
Lab# 6 PROCEDURE

Instructor: I Putu Danu Raharja.

Objectives:
Learn how to write a procedure in MIPS assembly language programs.

Method:

Translate an algorithm from pseudo-code into assembly language.

Preparation:

Read the chapter 2 of lecture textbook.

6.1 INTRODUCTION
So far, we've only looked at programs consisting of a single long chunk of code. Each

program has started at the top of the code, executed each instruction in turn (with an

occasional detour for looping or decision-making), and then ended at the bottom of the

code. That's fine for small programs, but larger programs require a programming

construct known as a subroutine/procedure.

You've probably familiar with subroutines from a high-level language. In C,

subroutines are known as functions, and in Pascal and Basic, they're known as procedures

and functions. Subroutines, procedures, and functions all amount to the same thing – a

separate section of code that optionally accepts well-defined inputs, promptly performs a

certain action, and optionally returns a specific result value.

Subroutines let you build programs in a modular fashion, with the subroutines hiding

the details of specific tasks so you can focus on the overall flow of the program.

Subroutines can also make programs far more compact, since a single subroutine can be

called from many places in a program, and can even perform different functions when

passed different values. In a large program (whether written in assembler, C, Pascal, or

some other language), subroutines are essential to creating orderly, maintainable code.

6.2 HOW PROCEDURES WORK
There are six steps that need to be accomplished in order to call and return from a

procedure.

1. Place parameters in a place where the procedure can access them.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 1

2. Transfer control to the procedure

3. Acquire the storage resources needed for the procedure.

4. Execute the procedure

5. Place the result value in a place where the calling program can access it.

6. Return control to the point of origin.

MIPS software follows the following convention in allocating its 32 registers for

procedure calling:

 $a0 – $a3: four argument registers in which to pass parameters

 $v0 – $v1: two value registers in which to return values

 $ra: one return address register to return to the point of origin

The code that calls the procedure executes a jal instruction, which saves the address

of the following instruction (PC+4) in register $ra and then loads PC with the address of

the desired subroutine, thereby branching to the subroutine. The subroutine then executes

just as any other code would. Procedures can – and often do – contain calls to other

procedures; in fact, properly designed subroutines can even call themselves, a practice

known as recursion.

When the subroutine has finished its task, it executes a jr $ra instruction, which

jumps to the address stored in register $ra. This causes execution of the calling routine to

resume at the instruction following the jal X instruction.

However, since the procedure may utilize any registers needed by the caller, those

registers must be preserved before the procedure called and then be restored back after

the procedure completed the tasks.

The ideal data structure for spilling registers is a stack. MIPS software allocates $sp to

track as the top of stack (TOS). The stack grows from higher address to lower address.

6.3 STACK MANIPULATION
The MIPS architecture does not explicitly support stack operations. In MIPS, we have

to manipulate the stack pointer register to implement the stack.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 2

A. PUSH operation
We have to decrement $sp to make room for the value being pushed onto the stack.

For example, if we want to push the contents of $a0, we have to reserve four bytes of

stack space and use the sw instruction to push the value as shown below:

addiu $sp,$sp,-4 # reserve 4 bytes of stack
sw $a0,0($sp) # save the register

B. POP operation
The operation can be implemented by using the load and add instructions. For example,

to restore the value of $a0 from the stack, we use the lw instruction to copy the value and

increment $sp by 4 as shown below:

lw $a0,0($sp) # restore the two registers
addiu $sp,$sp,-4 # clear 4 bytes of stack

6.4 HOW TO PRESERVE REGISTERS
To preserve registers efficiently, MIPS software separates 18 of the registers into two

groups:

 $t0 – $t9: 10 temporary registers that are NOT preserved by the called

procedure on a procedure call. It is the caller's responsibility to preserve any of

them.

 $s0 – $s7: 8 saved registers that must be preserved on a procedure call (if used,

the called procedure saves and restores them).

6.5 NESTED PROCEDURES
Procedures that do not call others are called leaf procedures. Non-leaf procedures must

push all necessary registers before calling other procedures.

6.6 EXAMPLE
The following is a complete program consisting of a main program and a procedure.

.data
array: .word -4, 5, 8, -1
msg1: .asciiz "\n The sum of positive values= "
msg2: .asciiz "\n The sum of negative values= "
 .globl main
 .text

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 3

main:
 li $v0, 4
 la $a0, msg1
 syscall
 la $a0, array # Initialize address parameter
 li $a1, 4 # Initialize length parameter
 jal Sum # Call sum function
 addu $a0, $v0, $0 # sum of positive returned in $v0
 li $v0, 1
 syscall
 li $v0, 4
 la $a0, msg2
 syscall
 addu $a0, $v1, $0 #sum of negative returned in $v1
 li $v0, 1
 syscall
 li $v0, 10
 syscall
Sum: addu $v0, $0, $0
 addu $v0, $0, $0
Loop: blez $a1, Return
 addi $a1, $a1, -1
 lw $t0, 0($a0)
 addi $a0, $a0, 4
 blez $t0, negative
 add $v0, $v0, $t0
 j Loop
negative: add $v1, $v1, $t0
 j Loop
Return:jr $ra

6.7 EXERCISE:
Write a recursive function to solve Towers of Hanoi puzzle. A stack of N disks of

decreasing size (from bottom to top) is placed on one of three posts. The task is to move

the disks one at a time from the first post to the second. To do this, any disk can be

moved from any post to any other post, subject to the rule that you can never place a

larger disk over a smaller disk. The (spare) third post is provided to make the solution

possible.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 4

Function name: Hanoi(N, a, b)
It will display the sequence of steps to move N disks from a to b
Register usage in function:
a0 = N
a1 = the source post number (for example a=1, b=2, c=3)
a2 = the destination post number
Algorithmic description
if (a0 == 1)
print ("move a disk from", a1, " to ", a2)
return
else
a3 = 6 – a1 – a2 (Why ?)
Hanoi(a0 – 1, a1, a3)
print ("move a disk from", a1, " to ", a2)
Hanoi(a0 – 1, a3, a2)
How to use:
addiu $a0, $zero, 4
addiu $a1, $zero, 1
addiu $a2, $zero, 2
jal Hanoi

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 5

	Procedure
	Introduction
	How Procedures Work
	Stack Manipulation
	PUSH operation
	POP operation

	How To Preserve Registers
	Nested Procedures
	Example
	Exercise:

