
Lab# 12 THE SINGLE CYCLE DATAPATH

Instructor: I Putu Danu Raharja.

Objectives:
Learn how to implement instructions for a CPU.

Method:

Learn to implement the single cycle datapath for a subset of 16-bit MIPS-like processor.

Preparation:

Read the slides.

File To Use:

12.1 OVERVIEW:
Suppose we would like to design a simple 16-bit MIPS-like processor with seven 16-

bit general-purpose registers: R1 through R7. R0 is hardwired to zero and cannot be

written, so we are left with seven registers. There is also one special-purpose 16-bit

register, which is the program counter (PC). All instructions are also 16 bits. There are

three instruction formats, R-type, I-type, and J-type as shown below:

R-type format:
4-bit opcode (Op), 3-bit register numbers (Rs, Rt, and Rd), and 3-bit function field (funct)

Op(4) Rs(3) Rt(3) Rd(3) funct(3)

I-type format:
4-bit opcode (Op), 3-bit register number (Rs and Rt), and 6-bit immediate constant

Op(4) Rs(3) Rt(3) Imm(6)

J-type format:
4-bit opcode (Op) and 12-bit immediate constant

Op(4) Imm(12)

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd

specifies the destination register number. The function field can specify at most eight

functions for a given opcode. We will reserve opcode 0 and opcode 1 for R-type

instructions.

For I-type instructions, Rs specifies a source register number, and Rt can be a second

source or a destination register number. The immediate constant is only 6 bits because of

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 1

the fixed size nature of the instruction. The size of the immediate constant is suitable for

our uses. The 6-bit immediate constant is signed (and sign-extended) for all I-type

instructions.

For J-type, a 12-bit immediate constant is used for instructions such as J (jump), JAL

(jump-and-link), and LUI (load upper immediate) instructions.

Instruction Encoding:
Eight R-type instructions, six I-type instructions, and three J-type instructions are

defined. These instructions, their meanings, and their encodings are shown below:

Instr Meaning Encoding
SLL Reg(Rd) = Reg(Rs) << Reg(Rt) Op = 0000 Rs Rt Rd f = 000
ROL Reg(Rd) = Reg(Rs) rotate<< Reg(Rt) Op = 0000 Rs Rt Rd f = 001
SRL Reg(Rd) = Reg(Rs) zero>> Reg(Rt) Op = 0000 Rs Rt Rd f = 010
SRA Reg(Rd) = Reg(Rs) sign>> Reg(Rt) Op = 0000 Rs Rt Rd f = 011
AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 0000 Rs Rt Rd f = 100
OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 0000 Rs Rt Rd f = 101
NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 0000 Rs Rt Rd f = 110
XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 0000 Rs Rt Rd f = 111

ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 0001 Rs Rt Rd f = 000
SUB Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 0001 Rs Rt Rd f = 001
SLT Reg(Rd) = Reg(Rs) signed< Reg(Rt) Op = 0001 Rs Rt Rd f = 010
SLTU Reg(Rd) = Reg(Rs) unsigned< Reg(Rt) Op = 0001 Rs Rt Rd f = 011
JR PC = lower 12 bits of Reg(Rs) Op = 0001 Rs 000 000 f = 111

ANDI Reg(Rt) = Reg(Rs) & ext(im6) Op = 0100 Rs Rt Immediate6

ORI Reg(Rt) = Reg(Rs) | ext(im6) Op = 0101 Rs Rt Immediate6

ADDI Reg(Rt) = Reg(Rs) + ext(im6) Op = 1000 Rs Rt Immediate6

SLTI Reg(Rt) = Reg(Rs) signed< ext(im6) Op = 1010 Rs Rt Immediate6

LW Reg(Rt) = Mem(Reg(Rs) + ext(im6)) Op = 0110 Rs Rt Immediate6

SW Mem(Reg(Rs) + ext(im6)) = Reg(Rt) Op = 0111 Rs Rt Immediate6

BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 1001 Rs Rt Immediate6

BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 1011 Rs Rt Immediate6

J PC = Immediate12 Op = 1100 Immediate12

JAL R7 = PC + 1, PC = Immediate12 Op = 1101 Immediate12

LUI R1 = Immediate12 << 4 Op = 1111 Immediate12

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 2

12.2 LAB EXERCISE
Based on the above requirement, implement only the datapath.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 3

	The Single Cycle Datapath
	Overview:
	Lab Exercise

