2 + 3 + . . . + n.

Examine a few values for S(n),

n 1 2 3 4 5 6 7

S(n) 1 3 6 10 15 21 28

Observe the following pattern

2S(1) = 2 = 1 × 2

2S(2) = 6 = 2 × 3

2S(3) = 12 = 3 × 4
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2S(4) = 20 = 4 × 5

2S(5) = 30 = 5 × 6

2S(6) = 42 = 6 × 7

Conjecture that 2S(n) = n(n + 1) or S(n) = n(n + 1)/2.

Prove by mathematical induction

Statement : Let P(n) be the statement: the sum S(n) of the first n

positive integers is equal to n(n + 1)/2.

1. Basis Step

Since S(1) = 1 = 1(1 + 1)/2, the formula is true for n = 1.

2. Inductive Hypothesis

Assume that P (n) is true for n = k, that is S(k) = 1+2+ . . . +

k = k(k + 1)/2.

3. Inductive Step

• Now show that the formula is true for n = k + 1.

• Observe that S(k+1) = 1+2+. . .+k+(k+1) = S(k)+(k+1).

• Since S(k) = k(k + 1)/2 by the inductive hypothesis, then

S(k + 1) = S(k) + (k + 1)

= (k/2)(k + 1) + (k + 1)

= (k + 1)(k/2 + 1)

= ((k + 1)(k + 2))/2

and the formula holds for k + 1. QED

In general, to prove by mathematical induction that the summation

formula
n

∑

k=1

f(k) = F (n)

is true for every natural number n, we simply have to check that:

(a) Basis step: f(1) = F (1),

(b) Inductive step: F (n + 1) − F (n) = f(n + 1), holding for

arbitrary n.I
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Example: Let m be a nonnegative integer. Then

n
∑

k=1

k(k + 1) · · · (k + m) =
n(n + 1) · · · (n + m + 1)

m + 2

For n = 1, both sides are equal to (m + 1)! so (a) holds. To check

(b), we evaluate F (n + 1) − F (n), where F (n) is the expression
n(n+1)···(n+m+1)

m+2
. Simplifying the expression

(n + 1)(n + 2) · · · (n + m + 2)

m + 2
− n(n + 1) · · · (n + m + 1)

m + 2

we find

F (n + 1) − F (n) = (n + 1)(n + 2) · · · (n + m + 1) = f(n + 1)

Thus the formula holds in all cases. Using this formula, we can

derive other sums. For example, since

k3 = k(k + 1)(k + 2) − 3k(k + 1) + k,

then, we obtain
n

∑

k=1

k3 =

[

n(n + 1)

2

]2

Example: Prove that if n > 1, then

1

2
· 3

4
· 5

6
· · · 2n − 1

2n
<

1√
3n + 1

.

Basis Step: If n = 1, we have

1

2
=

1√
3 · 1 + 1

.

Inductive Step: Assume now that for some n,

1

2
· 3

4
· 5

6
· · · 2n − 1

2n
≤ 1√

3n + 1
.

If both sides of this inequality are multiplied by
2n + 1

2n + 2
, it becomes

1

2
· 3

4
· 5

6
· · · 2n − 1

2n
· 2n + 1

2n + 2
≤ 2n + 1

(2n + 2)
√

3n + 1
.

I
P
u
t
u

D
a
n
u

R
a
h
a
r
j
a

Fall 2007 (Term 071) Information & Computer Science Department, KFUPM

ICS253 Discrete Structure I



Note 09 Mathematical Induction 6 / 9-1

Now,
[

2n + 1

(2n + 2)
√

3n + 1

]2

=
(2n + 1)2

12n3 + 28n2 + 20n + 4

=
(2n + 1)2

(12n3 + 28n2 + 19n + 4) + n

=
(2n + 1)2

(2n + 1)2(3n + 4) + n
<

1

3n + 4
,

and it follows that

2n + 1

(2n + 2)
√

3n + 1
<

1√
3n + 4

.

Thus, we obtain

1

2
· 3

4
· 5

6
· · · 2n − 1

2n
· 2n + 1

2n + 2
<

1
√

3(n + 1) + 1
.

Example: Use the Principle of Mathematical Induction to prove

that 4 | (9n − 5n), ∀n ≥ 0.

P (0) : 4 | 1− 1 is true since 4 | 0. P (k) → P (k + 1) : 9k+1 − 5k+1 =

9(9k − 5k) + 5k(9 − 5). Each term is divisible by 4 : 4 | 9k − 5k (by

P (k)) and 4 | 9 − 5.

Example: Use the Principle of Mathematical Induction to prove

that 3 | (n3 + 3n2 + 2n),∀n ≥ 1.

Recursive Definitions

Recursive or inductive definitions of sets and functions on recursively

defined sets are similar.

1. Basis step:

(i) For sets: State the basic building blocks (BBB’s) of the set.

(ii) For functions: State the values of the function on the BBBs.

2. Inductive or recursive step:

(i) For sets: Show how to build new things from old with some

construction rules.

(ii) For functions: Show how to compute the value of a functionI
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on the new things that can be built knowing the value on the

old things.

3. Extremal clause:

(i) For sets: If you can’t build it with a finite number of appli-

cations of steps 1.and 2. then it isn’t in the set.

(ii) For functions: A function defined on a recursively defined set

does not require an extremal clause.

NOTE:

• To prove something is in the set you must show how to construct

it with a finite number of applications of the basis and inductive

steps.

• To prove something is not in the set is often more difficult.

Example: A recursive definition of N.

1. Basis Step: 0 is in N (0 is the BBB).

2. Recursive Step: if n is in N then so is n+1 (how to build new

objects from old: add one to an old object to get a new one).

Example: A recursive definition of F (n) = n!

• Basis Step: F (0) = 0

• Recursive Step: F (n + 1) = (n + 1) · F (n)

Example: Give an inductive definition of an where a is a nonzero

real number and n is a nonnegative integer.

• Basis Step: a0 = 1

• Recursive Step: an+1 = an · a
Example: A recursive definition of the Fibonacci sequence

1. Basis Step: f(0) = f(1) = 1 (two initial conditions)

2. Recursive Step: f(n + 1) = f(n) + f(n − 1) (the recurrence

equation).

Example: Prove the remarkable fact that for n ≥ 1,

φn−2 ≤ f(n) ≤ φn−1I
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where φ = (1 +
√

5)/2. φ is called the golden ratio.

To prove it we will use this Lemma: φ2 = φ + 1. The proof consists

of two parts:

• P (n) : f(n) ≤ φn−1

1. Base case: P (1). Since both sides of P (1) reduce to 1, P (1)

holds.

2. base case: P (2). Since 1 ≤ (1+
√

5)/2, which is true. Hence,

P (2) holds.

3. Inductive case: For arbitrary n ≥ 2, we assume inductive

hypothesis P (i) for 1 ≤ i ≤ n and prove P (n + 1):

f(n + 1) = f(n) + f(n − 1)

≤ φn−1 + φn−2

= φn−2 × (φ + 1)

= φn

• P (n) : φn−2 ≤ f(n): This is an exercise for the students.

Structural Induction

A proof by structural induction consists of two parts.

• Basis Step: Show that the result holds for all elements specified

in the basis step of the recursive definition to be in the set.

• Recursive Step: Show that if the statement is true for each of

the elements used to construct new elements in the recursive

step of the definition, the result holds for these new elements.

Example: Give a recursive definition of the function m(s), which

equals the smallest digit in a nonempty string of decimal digits.

Prove that m(st) = min(m(s), m(t)).

• Basis step: If x ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then m(x) = x;

• Recursive step: if s = tx, where t ∈ D∗ and x ∈ D, then

m(s) = min(m(t), x).

To prove that m(st) = min(m(s), m(t)) using structural induc-

tion, let t = wx, where t ∈ D∗ and x ∈ D. If w = λ, then
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m(st) = m(sx) = min(m(s), x) = min(m(s), m(x)) by the recur-

sive step and the basis step of the definition of m. Otherwise,

m(st) = m((sw)x) = min(m(sw), m(x)) by the definition of m.

Now, m(sw) = min(m(s), m(w)), by the inductive hypothesis so

m(st) = min(min(m(s), m(w)), x) = min(m(s), min(m(w), x)). But,

min(m(w), x) = min(wx) = m(t) by the recursive step. Thus,

m(st) = min(m(s), m(t)).
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