
Lab# 8 FLOATING POINT

Instructor: I Putu Danu Raharja.

Objectives:
Learn to carry out arithmetic operations using a floating-point representation of real
numbers. Learn to use logical operations to mask fields within a word.

Method:

Write assembly code to implement a function for floating-point multiplication.

Preparation:

Read the chapter 3 of lecture textbook.

File To Use: float2.asm

8.1 FPU REGISTERS
The floating-point unit has 32 floating-point registers. These registers are numbered

like the CPU registers. In the floating-point instructions we refer to these registers as $f0,

$f1, and so on. Each of these registers is 32 bits wide. Thus, each register can hold one

single-precision floating-point number. How can we use these registers to store double

precision floating-point numbers? Because these numbers require 64 bits, register pairs

are used to store them. This strategy is implemented by storing double-precision numbers

in even-numbered registers. For example, when we store a double-precision number in

$f2, it is actually stored in registers $f2 and $f3.

Even though each floating-point register can hold a single-precision number, the

numbers are often stored in even registers so that they can be easily upgraded to double-

precision values.

8.2 FLOATING-POINT REPRESENTATION
Single precision floating point number (32-bit):

Sign (1) Exponent (8) Fraction (23)

Value = (– 1)Sign * (1.F)two * 2 Exp – 127

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 1

Double precision floating point number (64-bit):

Sign (1) Exponent (11) Fraction (52)

Value = (– 1)Sign * (1.F)two * 2 Exp – 1023

8.3 FLOATING-POINT INSTRUCTIONS
The FPU supports several floating-point instructions including the standard four

arithmetic operations. Furthermore, as are the processor instructions, several pseudo-

instructions are derived from these instructions. We start this section with the data

movement instructions.

A. Move instructions
Instruction Example Meaning

mov.s Fdst, Fsrc mov.s $f0, $f1 to move data between two floating-
point registers (single).

mov.d Fdst, Fsrc mov.d $f0, $f2 to move data between two floating-
point registers (double).

mfc1 Rdest, FRsrc mfc1 $t0, $f2 to move data from the FRsrc
floating-point register to the Rdest
CPU register (single).

mfc1.d Rdest, FRsrc mfc1.d $t0, $f2 to move data the two floating-point
registers (FRsrc and FRsrc+1) to
two CPU registers (Rdest and
Rdest+1).

mtc1 FRdest, Rsrc mtc1 $f2, $t0 to move data from the Rdest CPU
register to the FRsrc floating-point
register.

B. Load and Store Instructions
Instruction Example Meaning

lwc1 FRdst, address lwc1 $f0, 0($sp) load a word from memory to an
FPU register.

swc1 FRdst, address swc1 $f0, 0($sp) stores the contents of FRdest in
memory at address.

l.s FRdest,address l.s $f2,0($sp)
l.d FRdest,address l.d $f2,0($sp)
s.s FRdest,address s.s $f2,0($sp)
s.d FRdest,address s.d $f2,0($sp)

Pseudo-instructions to load and
store data from/to memory.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 2

C. Comparison Instructions
Three basic comparison instructions are available to compare floating-point numbers to

establish <, =, and ≤ relationships. All three instructions have the same format. We use

the following to illustrate their format.

c.lt.s FRsrc1,FRsrc2 # for single-precision values

c.lt.d FRsrc1,FRsrc2 # for double-precision values

It compares the two floating-point values in FRsrc1 and FRsrc2 and sets the floating

point condition flag if FRsrc1 < FRsrc2.

To establish the "equal to" relationship, we use c.eq.s or c.eq.d. For the ≤

relationship, we use either c.le.s or c.le.d depending on the precision of the values

being compared.

Once the floating-point condition flag is set to reflect the relationship, this flag value

can be tested by the CPU using bc1t or bc1f instructions. The format of these

instructions is the same. For example, the instruction

bc1t target

transfers control to target if the floating-point condition flag is true. Here is an example

that compares the values in $f0 and $f2 and transfers control to skip1 if $f0 < $f2.

c.lt.s $f0,$f2 # $f0 < $f2?

bc1t skip1 # if yes, jump to skip1

�We don’t really need instructions for the missing relationships >, =, or ≥. For

example, the code

c.le.s $f0,$f2 # $f0 ≤ $f2?

bc1f skip1 # if not, jump to skip1

transfers control to skip1 if $f0 > $f2.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 3

D. Arithmetic Instructions
Instruction Example Meaning

sub.s FRdest,FRsrc1,FRsrc2 sub.s $f0, $f2, $f4 $f0 = $f2 - $f4
sub.d FRdest,FRsrc1,FRsrc2 sub.s $f0, $f2, $f4
add.s FRdest,FRsrc1,FRsrc2 add.s $f0, $f2, $f4 $f0 = $f2 + $f4
add.d FRdest,FRsrc1,FRsrc2 add.d $f0, $f2, $f4
div.s FRdest,FRsrc1,FRsrc2 div.s $f0, $f2, $f4 $f0 = $f2 / $f4
div.d FRdest,FRsrc1,FRsrc2 div.d $f0, $f2, $f4
mul.s FRdest,FRsrc1,FRsrc2 mul.s $f0, $f2, $f4 $f0 = $f2 * $f4
mul.d FRdest,FRsrc1,FRsrc2 mul.d $f0, $f2, $f4
abs.s FRdest,FRsrc abs.s $f0, $f4 $f0 = abs($f4)
abs.d FRdest,FRsrc abs.d $f0, $f4
neg.s FRdest,FRsrc neg.s $f0, $f4 Sf0 = –$f4
neg.d FRdest,FRsrc neg.d $f0, $f4

E. Conversion Instructions
Instruction Meaning

cvt.s.w FRdest, FRsrc Convert integer to single-precision floating-point
value.

cvt.d.w FRdest, FRsrc Convert integer to double-precision floating-point
value.

cvt.w.s FRdest, FRsrc Convert single-precision floating-point number to
integer.

cvt.d.s FRdest, FRsrc Convert single-precision floating-point number to
double precision floating-point number.

cvt.w.d FRdest, FRsrc Convert double-precision floating-point number to
integer.

cvt.s.d FRdest, FRsrc Convert double-precision floating-point number to
single precision floating-point number.

F. System I/O
Service Code

in $v0
Argument(s) Result(s)

Print float 2 $f12 = number to be printed
Print double 3 $f12-13 = number to be printed.
Read float 6 Number returned in $f0.
Read double 7 Number returned in $f0-1.

8.4 EXERCISE:
1. The file float2.asm contains an outline of assembly code for a procedure that

multiplies two numbers in IEEE 754 single precision floating point format. The

file also contains a program for testing the multiplication function. Complete the

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 4

assembly code for the fmult procedure. Ignore the possibility of overflow and

underflow, and do not round the result.

2. Write an interactive program that will convert input temperatures in Fahrenheit to

Celcius. The program should prompt the user for a temperature in Fahrenheit and

then display the corresponding temperature in Celcius (C = 5/9*[F-32]).

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 5

	Floating Point
	FPU Registers
	Floating-point Representation
	Floating-point Instructions
	Move instructions
	Load and Store Instructions
	Comparison Instructions
	Arithmetic Instructions
	Conversion Instructions
	System I/O

	Exercise:

