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Abstract

Various models have been developed, for the designing of
distinct objects, for applications like font designing, Com-
puter Aided Design (CAD), Computer Aided Engineering
(CAE}, etc. Some methods are better suited for controlling
the shape of the curve on an interval, while others are bet-
ter suitedfor controlling the shape at the individual control
points. This work reviews C2 rational splines with inter-
val tension [3,5] and extends this work for the modelling of
interpolatory curves and surfaces through B-spline formu-
lation.

1 Introduction

Modelling, for interactively designing 2D or 3D objects
using splines, is a significant area of Computer Graphics.
Splinning gives rise to a lot of features including reasonable
smoothness, economical computation, ideal storage facility,
extra degrees of freedom in the form of shape parameters,
useful geometric transformations like translation, scaling,
rotation etc. Each of the above features justify the use of
splines in computer graphics in their own right.
A rational cubic spline with interval tension was described
and analysed in [ 11. It provides a C2 computationally sim-
pler alternative to the exponential spline under tension [2]
and an alternative to C’ and GC2 spline methods like the
weighted v-spline [3]  and y-spline [4]. The rational cubic
spline maintains the C2 parametric continuity of the curve,
rather than the more general geometric GC2 arc length con-
tinuity achieved by the v-spline and P-spline. Regarding
shape characteristics, it has a shape control parameter as-
sociated with each interval which can be used to flatten or
tighten the curve both locally and globally. Since the spline
is defined on a non-uniform knot partition, the partition it-
self provides additional degrees of freedom on the curve.
However the parameterization  is normally expected to be
defined on a uniform knot partition, or by cumulative chord

length, or by some other appropriate means.
This paper presents a description and analysis of a rational
cubic interpolatory spline which has a shape parameter asso-
ciated with each interval. The spline can be used in CAGD,
to represent the parametric curves and surfaces in interpo-
latory form. The rational spline is based on a rational cubic
Hermite interpolant. Section(4) describes the freeform ra-
tional spline and analyses its behavior with respect to shape
parameter in each interval. Section(S) describes the inter-
polatory rational spline, with examples which illustrate the
interval tension property of the rational spline. Section(6)
and section(7)  describe freeform and interpolatory surfaces
respectively.

2 c” Rational Cubic Hermite Interpolant

A piecewise rational cubic Hermite parametric function
p E C’[te,  t,], with parameters T;, i = 0,. . . , n - 1 and
data points Fi E RAY,  11;  > 2, is defined for t E [ti, ti+i],
~=O,...,IL-1,by
y(t) = pi(t;ri)  =

(

(I-QJ’F,+~(l-~)2(~,F,+h,D,)+02(1--B)(r.,F,+,--h,D,+,)+~~F,+,

l+(F,-3)8(1--B) ) (1)

Where I) = (Fi+l - Fi)/hi, and 17i = ti+i - ti. The Di’s
here denote the first derivatives at ti’s. The 7i 2 0, will be
used as tension parameters to control the shape of the curve.
The case 7; = 3, i = 0,. . ? n - 1, is that of cubic Hermite
interpolation and the restriction 7i > - 1 ensures a positive
denominator in equation( 1).
The function p(t) has the Hermite interpolation properties :

p(ti) = Fi and 17(‘)(tz)  = Di, 2 = 0, . .? ‘/L.

For 7i # 0, equation( 1) can be written in the form:

(p,(t,r,)=H,,(e,l.,)~‘,+R,(Q;1.,)V,+1~z(o;r,)~~,+~~~(~;r,)~~+~),  ( 2 )

where

K = Fi + h.iDi/ri,  I/Vi = Fi+l - lLiDi+,/ri,
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and Rj (6’; ri), j = 0, 1,2,3,  are appropriately defined ratio-
nal functions with

2 Rj(BX) = 1. (3)
j=o

Moreover, these functions are rational Bernstein-Bezier
weight functions which are non-negative for ri > 0. Thus
in RN, N > 1 and for 7’;  > 0 the convex hullproperty holds
i.e the curve segment Pi lies in the convex hull of the con-
trol points {Pi, Vi, Wi, Pi+, }. Moreover, the variation
diminishing property also holds of the rational cubic i.e the
curve segment pi crosses any (hyper) plane of dimensions
N-l no more times than it crosses the control polygon join-
i n g  F;, Vi, Wi, -Pi+,.
The rational cubic of equation( 1) can be expressed as:

pi(t;r;)  = /i(t) + ei(t;ri),  where
ii(t) = (1 - B)Fi + BFi+i

fZi(t;  1.;)  =
h,B(l-C?)[(A,-D,)(Q-,)+(A.;-D,+,)O]

1+(r,-3)6yl-Q)

This immediately leads to Interval tension property i.e.
for given fixed (or bounded) Di, D;+i , the rational cubic
Hermite interpolant of equation( 1) converges uniformly to
the linear interpolant on [ti, ti+i] as Ti  --) Co.

In the following section, a C2 rational spline interpolant is
constructed. This requires knowledge of the 2nd derivative
of equation( 1) which, after some simplification, is given by

(&P)(t;r  )=
2{~~,s~+a,s*(1-e)+t,e(l-~)2+6i(l-~)~}

I t Ir,{l+(r;--1)8(1-0)}3 I

where

(ii = Ti(Di+l  - Ai) - Di+t + Di

/Ifi = 3(Di+l  - A;)

7; = 3(Ai - Di)

Si = r;(Ai - Di) - Di+l + Di

3 C2 Rational Cubic Spline Interpolant

(4)

We now follow the familiar procedure of allowing the
derivative parameters Di, i = 0,. . . , n to be degrees of
freedom which are constrained by the imposition of the C2
continuity conditions

p(2)@;+)  = p(2)@&  i = 1,. . ) 7L - 1. (5)

These C2 conditions give, from equation(4), the linear sys-
tem of consistency equations,

(h,D,-l+th,(~,-l-l)+~,-l(~;-l)~~i+~,-lD;+l) (6)

=(h,r,_,~;_~+h~_,r~~,,  i=l,..., n-l)

For simplicity, assume that Do and D, are given as end con-
ditions ( clearly other end conditions are also appropriate).
Assume also that

ri 2 ‘f > 2, a = 0,. . . , n - 1

Then the equation(6) defines a diagonally dominant, tri-
diagonal linear system in the unknowns Di, i = 1,. ,71-  1.
Hence there exists a unique solution which can be easily
calculated by use of the tri-diagonal LU decomposition al-
gorithm. Thus a rational cubic spline interpolant can be
constructed with tension parameters ri, i = 0, ? 71 - 1,
where the special case Ti = 3, i = 0,. . . , n - 1, is that of
cubic spline interpolation.

4 Rational Cubic Spline with Interval Ten-
sion

This section reviews the rational spline with tension (B-
spline representation) method [l]. For the purpose of the
analysis, let additional knots be introduced outside the in-
t e rva l  [tO,tn], defined by t-3 < t-2 < t-1 < to and
t, < tn+i < tn+2 < b+3.  L e t

I ’ ,  2 I’  >  2> i= -3,...,n+2 (7)

be shape parameters defined on this extended partition. Ra-
tional cubic spline functions $j, j = -1,. , n + 3, have
been constructed, see Figure l(a), such that

+j(t) = 0, for  t < tj_2 (8)
dj(t)  = 1, for t > tj+l

The local support rational cubic B-spline basis, see Figure
1 (c) is now defined by the difference functions:
Bj(t)  =$:j(t)-$j+l(t),  j = -l,...,n+lLetRk(ti;r;),
k = 0, 1,2,3  be defined as :

Ro(B;ri)  = (1 - B)“/Qo(l);~i),

Rl(B;ri) = ri6’(1 - S)2/Qa(S;~;),

Rz(6’;T;)  = rio2( 1 - @)/Qo(@;  Ti),

R3(8; ri) = H’/Qo(B;Ti)

where Qa(t);ri)  = 1 + (,r; - 3)0(1  - 6’).
A local support rational cubic B-spline basis Bj (t), j =
- 1, . . , n+ 1 was constructed and an explicit representation
was given as:

Bj(t)  =(s(e;r,)B,(t,)+R,(e:r,)(B,(ti)+h,BS”(t,)/r,))+  ( 9 )

(R~(S;P,)(~.,(t,+~)-h*~,~“(t,+~)/r,)+R~(~;r,)Bj(t;+~)),

where

Bj(ti) = Bj’)(ti) = 0, for i # j - l,j,j + 1 (10)

and

Bj(tj-I)  = PLj-1, B$tj-,)  =  pj-,, (11)

Bj(tj)  = 1  - xj - PLj, nj”(q = xj - j?j,

Bj(Q+,) =  &+I, B;‘)(tj+])  = -&+I
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11.7 1 I.1

(a) The ratikal  sb;ke Vj(t)

’ i-2 ’ i-l 8
(b) The r~tion~~&lin~~

’ i -2 ’ i - l ‘i ‘I+1 ’ i+2

(c) The rational B-spline Bj(t)

Figure 1. The rational spline forms

with

(Xj=hjcli;/VJ. tij=h~-lG/r,-~).
(Xj=hjdj_l/cj. Gj=hj-ld,+llcj+l).

(cj=hj-ldj(~+~)+hjdj-l(~+~)+“J-~l~;’d~),

dj = hj(rj-1 - 2) + hj_l(Tj - 2)

These rational spline functions, see Figure 1, are such that

1. (local support) Bj(t)  = 0, fort E (tj-2,  tj+z),

2. (Partition of unity) CyL1, Bj(t) = 1, for t E [to, tn]

3. (Positivity) B?(t) 2 0, for all t,

and hence enjoy all the B-spline properties
The design curve is given by:

n+l

p(t) = C PjBj(t), t E [tO,tn] (12)
j=-1

where Pj E R” define the control points, was transformed
to the piecewise defined rational Bernstein-Bezier represen-
tation, see Figure 2, as

(P(t)=Ro(B;r,)F,+RI(B;r;)V,+~~~(e;r,)W,+~),  (13)

Figure 2. Rational Bernstein-Bezier
representation

where

R-lxi $ Pz'(  I - Xi - /Li)  + Pi+l~i = F; (14)

(l - @i)Pi  + cUiPi+l  = x

PiPi  + (1 - pj)Pi+l  = pi

with

Let

(iii = /LL; + hijTi/Ti (15)
,3i = Ai+, + hij;i+,/Tj

Xi=[Fi Vi Wi Fi+r] ‘, 2; = [Pi-l Pi Pj+l Pi+z]’

and

r Xi 1 -Ai -pi /Ai 1

1 Xi+1 1 - xi+1 -Pi+1 Pi+1 J

(16)
Then the transformation of equation( 14) can also be repre-
sented in matrix notation as

Xi = x.2; (17)
The transformation to rational Bernstein-Bezier form is very
convenient for computational purposes and also leads to:

1. Variation diminishing property: The rational B-
spline curve p( t), t E [to, tn], defined by equation( 12),
crosses any (hyper) plane of dimension N-l no more
times than it crosses the control polygon P joining the
control points { Pj}::‘,  , see Figure 3.
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Figure 3. Variation diminishing property

2. Global tension property: Let r; 2 T’ > 2, i =
-2,. . , n + 1, and let P denote the rational B-spline
control polygon, defined explicitly on [ti, ti+t], i =
-l,...,nby

P(t) = (1 - O)Pi  + tiPi+,, (18)

then the rational B-sphne representation (12) converges
uniformly on [t-r, t,+t] as T + 00, see Figure 4(a)

3. Interval tension property: Consider an interval
[tk,tk+t]forafixedkE  {0,...?7~-  1)andlet

Qk = (1 - P)J’~ + /&+I.
Qk+l = xpk + (1 - x)pk+I

denote two distinct points on the line segment of the
control polygon joining 9, Pk+ 1, where

hk+l/Tk+l

A =  (j&k-l/rk-1  +  hk+l/Tk+l +  fLk)

’ =  (hk--1/rk--l  +  hk+l/Tk+,  +  hk)

Then the rational B-spline representation of
equation( 12) converges uniformly to Q, see Figure 4(b)
on [tk, tk+t] as rk -t co, where

Q(t) = (1 - e)Qk + o&k+1 (19)
Figure 4(b) illustrates the interval tension behavior of
the curves. As the value of T’k  and Tk+l  increases the
resulting curve segment approaches the line segment
pk,pk+l.

For the proof of the above properties the reader is referred
to [5].

Figure 4. Global and local tension properties

733



5 Interpolatory Rational Spline with Interval
Tension

In interpolatory case we are given a set of data points
Fe, F1 , . . ? F, . We require a cubic B-spline curve p deter-
mined by unknown control vertices P_ 1, PO, . . , Pn+ 1, such
that p(ti) = Fi, in other words, p interpolates to the data
points. The process of obtaining the interpolatory rational
cubic B-spline with interval shape control is accomplished
through

n+l
C PjBj(t)  = Fi, V i
j=-1

(20)

where the matrix Bj(t)  is the tridiagonal matrix. From
equation( 14) F;‘s, i = 0, . . . , n can be written as

Fi = pi-IXi  + Pi(l - Xi - r_li) + pi+,pi (21)

T.P = F (22)

The above set of equations for Fi, i = 0,. , II , i.e the
given set of data points, through which the resulting curve
must pass, and the control points P’s can be written as in
equation(22). As such the above system is underdefined
and for a unique solution we need to specify two further
conditions, one at the start and one at the end of the curve.
We shall repeat the two end control points, although it is
not the only end condition available. The above system of
equations is tridiagonal- only the diagonal elements and the
two neighbors are nonzero. By exploiting the structure of
the tridiagonal matrix we can solve the resulting system of
equations more efficiently and bypass the standard elimina-
tion techniques.
From equation(22) we get

P = T- ‘ .F (23)

That is the control vertices of the curve which passes through
the given data points F;‘s are given by the Pi’s as in
equation(23). When these values of Pi’s are substituted
in equation(l2),  we get the required C* interpolatory B-
spline curve with interval tension.

Examples The shape behavior of the interpolatory ratio-
nal splines with interval tension are illustrated by the fol-
lowing examples for the data set in R*.  The global tension
behavior is shown in Figure 5, where all shape parameters
are progressively increased with values 3, 7, and 50. The
effect of the high interval tension is clearly seen in that the
resulting spline curve in Figure 6(c) approaches the control
polygon. Figure 6(b) and Figure 6(c) display the interval
tension behavior applied to the curve of Figure 6(a).

Figure 5. lnterpolatoty curves
with global tension
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6 Freeform Rational B-Spline Surfaces

//.--  --...,)

i

f-‘--Y

i
-.W...----_

\, r=50

Figure 6. lnterpolatoty curves
with local tension

(4

lb)

(4

In this section we generalize the idea of section(4)  to sur-
faces.

6.1 Rational B-Splines and the Design Surface

Suppose that we are given points

Pi,iER’, ix-1 ,..., m+l,j=-l,...,  n+l (24)

and knot sequences

t, < i; < . . . < t,

t, < tl < . < t,

with appropriate additional knots

t-3 < t-2 < t-1 < 6; t, < t,,, < tm+2  < tm+3,

t-3 < t-2 < t-1 < to; t, < tn+l < tn+2 < tn+3

We need to find a para_metric  ratio@  B-spline surfacep(6  t)
in such a way that p( t, tj) and p( ti> t) are freeform rational
cubic splines with tension in g and t-directions for all i and
j respectively.
Suppose we are given tension parameters

(F,,,>2 ad r,,,>2,  i=-3 ,..., m+2. j=,-3  ,,.., n+2). (25)

with nk(< t) and Bl(t,T) the corresponding rational B-
spline basis functions, as in section(4) but with variable
cubic B-spline tensions Ti (t) and ~j (?) defined as:

(26)

where Nj (t)‘s are cubic B-splines. These can be computed
as a special case of the rational cubic splines of section(4).
Remark The convex hull property of ivj and equation(25)
show that 7;(t), r3 (t) > 2, Vi, j, t, and z Also, for any j

yi(t)  = 0, t g (tj-2,  $+2)

and for any i

r&) = 0, i-$ (tj-2,  ti+2)

Furthermore, a large value of the shape parameterFi,j  for any
j results in large values of iri(t) in the intervals [tj-1, tj],
[tj, tj+l] and [tj, tj+l].  A similar characteristic is pos-
sessed by rj(F). Thus a sufficiently large value of any of
the shape parameters in equation(25) ( for i = 0, . . . , m - 1,
J’ = 0, , ‘71 - 1) results in a sufficiently large value of the
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variable weight in the corresponding interval. In particular,
ifanyofFi,jandri,j,%=O  ,..., 777-l,j=O  ,..., 7L-ltend
to infinity, it causes the corresponding values from amongst
Fi(tj)  and 7j(c),  Z = 0 ,..., m - 1, j = 0 ,..., 71 - 1 re-
spectively to approach infinity. Hence the shape parameters
in equation(25) are chosen in such a way that one shape
parameter is associated with each interval.
The surface by local support property is defined as:

where  ti 5 t < z.+i; tj 5 t < tj+1, i = 0,. . . ) In -
l,:,=O,...,n-1
Substitution of the Bernstein-Bezier form of the rational
B-splines gives the piecewise defined rational Bernstein-
Bezier representation:

-
where the Bernstein-Bezier points X;$(t, t) can be com-
puted from the rational B-spline vertices P;,j as

where

Xi,j  =

x;,j = y,.Zi,j.YjY‘

xg xi::’ . . . x;;;1 ’
x;,; . . . . . . . . .

. . . . . . . . . . . .

(29)

1 x$ ... ... xi::’ 1

I P;_,.+1 Pi-1.j ... Pi-l.j+2

Zi,j =
Pj,j_l ........

............ 1
1 Pi+2,j-I **. Pi+2,j+2  1

and the matrix Yj is given as in equation( 16) as well as
y; provided tildes are put where appropriate. k;: and YjT

now depend on tand  t respectively.
Tension Properties The rational B-spline surface represen-
tation equation(28) satisfies the global tension property and
the local tension property as proved in [5].

7 Interpolatory Rational B-Spline Surfaces

Expanding equation(29) we get the points through which
the freeform rational B-spline surface passes, for given con-
trol points say P’s. Here in our case we need to find P’s (the
new control points) given the data points F’s, through which
the interpolatory rational B-spline surface should pass. Let

us denote it by F:

Fi,j = X =(7i,[~,-l,,,-Ix,+~-‘,-I,,(I-X,-~,)+I-’,-I,,+i~j])+  (30)

(~l-~,-;,)[R  ,,-i~,+~,,,(I-x,-~,~+P,,,~+,~,,l)+

(~f~[~‘.+,..,-,x,+P,+1,, ~~~-x~~~~~+p~+l,j+l~cjl~

For i = 1,. . ,71  and ,i = 1, . . . , IIL.

We can observe from the above that the sum of the coeffi-
cients of P’s equal to unity. Which means that the resulting
interpolatory surface satisfies the convex hull property. Let

Ai,j = Pi,j-lXj  + Pi,j(l - Xj - p~j)  + Pi,j+lpj (31)

Equation(30) can be expressed as :

F = T.A

Since T is invertible, we get from equation(32)

(32)

A=T-‘.F (33)

Moreover, from equation(31) A can be expressed as:

_il = D.P (34)

The process of calculating the new control points P’s, is car-
ried out in two stages, first the entire matrix A is calculated.
Then the new control points P’s can be calculated as

P = D - ‘ . A  ’ (35)

which when substituted in equation(28), gives the required
interpolatory surface with interval tension which can be con-
trolled both locally and globally.
Examples Consider a set of three dimensional data. The
figures below show the effect of increase in tension, both
locally and globally. Figure 7(a) is the control net. Surface
in Figure 7(b) corresponds to the value T’ = r = 3 (the bicu-
bit case). Surface in Figure 8(a) converges to the control
polyhedron as I’ = 7 = 50. The local change of tension
parameters is evident in Figure 8(b).

8 Concluding Remarks

An analysis of a rational cubic tension spline has been de-
veloped with a view to its application in CAGD. We found
it appropriate to construct a rational form which involves
just one tension parameter per interval, although clearly the
rational form defined by equation( 1) could be generalized.
One advantage of the use of C2 parametric continuity, com-
pared with that of the more general geometric GC2 conti-
nuity, becomes apparent in the application of such a rational
spline method to surfaces. In this case we followed the
approach of [6], in the use of the spline blended methods
of [7]. Nielson proposes a spline blended surfaces of GC2



(a)

(b)

(4

(b)

Figure 8. lnterpolatoty surfaces
with interval tension

Figure 7. lnterpolatoty surfaces
with interval tension

curves. However, the use of parametric C2 curves in the
blend will alleviate this loss of continuity.
The idea of C2 freeform rational B-spline is extended to
achieve a C2 interpolatory parametric rational B-spline
which can be controlled locally and globally. For CAGD
applications, the developed interpolatory spline provides a
parameter to control the shape of a curve on each interval.
The surface has been designed through the sum of the prod-
ucts of bivariate rational B-spline basis functions. The use of
variable tensions allows shape control. This is not a tensor
product surface but a tensor product surface can be recov-
ered as a special case. This is not a NURBS representation
either; the NURBS representation of the surface has some
limitations regarding its shape control. Computation of the
surface has been suggested through the Bernstein-Bezier
representation which is quite convenient.
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