
Information and Computer Science Department

ICS 324 – Database Systems

Lab#8

Relational Algebra
Objectives
The objective of this lab is to write relational algebra expressions using the given java interpreter.
Outcomes

After completing this Lab, students are expected to:

· Be able to write Relational Algebra expressions and see the results.

Interpreters for Abstract Query Languages

This lab introduces Java-based interpreter for the abstract query language: Relational Algebra (RA) The interpreter have been implemented using the parser generator tools JCup and JFlex. In order to use these interpreters, one needs to only download two jar files: dbengine.jar and aql.jar and include them in the Java CLASSPATH. The JCup libraries are included as part of the jar files and hence the only other software that is required to use the interpreters is a standard Java environment.

The system is simple to use and comes with a database engine that implements a set of basic relational algebraic operators. The interpreter reads a query from the terminal and performs the following three steps:

(1) Syntax Check: The query is checked for any syntax errors. If there are any syntactic errors, the interpreter reports these to the terminal and waits to read another query; otherwise the interpreter proceeds to the second step.

(2) Semantics Check: The syntactically correct query is checked for semantic errors including type mismatches, invalid column references, and invalid relation names. If there are any semantic errors, the interpreter reports these to the terminal and waits to read another query; otherwise the interpreter proceeds to the third step.

(3) Query Evaluation: The query is evaluated using the primitives provided by the database engine and the results are displayed.

1 Creating the Database

Before the user can start using the interpreters, they must create a database against which they will submit queries. The database consists of several text files all stored within a directory. The directory is named after the database name. For example, to create a database identified with the name db1 and containing two tables:

student(sid:integer,sname:varchar,phone:varchar,gpa:decimal)

skills(sid:integer,language:varchar)

a directory called db1 should be created along with the following three files (one for the catalog description and the remaining two for the data for the two tables):
catalog.dat

STUDENT.dat

SKILLS.dat

The file names are case sensitive and should strictly follow the convention used, i.e. catalog.dat should be all lower case and the data files should be named after their relation name in upper case followed by the file suffix, .dat, in lower case.

The catalog.dat file contains the number of relations in the first line followed by the descriptions of each relation. The description of each relation begins with the name of the relation in a separate line followed by the number of attributes in a separate line followed by attribute descriptions. Each attribute description includes the name of the attribute in a separate line followed by the data type (VARCHAR, INTEGER, or DECIMAL) in a separate line. All names and data types are in upper case. There should be no leading or trailing white space in any of the lines. The catalog.dat file for database db1 is shown below:

2

STUDENT

4

SID

INTEGER

SNAME

VARCHAR

PHONE

VARCHAR

GPA

DECIMAL

SKILLS

2

SID

INTEGER

LANGUAGE

VARCHAR

The db1 directory must include one data file for each relation. In the case of db1, they should be named STUDENT.dat and SKILLS.dat. The data file for relations contains the number of tuples in the first line followed by the description of each tuple. Tuples are described by the values under each column with each vale in a separate line. For example, let the SKILLS relation have three tuples:

(111,Java)

(111,C++)

(222,Java)
These tuples will be represented in the SKILLS.dat data file as follows:

3

111

Java

111

C++

222

Java

Again, there should be no leading or trailing white spaces in any of the lines. Some pre-defined databases are available along with this laboratory manual. New data may be added to existing databases as well as new databases may be created when needed.
2 Relational Algebra Interpreter

The RA interpreter is invoked using the following terminal command:

$ java edu.gsu.cs.ra.RA company

Here $ is the command prompt and company is the name of the database (as well as the name of the directory where the database files are stored). This command assumes that the company directory is present in the same directory where this command is issued. Of course, one can issue this command in a different directory by providing the full path to the database directory.

The interpreter responds with the following prompt:

RA>

At this prompt the user may enter a Relational Algebra query or type the exit command. Each query must be terminated by a semi-colon. Even the exit command must end with a semi-colon. Queries may span more than one line; upon typing the ENTER key the interpreter prints the RA> prompt and waits for further input unless the ENTER key is typed after a semi-colon, in which case the query is processed by the interpreter.
2.1 Relational Algebra Syntax
A subset of Relational Algebra that includes the union, minus, intersect, Cartesian product, natural join, select, project, and rename operators is implemented in the interpreter. The context-free grammar for this subset is shown below:
<Query> ::= <Expr> SEMI;

<Expr> ::= <ProjExpr> | <RenameExpr> | <UnionExpr> |

<MinusExpr> | <IntersectExpr> | <JoinExpr> |

<TimesExpr> | <SelectExpr> | RELATION

<ProjExpr> ::= PROJECT [<AttrList>] (<Expr>)

<RenameExpr> ::= RENAME [<AttrList>] (<Expr>)

<AttrList> ::= ATTRIBUTE | <AttrList> , ATTRIBUTE

<UnionExpr> ::= (<Expr> UNION <Expr>)

<MinusExpr> ::= (<Expr> MINUS <Expr>)

<IntersectExpr> ::= (<Expr> INTERSECT <Expr>)

<JoinExpr> ::= (<Expr> JOIN <Expr>)

<TimesExpr> ::= (<Expr> TIMES <Expr>)

<SelectExpr> ::= SELECT [<Condition>](<Expr>)

<Condition> ::= <SimpleCondition> |

<SimpleCondition> AND <Condition>

<SimpleCondition> ::= <Operand> <Comparison> <Operand>

<Operand> ::= ATTRIBUTE | STRING-CONST | NUMBER-CONST

<Comparison> ::= < | <= | = | <> | > | >=

The terminal strings in the grammar include

• Keywords for the relational algebraic operators: PROJECT, RENAME, UNION, MINUS, INTERSECT, JOIN, TIMES, and SELECT. These keywords are case-insensitive.

• Logical keyword AND (case-insensitive).

• Miscellaneous syntactic character strings such as (,), <, <=, =, <>, >, >=, ;, and comma (,).

• Name strings: RELATION and ATTRIBUTE (case-insensitive names of relations and their attributes).

• Constant strings: STRING-CONST (a string enclosed within single quotes; e.g. ‘Thomas’) and NUMBER-CONST (integer as well as decimal numbers; e.g. 232 and -36.1).

An example of a well-formed syntactically correct query for the company database of the Elmasri/Navathe text is:

(project[ssn](select[lname=’Jones’](employee))

union

project[superssn](select[dno=5](employee))

);

All relational algebra queries must be terminated by a semi-colon.

A relational algebra query in the simplest form is a “relation name”. For example the following terminal session with the interpreter illustrates the execution of this simple query form:
$ java edu.gsu.cs.ra.RA company

RA> departments;

SEMANTIC ERROR in RA Query: Relation DEPARTMENTS does not exist

RA> department;

DEPARTMENT(DNAME:VARCHAR,DNUMBER:INTEGER,MGRSSN:VARCHAR,MGRSTARTDATE:VARCHAR)

Number of tuples = 6

Research:5:333445555:22-MAY-1978:

Administration:4:987654321:01-JAN-1985:

Headquarters:1:888665555:19-JUN-1971:

Software:6:111111100:15-MAY-1999:

Hardware:7:444444400:15-MAY-1998:

Sales:8:555555500:01-JAN-1997:

RA> exit;

$

In response to a query, the interpreter displays the schema of the result followed by the answer to the query. Individual values within a tuple are terminated by a colon. The simplest query form is useful to display the database contents.

More complicated relational algebra queries involve one or more applications of one or more of the several operators such as select, project, times, join, union, etc. For example, consider the query “Retrieve the names of all employees working for Dept. No. 5”. This would be expressed by the query execution in the following RA session:

RA> project[fname,lname](select[dno=5](employee));

temp1(FNAME:VARCHAR,LNAME:VARCHAR)

Number of tuples = 4

Franklin:Wong:

John:Smith:

Ramesh:Narayan:

Joyce:English:

RA>

2.2 Naming of Intermediate Relations and Attributes
The RA interpreter assigns temporary relation names such as temp0, temp1, etc. to each intermediate relation encountered in the execution of the entire query. The RA interpreter also employs the following rules as far as naming of attributes/columns of intermediate relations:

1. Union, Minus, and Intersect: The attribute/column names from the left operand are used to name the attributes of the output relation.

2. Times (Cartesian Product): Attribute/Column names from both operands are used to name the attributes of the output relation. Attribute/Column names that are common to both operands are prefixed by relation name (tempN).

3. Select: The attribute names of the output relation are the same as the attribute/column names of the operand.

4. Project, Rename: Attribute/Column names present in the attribute list parameter of the operator are used to name the attributes of the output relation. Duplicate attribute/column names are not allowed in the attribute list.

5. Join (Natural Join): Attribute/Column names from both operands are used to name the attributes of the output relation. Common attribute/column names appear only once.

As another example, consider the query “Retrieve the social security numbers of employees who either work in department 5 or directly supervise an employee who works in department 5”. The query is illustrated in the following RA session:

RA> (project[ssn](select[dno=5](employee))

RA> union project[superssn](select[dno=5](employee)));

temp4(SSN:VARCHAR)

Number of tuples = 5

333445555:

123456789:

666884444:

453453453:

888665555:

RA>
2.3 Relational Algebraic Operators Supported by the RA Interpreter
Select: As can be noted from the grammar, the select operator supported by the interpreter has the following syntax:
select[condition](expression)

where condition is a conjunction of one or more simple conditions involving comparisons of attributes or constants with other attributes or constants. The attributes used in the condition must be present in the attributes of the relation corresponding to expression.

Project: The project operator supported by the interpreter has the following syntax:

project[attribute-list](expression)

where attribute-list is a comma separated list of attributes, each of which is present in the attributes of the relation corresponding to expression.
Rename: The syntax for the rename operator is

rename[attribute-list](expression)

where attribute-list is a comma separated list of attribute names. The number of attributes mentioned in the list must be equal to the number of attributes of the relation corresponding to expression.

Join: The syntax for the join operator is

(expression1 join expression2)

There is no restriction on the schemas of the two expressions.

Times: The syntax for the times operator is

(expression1 times expression2)

There is no restriction on the schemas of the two expressions.

Union: The syntax for the union operator is

(expression1 union expression2)

The schemas of the two expressions must be compatible (same number of attributes and same data types; the names of the attributes may be different).

Minus: The syntax for the minus operator is

(expression1 minus expression2)

The schemas of the two expressions must be compatible (same number of attributes and same data types; the names of the attributes may be different).

Intersect: The syntax for the intersect operator is

(expression1 intersect expression2)

The schemas of the two expressions must be compatible (same number of attributes and same data types; the names of the attributes may be different).
2.4 Examples

The queries from Section 6.5 of the Elmasri/Navathe text modified to work with the RA interpreter are shown below:
Query 1: Retrieve the name and address of employees who work for the "Research" department.

project[fname,lname,address](

(rename[dname,dno,mgrssn,mgrstartdate](

select[dname='Research'](department))

join

employee

)

);

Query 2: For every project located in "Stafford", list the project number, the controlling department number, and the department manager's last name, address, and birth date.

project[pnumber,dnum,lname,address,bdate](

(

(select[plocation='Stafford'](projects)

join

rename[dname,dnum,ssn,mgrstartdate](department)

)

join employee

)

);

Query 3: Find the names of employees who work on all the projects controlled by department number 5.

project[lname,fname](

(employee

join

(project[ssn](employee)

minus

project[ssn](

(

(project[ssn](employee)

times

project[pnumber](select[dnum=5](projects))

)

minus

rename[ssn,pnumber](project[essn,pno](works_on))

)

)

)

)

);
Query 4: Make a list of project numbers for projects that involve an employee whose last name is "Smith", either as a worker or as a manager of the department that controls the project.

(project[pno](

(rename[essn](project[ssn](select[lname='Smith'](employee)))

join

works_on

)

)

union

project[pnumber](

(rename[dnum](project[dnumber](select[lname='Smith'](

(employee

join

rename[dname,dnumber,ssn,mgrstartdate](department)

)

)

)

)

join

projects

)

)

);

Query 5: List the names of all employees with two or more dependents.

project[lname,fname](

(rename[ssn](

project[essn1](

select[essn1=essn2 and dname1<>dname2](

(rename[essn1,dname1](project[essn,dependent_name](dependent))

times

rename[essn2,dname2](project[essn,dependent_name](dependent)))

)

)

)

join

employee)

);

Query 6: Retrieve the names of employees who have no dependents.

project[lname,fname](

((project[ssn](employee)

minus project[essn](dependent)

)

join

employee

)

);

Query 7: List the names of managers who have at least one dependent.

project[lname,fname](

((rename[ssn](project[mgrssn](department))

join

rename[ssn](project[essn](dependent))

)

join

employee

)

);

Lab Exercises

Specify and execute the following queries using the RA interpreter on the COMPANY database schema.

1. Retrieve the names of all employees in department 5 who work more than 10 hours per week on the ‘ProductX’ project.
2. Find the names of employees who are directly supervised by ‘Franklin Wong’.
3. Retrieve the names of employees who work on every project.

4. Retrieve the names of employees who do not work on any project.

