
Information and Computer Science Department

ICS 324 – Database Systems

Lab#12

SQL-Advanced Query
Objectives
The objective of this lab is to learn the query language of SQL.
Outcomes

After completing this Lab, students are expected to:

· Select data from table(s).

SELECT Statements

Most of the queries on the relational databases use SELECT statements. The SELECT statement can do projection (selecting specific columns), selection (filtering some rows), and join (retrieving result from more than one table). In this lab, we will discuss aliasing, using common operators and single row functions, removing duplicates, filtering, and sorting.

1. Multi-rows (aggregate) functions and Grouping
Multi-rows functions will evaluate column values from numbers of records. It can combine with GROUP BY clause to evaluate within the same group. Use HAVING clause to filter grouping condition result. The syntax is:

SELECT [column,] group_function(column), ...

 FROM table

 [WHERE condition(s)]

 [GROUP BY column]
 [HAVING group_condition]
 [ORDER BY {column | expr | numeric_position } [DESC|ASC];

SELECT clause can only include columns that are specified on GROUP BY clause. However, The GROUP BY column does not have to be in the SELECT list.

Some useful multi-row (aggregate) functions

	Functions
	Description

	AVG ([DISTINCT|ALL] n_expr)
	Average value of n_expr, ignoring null values

	COUNT ({*|[DISTINCT|ALL] expr })
	Count number of rows of not-null values of expr. Use * to count all rows including duplicates and rows with nulls.

	MAX ([DISTINCT|ALL] expr)
	Maximum value of expr, ignoring null values

	MIN ([DISTINCT|ALL] expr)
	Minimum value of expr, ignoring null values

	STDDEV ([DISTINCT|ALL] n_expr)
	Standard Deviation value of n_expr, ignoring null values

	SUM ([DISTINCT|ALL] n_expr)
	Sum value of n_expr, ignoring null values

	VARIANCE ([DISTINCT|ALL] n_expr)
	Variance value of n_expr, ignoring null values

Note: expr indicate any type of expression, while n_expr indicates expression of numeric only. Use DISTINCT option to evaluate distinct non-null values. To enforce including null values use NVL function. Multi-rows function can be nested to a depth of two.

Examples:

SELECT COUNT(*) "Number of Employees", AVG(commission_pct) "AVG Commission w/o nulls",
AVG(NVL(commission_pct,0)) "AVG Commission"
 FROM employees
 WHERE manager_id IS NOT NULL;
SELECT department_id, job_id, MIN(hire_date), MAX(salary)
 FROM employees

 GROUP BY department_id, job_id;
SELECT department_id, AVG(salary), MIN(salary), MIN(salary)
 FROM
 employees

 GROUP BY department_id

 HAVING AVG(salary) >= 5000

 ORDER BY AVG(salary) DESC;
SELECT MIN(AVG(salary))
 FROM employees

 GROUP BY department_id;
2. Joins
Joins or displaying data from multiple tables have different types, such as:

a. Cross Join

b. Natural Join

c. USING clause Join

d. Outer Join

e. Conditional join

The general syntax of joins operation is:

SELECT table1.column, table2.column

FROM table1

[NATURAL JOIN table2] |

[JOIN table2 USING (column_name)] |

[JOIN table2 ON (table1.column_name = table2.column_name)]|

[LEFT|RIGHT|FULL OUTER JOIN table2 ON
 (table1.column_name = table2.column_name)]|

[CROSS JOIN table2] |

[,table2 , … [WHERE Condition(s)]];

NATURAL JOIN clause is based on all columns in the two tables that have the same name and data type. It selects rows from the two tables that have equal values in all matched columns.

Example:

SELECT department_id, department_name,location_id, city

FROM departments

 NATURAL JOIN locations

In the above example, there is a common column between departments and location tables, which is location_id. Therefore, it will display only matched location_id rows.

In the case of joining based on only specific (not all) common columns, then modifying NATURAL JOIN with USING clause is appropriate.

Example:

SELECT employee_id, last_name,location_id, department_id

FROM employees JOIN departments

 USING (department_id);

Alternatively, when we would like to join tables based on non-common columns using ON clause is recommended.

SELECT employees.employee_id, employees.last_name,
 departments.department_id , departments.location_id

FROM employees JOIN departments

 ON (employees.department_id = departments.department_id);

The additional condition(s) also may be added to the ON clause to filter more on joining multiple tables.

Example:

SELECT employees.employee_id, employees.last_name,
 departments.department_id , departments.location_id

FROM employees JOIN departments

 ON (employees.department_id = departments.department_id)

 AND employees.job_id = 'SA_REP';

In addition to equality, after ON clause, non-equality condition also can be used to join tables. This is called non-equijoins.

Example:

SELECT e.last_name, e.salary, j.grade_level

FROM employees e JOIN job_grades j

 ON e.salary BETWEEN j.lowest_sal AND j.highest_sal;
Concatenating more than one JOIN operations can be utilized to join more than two tables in one single SELECT statement. For instance, the following query will join employees, departments, and location tables:

SELECT employee_id, city, department_name

FROM employees e JOIN departments d

 ON d.department_id = e.department_id

 JOIN locations l

 ON d.location_id = l.location_id;

Can we join using the same table? Yes, we can join the same table. For example, the following query: "Display fist name, last name, salary, and his/her manager's last name". To solve this query, we have to use Employees table for both two references (the workers and the managers). This is called Self-Join.

Self-Join requires to have table aliases to distinguish different roles of the same table. Table alias is used for simplifying queries, improving performances, and reducing name conflicts and ambiguities.

Therefore, the above query can be written as:

SELECT wrk.first_name, wrk.last_name emp, wrk.salary,

 mgr.last_name manager

FROM employees wrk JOIN employees mgr
 ON (wrk.manager_id = mgr.employee_id);

The above-discussed join operations will result only matched rows based on the join condition. These are called inner joins. To display the un-matched rows, the outer join can satisfy, by using FULL|LEFT|RIGHT OUTER JOIN clause. The FULL option will display the un-matched rows from both left and right table, the LEFT option will display only un-matched rows from left table, and the RIGHT option will display only un-matched rows from right table.

Examples:

SELECT e.last_name, e.department_id, d.department_name

FROM employees e LEFT OUTER JOIN departments d

 ON (e.department_id = d.department_id) ;

SELECT e.last_name, e.department_id, d.department_name

FROM employees e RIGHT OUTER JOIN departments d

 ON (e.department_id = d.department_id) ;

SELECT e.last_name, e.department_id, d.department_name

FROM employees e FULL OUTER JOIN departments d

 ON (e.department_id = d.department_id) ;

Cartesian or cross product will join all rows in the left table with all rows in the right table. It will generate number of rows on the left table multiply by number of rows on the right table. Using CROSS JOIN clause causes the Cartesian product. For example:

SELECT last_name, department_name

FROM employees CROSS JOIN departments;
Similar case when we list name of tables after FROM clause separated by comma. It will cause the Cartesian product. For example:

SELECT last_name, department_name

FROM employees, departments;
Even though the Cartesian product can be combined with WHERE clause to generate the same result as JOIN operations discussed above. This operation (Cartesian product with WHERE clause) is much less effective compared with JOIN operation.

3. Sub-queries

Sub-query (or nested query) is a query inside another query. The following is the common syntax of sub-query:

SELECT select_list

FROM table

WHERE expr operator

(SELECT select_list

 FROM table);

Guidelines:

· The sub-query (inner query) is executed once before main query

· The result of sub-query is used by the main query

· Enclose sub-query in parenthesis

· Place sub-query on the right side of the comparison condition.

· Use single-row operator with single-row sub-query, and use multiple-operator with multiple-row sub-query.

Single-row sub-query generates one single row. It should be used with single-row comparison operators, such as: =, <, <=, >, >=, or <>.

Example:

SELECT last_name, job_id, salary

FROM employees

WHERE salary = (SELECT MIN(salary)

 FROM employees);

Multi-row sub-query generates multiple rows. Therefore, multiple-rows operators must be used:

	Operator
	Description

	IN
	Equal to any member of the list

	ANY
	Compare value to each value returned by the sub-query

	ALL
	Compare value to every value returned by the sub-query

Examples:

SELECT employee_id, last_name

FROM employees

WHERE salary IN (SELECT MIN(salary)

 FROM employees

 GROUP BY department_id);

SELECT employee_id, last_name, job_id, salary

FROM employees

WHERE salary < ANY (SELECT salary

 FROM employees

 WHERE job_id = 'IT_PROG');
SELECT employee_id, last_name, job_id, salary

FROM employees

WHERE salary < ALL (SELECT salary

 FROM employees

 WHERE job_id = 'IT_PROG');
The sub-query also can apply to a multi-column. Each row of the main query is compared to values from a multiple-row and multiple-column subquery. It is commonly used as pair-wise comparison. For example: "List the employees who are managed by the same manager and work in the same department as Employee_id is 174". It can be written as:

SELECT employee_id, manager_id, department_id

FROM employees

WHERE (manager_id, department_id) IN

(SELECT manager_id, department_id

 FROM employees

 WHERE employee_id = 174);
Another type of sub-query is correlated sub-query. Each sub-query is executed once for every row of the outer query. It has relation (or reference) between the sub-query and the main query. It has the following common syntax:

SELECT column1, column2, ...

FROM table1 outer
WHERE column1 operator (SELECT column1, column2

 FROM table2

WHERE expr1 = outer.expr2);

For example: "List employees who has salary above the average salary within the same manager". It can be written as:

SELECT last_name, salary, manager_id

FROM employees outer

WHERE salary > (SELECT AVG(salary)

 FROM employees

 WHERE manager_id = outer.manager_id);

The EXISTS operator is also available to be use in conjunction with correlated sub-query. It is used to examine if the sub-query has a result. If the sub-query returns at least one rows then the EXISTS operator will result true. For example: "Display all employees who have at least one person reporting to them". It can be answered as:

SELECT employee_id, last_name, job_id, department_id

FROM employees outer

WHERE EXISTS (SELECT *
 FROM employees

 WHERE manager_id = outer.employee_id);

4. Set operation

The result of the query is considered as a set. The SET operation can be applied to the query. The applied SET operations are UNION / UNION ALL, INTERSECTION, and MINUS. The UNION operator returns results from both queries after eliminating duplications. The UNION ALL operator returns results from both queries including all duplications. The INTERSECT operator returns rows that are exist on both queries. The MINUS operator returns rows in the first query that are not present in the second query.

To be able to use SET operations, both queries must have union compatible result. It means the expression on the SELECT clause for both queries must have the same number and data type. The result of the set operators will be no duplicate rows, except for UNION ALL. Column names from the first query will be used in the result.

Examples:

SELECT employee_id, job_id

FROM employees

UNION

SELECT employee_id, job_id

FROM job_history;

SELECT employee_id, job_id

FROM employees

UNION ALL
SELECT employee_id, job_id

FROM job_history;

SELECT employee_id, job_id

FROM employees

INTERSECTION
SELECT employee_id, job_id

FROM job_history;

SELECT employee_id, job_id

FROM employees

MINUS
SELECT employee_id, job_id

FROM job_history;

Lab Exercises

Write SELECT statement and save the SQL script for each exercise (or query).

1. List last name and number of employees reporting to for all managers who have more than two employees reporting to.
2. List the employees (last name, department name and salary) whose salary is the highest within his/her department.
3. Display department id, department name, and number of employees, and average salary for each department. Display the department with the most number of employees first. Include also the department that does not have any employee. Give appropriate column heading.

4. Display last name and number of employees reporting to for all employees. Write 0 (zero) for employees who do not have other employees reporting to.

5. Display the contact address of managers of departments in form concatenating first name, last name, department name, and full address. Example of expected result:
Jennifer Whalen , Manager of Administration. 2004 Charade Rd Seattle, Washington, US.
