
Lab# 4 BIT MANIPULATION, MULTIPLICATION, AND DIVISION
INSTRUCTIONS

Instructor: I Putu Danu Raharja.

Objectives:
Learn to use MIPS bit manipulation, integer multiplication and division instructions in
assembly language programs.

Method:

Translate an algorithm from pseudo-code into assembly language.

Preparation:

Read the chapter 2 of lecture textbook.

4.1 INTRODUCTION
Every computer's architecture needs some bit manipulation instructions. At a

minimum, it could provide a NAND operation, since all other logical functions can be

derived from NAND operation.

These logical operations are semantically different to what is known as in most of high

level programming language. The difference lies down at the fact that bitwise logical

operations are performed at bit-by-bit basis.

4.2 BITWISE LOGICAL INSTRUCTIONS
Instructions Description

and rd, rs, rt rd = rs & rt
andi rt, rs, immediate rt = rs & immediate
or rd, rs, rt rd = rs | rt
ori rt, rs, immediate rd = rs | immediate
nor rd, rs, rt rd = ! (rs | rt)
xor rd, rs, rt To do a bitwise logical Exclusive OR.
xori rt, rs, immediate

The main usage of bitwise logical instructions are: to set, to clear, to invert, and to isolate

some selected bits in the destination operand. To do this, a source bit pattern known as a

mask is constructed. The Mask bits are chosen based on the following properties of AND,

OR, and XOR with Z represents a bit (either 0 or 1):

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 1

AND OR XOR
Z AND 0 = 0 Z OR 0 = Z Z XOR 0 = Z
Z AND 1 = Z Z OR 1 = 1 Z XOR 1 = ~Z

The AND instruction can be used to CLEAR specific destination bits while preserving

the others. A zero mask bit clears the corresponding destination bit; a one mask bit

preserves the corresponding destination bit.

The OR instruction can be used to SET specific destination bits while preserving the

others. A one mask bit sets the corresponding destination bit; a zero mask bit preserves

the corresponding destination bit.

The XOR instruction can be used to INVERT specific destination bits while preserving

the others. A one mask bit inverts the corresponding destination bit; a zero mask bit

preserves the corresponding destination bit.

A. Example 1:
The following code fragment will clear bit 2, 4, 6, and 7 of the register $t2:

 addi $t0, $zero, 0xFF2B
andi $t2, $t2, $t0

B. Example 2:
The following code fragment will set bit 7, 6, 5, 3 and 0 of the register $t2 using OR

operation:

 ori $t2, $t2, 0x00E9

C. Example 3:
The following code fragment will toggle bit 7, 2, and 0 of the register $t2 using XOR

operation:

 xori $t2, $t2, 0x85

4.3 SHIFT INSTRUCTIONS
Instructions Description

sll rd, rs, sa rd = rs << sa (Shift Left Logical)
sllv rd, rt, rs rd = rt << rs (To left-shift a word by a variable number of

bits)

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 2

Instructions Description
sra rd, rs, sa The contents of the low-order 32-bit word of rt are shifted

right, duplicating the sign-bit (bit 31) in the emptied bits;
the word result is placed in rd. The bit-shift amount is
specified by sa.

srav rd, rt, rs rd = rt >> rs (Arithmetic)
srl rd, rs, sa rd = rs >> sa (Shift Right Logical)
srlv rd, rt, rs rd = rt >> rs

Logical Shift instructions are useful mainly in these situations:

1. To manipulate bits;

2. To multiply and divide unsigned numbers by a power of 2.

A. Example 1
The following code fragment will multiply the content of register $t0 with 80:

 sll $t1, $t0, 4 # *16
 sll $t0, $t0, 6 # *64
 addu $t0, $t0, $t1

B. Example 2
Explain what the following code fragment will do?

addu $t1,$t0, $zero
sll $t0,$t0,4
srl $t1,$t1,4
or $t1,$t1,$t0

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 3

4.4 MULTIPLICATION
The following figure illustrates the process of an integer multiplication of two 32-bit

registers to produce a value of 64-bit.

Start

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product, called

Hi and Lo. To produce a properly signed or unsigned product, MIPS has two instructions:

a. multiply (mult)

b. multiply unsigned (multu)

To fetch the integer 32-bit products, the programmer uses the following instructions:

a. move from Lo (mflo)

b. move from Hi (mfhi)

No < 32 repetitions

Multiplier0 = 0 Multiplier0 = 1 1. Test
Multiplier0

1a. Add multiplicand to product and
place the result in Product register.

2. Shift the Multiplicand register left 1 bit.

3. Shift the Multiplier register right 1 bit.

32nd repetition?

Done

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 4

Both MIPS multiply instructions ignore overflow, so it is up to the software to check to

see if the product is too big to fit in 32 bits. There is no overflow if Hi is 0 for multu

or the replicated sign of Lo for mult. The instruction move from Hi (mfhi) can be

used to transfer Hi to a general-purpose register to test for overflow.

4.5 DIVISION
MIPS uses the 32-bit Hi and 32-bit Lo registers for divide. And after the divide

instruction completes, the Hi register contains the remainder, and the Lo register contains

the quotient.

To handle both signed integers and unsigned integers, MIPS has two instructions:

a. divide (div),

b. divide unsigned (divu).

MIPS divide instructions ignore overflow, so software must determine if the quotient is

too large. In addition to overflow, division can also result in an improper calculation:

division by 0. MIPS software must check the divisor to discover division by 0 as well as

overflow.

The following figure shows the process of an integer division.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 5

Yes: 33 repetitions

Start

1. Subtract the Divisor register from the
Remainder register and place the result

in the Remainder register

Test
Remainder

2a Shift the Quotient register
to the left, setting the new
rightmost bit to 1

Remainder >= 0

2b Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0.

Remainder < 0

3. Shift the Divisor register right 1 bit

33rd repetition?

Done

No < 33 repetitions

4.6 EXERCISES
1. Write a MIPS assembly language program that converts all lowercase letters of a

string to uppercase ones.

2. Write a MIPS assembly language program that displays the binary string of the

content of register $t0.

3. Write a function to find the determinant of a two-by-two matrix. The address of

the array is passed to the function in register $a0 and the result is returned in

$v0.

4. Implement the algorithm of multiplication mentioned in 4.4 in MIPS assembly

language program.

5. Implement the algorithm of division mentioned in 4.5 in MIPS assembly language

program.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 6

	Bit Manipulation, Multiplication, and Division Instructions
	Introduction
	Bitwise Logical Instructions
	Example 1:
	Example 2:
	Example 3:

	Shift Instructions
	Example 1
	Example 2

	Multiplication
	Division
	Exercises

