

l Putu Danu Raharja

### Introduction to Functions

**Definition 1** Let A and B be sets. A function from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write  $f: A \rightarrow B$ .

Formally, f is a function from A to B  $(f : A \to B)$  if and only if the following hold:

- (1)  $f \subseteq A \times B$ : f is a set of ordered pairs whose first components are from A and whose second components are from B, and,
- (2)  $\forall a \in A \exists b \in B((a, b) \in f)$ : every element from A is mapped to some element in B, and,
- (3)  $\forall a, b, c(((a, b) \in f \land (a, c) \in f \rightarrow b = c))$ : every element from A is assigned at most one element of B.

**Definition 2** If f is a function from A to B, we say that A is the **domain** of f and B is the **codomain** of f. If f(a) = b, we say that b is the **image** of a and a is a **pre-image** of b. The **range** of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f **maps** A to B.

If f is a function from A to B and the domain and range of f are denoted by dom(f) and range(f) respectively, then

 $\begin{array}{lll} dom(f) & = & \{a | \exists b((a,b) \in f)\} = A. \\ range(f) & = & f(A) = \{f(a) | a \in A\} = \{b | \exists a((a,b) \in f)\}. \end{array}$ 

**Definition 3** Let f be a function from the set A to the set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that,  $f(S) = \{f(s) | s \in S\}$ .



**Example:** Given the sets  $A = \{a, b, c, d\}$  and  $B = \{X, Y, Z\}$  and the figure,



then,

(a) f(a) = Z

(b) The image of d is Z

(c) The domain of f is  $A = \{a, b, c, d\}$ 

(d) The codomain is  $B = \{X, Y, Z\}$ 

(e)  $f(A) = \{Y, Z\}$ 

(f) The pre-image of Y is b

(g) The pre-images of Z are a, c and d

$$(h) \ f(\{c,d\}) = \{Z\}$$

**Example:** Let ICS253 be the set of students in this class. Define

 $d: ICS253 \rightarrow \mathbb{N}$ 

by "if the last name of  $s \in ICS253$  begins with letters A through H, then d(s) = 2, else, d(s) = 1".

(a) What is the image of "Hamad Ali"?

(b) What is the the pre-image of 1?

- (c) What is the codomain of d?
- (d) What is the range of d?



Only (c) defines a function.

**Example:** Someone tries to define a function  $f : \mathbb{Q} \to \mathbb{Z}$  by the formula:

$$f\left(\frac{m}{n}\right) = m$$

That is, the integer associated by f to the number m/n is m. Is f a function?

**Solution:** Fractions have more than one representation as quotients of integers. For instance,  $\frac{1}{2} = \frac{4}{8}$ . Now if f were a function then  $f(\frac{1}{2}) = f(\frac{4}{8})$  since  $\frac{1}{2} = \frac{4}{8}$ . But, we get  $f(\frac{1}{2}) = 1$  and  $f(\frac{4}{8}) = 4$ . This contradiction shows that the relation f is not a function.

**Definition 4** Let  $f_1$  and  $f_2$  be functions from A to **R**. Then  $f_1+f_2$ and  $f_1f_2$  are also functions from A to **R** defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x).$$
  
 $(f_1.f_2)(x) = f_1(x).f_2(x).$ 

Putu Danu Raharja

# **Functions Equality**

**Definition 5** Two functions  $f : A \to B$  and  $g : C \to D$  are equal, (f = g) if A = C, B = D, and for every  $a \in A$ , f(a) = g(a).

Note that in order to be equal f and g must have the same domain and the same codomain.

**Example:** Consider the functions:

$$f: \mathbf{R} - \{0\} \to \mathbf{R}$$

defined by f(x) = 3x/x, and

 $g:\mathbf{R}\to\mathbf{R}$ 

defined by g(x) = 3. Then,

f(x) = g(x)

for every x in the domain of f, however,  $f \neq g$ , because g is defined on a larger domain.

**Example:** Define  $f : \mathbf{R} \to \mathbf{R}$  and  $g : \mathbf{R} \to \mathbf{R}$  by the following formulas:

| f(x) | =  x          | $\forall x \in \mathbf{R}$ |
|------|---------------|----------------------------|
| g(x) | $=\sqrt{x^2}$ | $\forall x \in \mathbf{R}$ |

Does f = g?

**Solution:** Yes. Since the absolute value of a number equals the square root of its square.

$$|x|=\sqrt{x^2}$$
 ,  $\forall x\in \mathbf{R}$ 

Hence f = g.

I Putu Danu Raharja

## **Types of Functions**

**Definition 6** A function f is said to be one-to-one, or injective, iff if f(x) = f(y) implies that x = y for all x and y in the domain of f. A function is said to be an injection if it is one-to-one.  $F: X \longrightarrow Y$  is one-to-one  $\Leftrightarrow \forall a \forall b \in X(F(a) = F(b) \rightarrow a = b)$ 

**Example:** Let  $S = \{a, b, c, d\}, T = \{v, w, x, y, z\}$  and  $f : S \to T$ .



An Injective Function that is not Surjective.

**Example:** The function  $f : \mathbb{Z} \to \mathbb{Z}$ , defined as f(x) = 2x is injective.

**Example:** If the function  $g : \mathbb{Z} \to \mathbb{Z}$  is defined by the formula  $g(n) = n^2, \forall n \in \mathbb{Z}$ , then g is not one-to-one. Counterexample: g(2) = g(-2) = 4 but  $2 \neq -2$ .

**Definition 7** A function f from A to B is called onto , or surjective , if and only if for every element  $b \in B$  there is an element  $a \in A$  with f(a) = b. A function f is called a surjection if it is onto.

 $f: A \to B \text{ is onto } \Leftrightarrow \forall y \in B, \exists x \in A(f(x) = y)$ 

**Definition 8** A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

**Example:** The function  $f : R \to R^+ \cup \{0\}$ , defined as  $f(x) = x^2$  is surjective.

**Example:** If  $f : \mathbf{R} \to \mathbf{R}$  is the function defined by the rule  $f(x) = 4x - 1, \forall x \in \mathbf{R}$ , then f is onto.

**Solution:** Let  $y \in \mathbf{R}$ . We must show that  $\exists x \in \mathbf{R}$  such that f(x) = y. Let  $x = \frac{y+1}{4}$ . Then x is a real number since sums and quotients (other than 0) of real numbers are real numbers. It follows that

$$(x) = f\left(\frac{y+1}{4}\right)$$
$$= 4.\left(\frac{y+1}{4}\right) - 1 = y$$

**Example:** Let  $S = \{a, b, c, d\}, T_{f} = \{x, y, z\}$  and  $f : S \to T$ .

f



An Surjective Function that is not Injective.

**Example:** Let  $S = \{a, b, c, d\}, T = \{v, w, x, y\}$  and  $f : S \to T$ .



A one-to-one Correspondence (Bijective Function).

#### Example:

- The function  $f : \mathbb{Z} \to \mathbb{Z}$ , defined as f(x) = x + 3 is bijective.
- $h: \emptyset \to \emptyset$  is bijective.
- d: ICS253 → N is not 1-1 because more than one student is assigned to 1. It is not onto because no student is assigned to 3.
- $d: ICS253 \rightarrow \{1, 2\}$  is not 1-1 but it is onto.

I Putu Danu Raharja

**Identity and Inverse Functions** 

Let A be any set. Define the *identity function on* A  $(\iota_A : A \to A)$  by,  $\iota(a) = a$ , i.e.,

 $\iota_A = \{(a,a) | a \in A\}.$ 

Observe that  $\iota_A$  is a 1-1 correspondence.

**Definition 9** Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is the function that assigns to an element  $b \in B$  the unique element  $a \in A$  such that f(a) = b. The inverse function of f is denoted by  $f^{-1}$ . Hence  $f^{-1}(b) = a$  when f(a) = b.

**Example:** The following figure show the function  $f: S \to T$  and its inverse.



**Example:** *Here are some other examples:* 

- (a) If  $f : \mathbb{Z} \to \mathbb{Z}$  is defined by f(x) = x + 3, then its inverse is  $f^{-1}(x) = x 3$ .
- (b) If  $f : \mathbf{R} \to \mathbf{R}^+ \cup 0$  is defined by  $f(x) = x^2$ , one may think that its inverse is  $g(x) = \sqrt{x}$ , but that is incorrect.

**Definition 10** A function f whose domain and codomain are subsets of **R** is called strictly increasing if f(x) < f(y) whenever x < y and x and y are in the domain of f.

f is strictly increasing:  $\forall x \forall y ((x < y) \rightarrow (f(x) < f(y)))$ 

**Definition 11** A function f is called strictly decreasing if f(x) > f(y) whenever x < y and x and y are in the domain of f.

f is strictly decreasing:  $\forall x \forall y ((x < y) \rightarrow (f(x) > f(y)))$ 

# **Function Composition**

A function that has an inverse is called *invertible*. The necessary and sufficient condition for a function to be invertible is to be a 1-1 correspondence.

**Definition 12** Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by  $f \circ g$ , is defined by  $(f \circ g)(x) = f(g(x))$ .

**Example:** Diagrammatic view of functions f and g and their composition  $g \circ f$ .



Figure 1: Function Composition.

**Example:** As another example, if A = B = C = Z, f(x) = x+1,  $g(x) = x^2$ , then  $(g \circ f)(x) = f(x)^2 = (x+1)^2$ . Also  $(f \circ g)(x) = g(x) + 1 = x^2 + 1$ .

This demonstrates that, in general, function composition is not commutative.

l Putu Danu Raharja

Function Composition (cont.)

Some properties of function composition:

(1.) If  $f: A \to B$  is a function from A to B, we have that

 $f \circ \iota_A = \iota_B o f = f.$ 

- (2.) Given two functions,  $f: A \to B$  and  $g: B \to C$ , we have:
  - (a) If f and g are one-to-one, then  $g \circ f$  is one-to-one.
  - (b) If f and g are onto, then  $g \circ f$  is onto.
  - (c) If  $g \circ f$  is one-to-one then f is one-to-one.
  - (d) If  $g \circ f$  is onto then g is onto.

(3.) Function composition is associative, i.e., given three functions

 $f: A \to B, g: B \to C, h: C \to D,$ 

we have that  $h \circ (g \circ f) = (h \circ g) \circ f$ .

**Definition 13** Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs  $\{(a,b)|a \in A \land f(a) = b\}$ .

**Definition 14** The floor function assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by  $\lfloor x \rfloor$ . The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x. The value of the floor function at x is denoted by  $\lfloor x \rfloor$ .

### Example:

- (a)  $\lfloor 2 \rfloor = 2, \lfloor 2.3 \rfloor = 2, \lfloor \pi \rfloor = 3, \rfloor 2.5 \rfloor = -3.$
- (b)  $\lceil 2 \rceil = 2, \lceil 2.3 \rceil = 3, \lceil \pi \rceil = 4, \lceil -2.5 \rceil = -2.$

See Rosen p. 107 for some useful properties of the Floor and Ceiling functions.

 $x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$ ,  $\forall x \in \mathbf{R}$ 

| <b>Example:</b> Prove or disprove the assertion                                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\lfloor \sqrt{\lfloor x \rfloor}  floor = \lfloor \sqrt{x}  floor, \ real \ x \ge 0$                                             |  |  |
| <b>Solution:</b> Let us try to prove it. Let $m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$ . Then,                               |  |  |
| $m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$                                                                                    |  |  |
| $m \leq \sqrt{\lfloor x \rfloor} < m+1$                                                                                           |  |  |
| $m^2 \leq \lfloor x \rfloor < (m+1)^2$                                                                                            |  |  |
| $m^2 \le x < (m+1)^2$                                                                                                             |  |  |
| $m \le \sqrt{x} < m+1$                                                                                                            |  |  |
| $m = \lfloor \sqrt{x}  floor$                                                                                                     |  |  |
| Warmups Exercises                                                                                                                 |  |  |
| (1) Prove or disprove the assertion                                                                                               |  |  |
| $\lfloor x  floor + \lfloor y  floor \leq \lfloor x + y  floor$ , $\forall x \in \mathbf{R} \forall y \in \mathbf{R}$             |  |  |
| (2) Consider $f(n) : \mathbb{N} \to \mathbb{N}$ is defined as:                                                                    |  |  |
| $f(1) = 1, f(n+1) = \begin{cases} \frac{1}{2}f(n) & \text{if } f(n) \text{ is even};\\ 5f(n) + 1 & \text{otherwise.} \end{cases}$ |  |  |
| (a) Is $f$ a function?                                                                                                            |  |  |
| (b) Is $f$ injective, surjective, bijective?                                                                                      |  |  |
| (3) Prove that                                                                                                                    |  |  |
| $\left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right floor,$                                               |  |  |
| for all integers $n$ and all positive integers $m$ .                                                                              |  |  |
|                                                                                                                                   |  |  |
|                                                                                                                                   |  |  |
|                                                                                                                                   |  |  |
|                                                                                                                                   |  |  |
|                                                                                                                                   |  |  |

I Putu Danu Raharja