N,

Fes INFORMATION
;’ﬁﬁ SCIENCES
ELSEVIER Information Sciences 131 (2001) 19-46

www.elsevier.com/locate/ins

MRG parser for visual languages
Muhammed Al-Mulhem *, Mohammed Ather

Information and Computer Science Department, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia

Received 10 October 1999; accepted 4 July 2000

Abstract

The theory of visual programming languages (VPLs) is very crucial for under-
standing the visual programming approach. It includes basically formal models for
specifying VPLs and the corresponding parsing algorithms. This paper presents a
grammatical formalism and an efficient parsing algorithm for visual languages. The
proposed formalism, called modified relation grammar (MRG), is a restricted form of
the relation grammar (RG). MRG restricts the form of productions and distributes the
evaluation rules among various production rules, which makes the grammar more
readable. The paper also presents an efficient O(n) parsing algorithm for MRG. The
paper includes a number of examples to demonstrate the proposed formalism. It also
includes a discussion on the expressive power of the proposed grammar and the cor-
rectness of its parsing algorithm. Finally, the paper compares the proposed grammar
and its parsing algorithm with a similar restricted form of the RG. © 2001 Elsevier
Science Inc. All rights reserved.

Keywords: Grammar; Parsing; Nonlinear languages; Visual languages; Visual program-
ming

1. Introduction

Visual programming languages (VPL) [4,15,16,19,21,22] has attracted the
attention of researchers in computer languages for many years. For visual

* Corresponding author.
E-mail address: mulhem@kfupm.edu.sa (M. Al-Mulhem).

0020-0255/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.
PILS0020-0255(00)00080-3

20 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

languages to be accepted as an alternative for textual languages there is a need
for a lot more work in the theoretical background of this area. Recently there
are various attempts in that direction for developing grammatical formalism,
parsing algorithms, and compiler generator tools for visual languages.

Syntactic, interactive, learning, icon-oriented system compiler (SILICON
Compiler) [20] is a software system for the specification, interpretation, pro-
totyping and generation of icon-oriented systems. It is based on the concept of
generalized icon. A generalized icon is represented as (X,,, X;) where X, is called
the logical part (semantics), and X; is called the physical part (syntax). It uses
picture grammar to specify the physical part of the icons (concrete syntax of a
visual language). A picture grammar is a context-free grammar where terminal
symbols include both primitive picture elements and spatial operators.

Visual grammars [14] are used for describing VPL. A visual grammar is
basically a context free grammar annotated to indicate the spatial arrangement
of picture elements. The right-hand side (RHS) of each production is a spatial
template indicating the picture components and spatial arrangement among
them. The RHS elements can be visual literals (i.e., terminals) or nonterminals.
In this formalism an input sentence is viewed as a spatial arrangement of text-
graphic symbols where each text-graphic symbol is either a fragment of text or
a primitive graphical element. A top down spatial parser based on this for-
malism has been developed with exponential time complexity [12].

Positional grammars are used as a grammatical formalism for the specifi-
cation and parsing of VPL [9,10]. It is an extended version of the context-free
grammar. A generalized LR parsing algorithm [1] called DR parser [9] has been
developed for this formalism. The differences between LR parser and DR
parser are mainly in the parsing table. The DR parsing table has an additional
field called position, which specify the position of the next symbol to be ac-
cessed in a particular state (state on top of the stack). Working of the DR
parser is similar to the LR parser except that it accesses the next symbol at the
position indicated in the position field of the state on top of the stack. The
generation method for the DR parse table is similar to the LR method except
for few modifications. The disadvantage of this formalism is that it may not
parse languages generated by ambiguous positional grammars.

Picture layout grammars (PLGs) [12] is basically a restricted form of at-
tributed multiset grammar. In PLGs a visual sentence is represented as a
multiset of attributed symbols. The attributes of a symbol denote its location,
size, color and so on. An inefficient parsing algorithm for PLGs has been de-
veloped. The parser was applied to actual language (Statecharts) and the
performance was found to be bounded by O(n?), where n is number of symbols
in the input sentence.

The family of grammatical formalisms, which represent visual sentences as
multiset of icons with certain relationships among them, are loosely termed as
relational grammars (RGs) [23]. The languages generated by relational gram-

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 21

mars are called relational languages. A sentence in a relational language is
represented as a multiset of symbols and relations. A bottom up parsing al-
gorithm for unrestricted class of relational grammars has been developed [13].
This algorithm has the advantage that input objects (icons of a visual sentence)
can be scanned and composed in any order. The disadvantage of the algorithm
is the lack of efficiency. To describe an efficient parsing algorithm a subclass of
relational grammars called fringe relational grammars (FRGs) has been pro-
posed [23] along with a recognition algorithm. FRGs describe visual sentences
as partially ordered multiset of symbols and relations.

Relation grammars [3,7,17,18] are introduced as extensions of the textual
grammars. In this formalism, information about replacement mechanism of
productions and derivation process is made explicit. Production rules specify a
set of symbols and the spatial relationships among those symbols. An ineffi-
cient parsing algorithm based on RG formalism has been developed [7,18]. It is
a bottom-up parsing algorithm and it consists of two phases. In the first phase
the input sentence is checked to see whether the input symbols belongs to the
set of terminal symbols or not, and whether the relation instances defined on
them are valid or not. A relation instance is said to be valid if the relation it
uses belongs to the set of relations among the symbols. In the second phase it is
verified whether the input sentence can be derived by means of production rules
whose constraints are valid.

Relation grammar/l (RG/1) [18] is defined by imposing restrictions both on
the form of productions and on the evaluation rules. Though RG/1 formalism
is not as expressive as RG@G, it is capable of describing visual languages of
practical use. A top—down parsing algorithm based on RG/1 has been pro-
posed [18]. It takes as input an RG/1 grammar and a visual sentence repre-
sented as (7, RT), where T is a set of symbols and RT is a set of relations. It
produces a top—down parse for the sentence if it is grammatically correct. The
time complexity of the above algorithm as derived in [7] is O(nlogn), where n is
the number of elementary icons in the input visual sentence.

One nonterminal S-item relation grammar (INS-RG) [17] is another re-
stricted form of RGs. It is an extension of Earley’s algorithm [5]. In this for-
malism any constraint whether it appears on the RHS of a production or in an
evaluation rule has at the most one nonterminal. A predictive parsing algo-
rithm has been developed for this formalism. This algorithm is essentially a
recognizer of visual sentences and it does not generate parse tree for the input
sentence. It checks whether the input visual sentence belongs to L(G), for a
particular INS-RG grammar ‘G’, or not. This parsing algorithm, in general,
has exponential time complexity. But when applied to languages having ad-
ditional properties of connection and degree-boundedness, such as diagram-
matic languages, it has polynomial time complexity.

The visual language compiler—compiler (VLCC) [8,11] is a grammar-based
graphical system for the automatic generation of visual programming enviro-

22 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

ments. Its grammatical formalism is based on ‘positional grammar’ and its
parsing algorithm is an extension of the LR parser called pLR parser.

The symbol-relation grammar (SR) [6] represents visual sentences as a set of
symbol occurrences and a set of relation items over symbol occurrences. The
derivation process uses a rewriting rules that is based on context-free pro-
ductions. The SR methodology have been exploited to construct parsers for
visual languages [7,17,18].

This paper presents a restricted form of RG grammar called MRG gram-
mar. The proposed grammar is based on RG/1 formalism [8,11,18]. It is ob-
tained by restricting the form of productions, and distributing the evaluation
rules among various productions rules. Section 2 gives the formal definition of
the MRG grammar and it shows a number of examples to demonstrate the
suitability and practicality of the formalism for expressing visual languages.
This section also gives the definition for the languages defined by MRG and
discusses the expressive power of the formalism. Section 3 presents an O(n)
parsing algorithm for the proposed formalism. This section also shows the
complete parsing steps for a visual sentence and discusses the parser correct-
ness and the time complexity of the parsing algorithm. Section 4 compares
MRG with RG/1 formalism. Finally the paper concludes with final remarks.

2. Modified relation grammar

This section proposes a new grammatical formalism called Modified Rela-
tion Grammar (MRG) [2]. It is a restricted form of the relation grammar and is
based on RG/1 formalism. It is obtained by restricting the form of productions,
and distributing the evaluation rules among various productions rules. Defi-
nition 1 gives the formal definition of MRG.

Definition 1. A MRG is defined as a 5-tuple G = (4, 1, &, S, P), where

e J4 is a finite set of nonterminal symbols.

V1 is a finite set of terminal symbols.

Vk is a finite set of spatial relation symbols, Ik = {r; | | <i<m}.

S is the starting symbol.

P is a finite set of productions, where each production is one of the following

two types:

L A=Y, Y 0, YY), (3, 1), (0, YY), R R,
REE,,... E,}, wherey € Vr,Ad € Wy, Y/ € W fori=1,...,m. The
superscripts [, [, ..., 1, on ¥;s denotes the occurrence of the symbol on
RHS of the production. If a nonterminal symbol ¥ has only one oc-
currence on RHS, then it is superscripted as one. If there are two or
more occurrences of a symbol Y, then different occurrences are super-
scripted as 1,2,3,... and so on. r; € Ik and for any i,j € {l,...,m}r;

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 23

and r; need not be distinct. R;,R»,...,R; denotes possible additional
constraints over the symbols Y/ i=1,...,m. E|,E,,...,E, denotes
the external constraints of the production. These are nothing but the
evaluation rules associated with the production. They specify how the
symbols {y, Yl[‘, Yzlz, ..., Y} should be related to neighbors of A, when
A is replaced by {y,¥",¥,>,..., ¥} during a derivation step.

2. A:={y{H{E\ Es...,E,},where 4 € IN,y € V1,E\,Es, ..., E, denotes
the external constraints of the production.

Type 1 production states that the nonterminal symbol 4, on input y, is to be
replaced by the set {y, Yl“, Yzlz, ..., Y} provided the constraints {r(y, Yl“),
3, Y2), oy Ty, Y'"), R\ Ry, ... Ry} are satisfied. The first symbol on the
RHS of a production (y) is called the primary symbol. The set of constraints
{r(y, Yll‘), r(y, Yzlz), oo Tw(, Y!"), Ri, Ry, ... Ry} are called internal con-
straints. In internal constraints, the constraints r(y, Yll‘), r(y, Yzlz)7 e
rm(y, Y/") are compulsory. The constraints Ry,R,,...,R; are optional, they
denote possible additional constraints among the symbols le ' Yzlz, oY Ifa
production of type 1 is applied, then the symbol on the LHS will be replaced by
the set of symbols on the RHS of the production, i.e., 4 will be replaced by the
set (v, Yll h YZIZ7 ..., Y!). These symbols will be arranged according to the in-
ternal constraints. The set {E|,E,...,E,} denotes another set of constraints
called the external constraints. They specify how the symbols of the RHS of a
production are to be connected to the neighbors of the symbol on the LHS of
the production, in a derivation tree, when the production is applied. An ex-

ternal constraints has the form:
t;(X;,4) : —[constr],

where X; e yU{N, 1s,..., Y}, ;€ Vp, forj=1,...,n

The relation instance ¢;(X;,4) is an internal constraint of some MRG pro-
duction. [constr] is a set of constraints that specify how the constraint #;(X;, 4)
will be reduced when the current production is applied. By reduction we mean
how the constraint #;(X;, 4) is going to be changed when the current production
is applied. These constraints are associated with the corresponding ‘A’ pro-
duction as external constraints.

Type 2 production states that the nonterminal A4, on input y’, is to be re-
placed by ‘y’. There are no internal constraints. The external constraints
E\,E,, ... E, has the same meaning as in type 1 production. ‘y’ in this case
also, is the primary symbol.

One characteristic of MRG productions is that no two productions having
the same LHS should have the same primary symbol. The following two ex-
amples should clarify the definition.

24 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

Fig. 1. A visual sentence.

Example 1. Let us give MRG description of the visual sentence shown in Fig. 1.
MRG description for that sentence can be written as follows:

G:= (N, ", R, S, P) := ({S,4,B}, {A, v, x,}, {enclose, above}, S, P),

where P consists of:

1. S:={A, 4" A%} {enclose(A\,A"), enclose(A\, A%), above(4', 4%)};

2. A:={vy,B" B’} {enclose(/,B'), enclose(s/,B*), above(B' B*)}
{enclose(A™ A4):- enclose(A”, v); above(4™,A):- above(4”,V);
above(4,A4™):- above(v7,4™); above(y", 4):- above(V",V);
above(4, 7"):- above(s7, V") };

3. B:={x} {} {enclose(sy", B):- enclose(y/",x); above(B", B):- above(B",x);
above(B, B™):- above(x, B™)};

4. B:={y} {} {enclose(s/", B):-enclose(/”,y); above(B™,B):- above(B™,y);
above(B, B"):- above(y, B"); above(x”, B):- above(x™, y)}.

Example 2. Consider a visual language defined in [7]. A sentence in this lan-
guage consists of 2D grids of two kinds of symbols. Symbols of type & are
placed on the South-east frontier and the remaining grid positions are filled by
& symbols. For example, v is a sentence in this language.

v = &1*2‘2
aaa
The MRG description for this sentence is written as follows:
G:= (N, ", R, S, P) :=({S,B,4}, {%, &}, {x,y,2},S, P),

where P consists of:

L S = (&8, A"} {x(&,B), y(,4"), (B, 4)}:

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 25

2. B:={&B", 4"} {x(%,B"), v(&A"), z(B',A4")} {x(&",B):- x(&", &)
Z(B,A™):- z(, A™), x(A™, AN };

3. B (M, A'} {p(d,A)} {x(07, B x(,); 2(B, A"):- (b, 4"), (47, 4 };
4. A= (A} [y A)} (B A)i y (B,)3 (A, A7) A7) (A",
Z(W" A)- z(W" &); z(R" A)i- z(k"), x(A,A"):- x(d,A™),z(A™,A");

x(*myA):_ x(*m,*)};

5. 4= {&} {} {y(4",4)- y(W", &); p(&", A):- y(&", B); 2(N", 4):- 2(K", B);
Z(&"’,A)I- Z(*ma‘); Z(AvAm):' Z(*aAm); x(AvAm):' (‘aAm); x(‘maA):'
X(N" B); x(A", A):- x(A™, W)}

Superscript ‘m’ on the symbols in the external constraints of the preceding
two examples denote an arbitrary occurrence of the symbol.

A visual sentence in MRG is represented as a pair (7, RT), where T is a set
of terminal symbols (icons) and RT is a set of spatial relations (constraints)
among those symbols. The symbols in 7 and consequently the constraints in
RT are totally ordered. They are ordered according to the ordering of the
spatial relations in the set V. Let ry,r,, ..., r, be the spatial relations of the set
Jk, with ordering r; < r, < --- <r,. Then the symbols of T are ordered as
follows:

Initially 7 is empty. First we start at an initial position, which is the mini-
mum position of all relations r,r,,...,7,. We add the symbol at this position
to 7. Next we add all the symbols among the immediate neighbors of this
symbol which are linked to it via 7, to 7. Then we add all the symbols among
its immediate neighbors which are linked to it via , to 7, and so on. Once all
the symbols linked to the first symbol in 7 via the r, relation are added, we go
to the second symbol in 7. For the second symbol in 7 we add all the symbols
among its immediate neighbors which are linked to it via r; to 7. These
symbols will be added to T provided that they are not already included in 7.
Next we find all the symbols among immediate neighbors of the second symbol
in T which are linked to it via r,. We add these symbols to 7, if they are not in
T. We repeat this procedure for the remaining symbols in 7" until all the
symbols of the input sentence are added to the set 7.

The constraints part of the input sentence, i.e., the set RT is ordered as
follows: First we add all the constraints involving the first symbol in 7" and
its immediate neighbors to RT. Then we add all the constraints involving
the second symbol in 7 and its immediate neighbors to RT. Only those
constraints that are not already in RT are added at this step. Then we add
all the constraints involving the third symbol in 7 and it’s immediate
neighbors, and so on. This procedure is repeated until all the constraints of
the input sentence are added to the set RT. In this ordering we implicitly
assumed that a constraint is specified between two immediately adjacent
icons. The following two examples should clarify the ordering of the input
sentences.

26 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

Example 3. Consider the visual sentence in Example 1. Assuming the set of
relations Jg to be {enclose,above}, and ordering of relations to be en-
close < above. The visual sentence in Fig. 1 can be ordered as

v=(T,RT)
= (AL ', vy 2% 7 {enclose(A!, '), enclose (A, 7?),
enclose(v/', x'), enclose(v/!, '), above(v/!, 57?), enclose (7%, x?),

enclose(v/%, %), above(x', y'), above(x?, y*)}).

Example 4. Consider the visual sentence in Example 2. Assuming the set of
relations to be Tk = {x,y,z}, and x < y < z to be their ordering. The visual
sentence v

v = *1&2‘2

'YX XN

can be ordered as
v=(T,RT)

= ({0 AL A2 A A H(B 87), (S, A1), x(7, #7), (%, &),
(7,), (N), (07 A7) (A,) x (W A0}

2.1. Languages defined by MRG

This section gives the definition of the language generated by MRG gram-
mar G = (I, Vr, Wk, S, P). First the sentential form of G is defined, then the
language generated by G is given.

Definition 2. A pair (7", RTI), where T' is a set of symbols from ¥y U ¥, and
RT! is a set of spatial relations in ¥z among symbols of 7', is said to be a
sentential form of MRG, if and only if there exists a derivation sequence

({8},0) = (1} ,RT}) = (T},RT)) = --- = (T',RT}) = (T",RT").

In the above derivation sequence all the intermediate sentential forms are
totally ordered, and the leftmost nonterminal is expanded at each step. In other
words, the sentential form (7', RT') is obtained from ({S},) by constructing
the derivation tree in a top down breadth first manner. Only these types of
derivations will be permitted in MRG grammars. This is because, if a pro-
duction is applied then all of its constraints have to be satisfied. All the con-
straints of a production can be satisfied only when all of its children are
expanded in a breadth first manner.

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 27

Definition 3. Given the MRG Grammar G = (I, V1, IR, S, P), the language
defined by G, denoted by L(G), is the set of all sentential forms (7, RT), where
T consists of terminals only. In other words,

L(G) = {(T,RT)
|({S},®):;(T7 RT)and T consists of terminal symbols only}.

2.2. Expressiveness of MRG

This section shows that MRG grammar and RG/1 grammar are equivalent
in terms of expressiveness power. To prove this, first we will give a procedure
that will convert any RG/1 grammar to MRG grammar. This establishes the
fact that MRG grammar is at least as expressive as RG/1 grammar. Then we
will prove that the language accepted by RG/1 grammar is also accepted by the
corresponding MRG grammar (MRG grammar obtained from RG/1 grammar
by the given procedure).

Lemma 1. MRG grammar is at least as expressive as RG/1 grammar.

Proof. To prove this we will give a procedure called ‘CONVERT’ that will
convert a given RG/1 grammar to MRG grammar. The input to the procedure
is RG/1 grammar G = (I, Vr, Tk, S, P,R) and the output is MRG grammar
G' = (WL, v, V3, S, PY). The procedure is given below:

Procedure CONVERT(G, G')
Begin {of procedure}

V—[! = VT.
VRI = VR.
St.=8.

For each RG/1 production p € P of the form

A=, Y, . Lo), %), tu(, Yu), R, Ra, .. R}

We construct the corresponding MRG production/productions as follows:

e Ifall ¥;si =1,...,m are nonterminals then construct an MRG

production as 4 := {y, ¥", ¥,2, ..., Y} {n(», Y"), n(», 1), ...,
I"m(y, Y”ll'”), Rl,Rz, e ,Rk} {El,Ez, e ,E,,}, where 11, 12, ey lm de-
note different occurrences of the symbols Y, Y5, ..., Y, on RHS of
production. Add this production to the set P'. Add
A, 1, Y, ..., Y, to the set V. The external constraints
E\, E,,... E, are the evaluation rules of the corresponding RG/1
grammar. The evaluation rules of the RG/1 grammar are of the
form:

28

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46
?I(XUA):_ (A = {ya Yla Y2a sy Ym})aql(XlaZI)

(X, A) (4 = (0, Y5, Yo Vo), (X Z,)

where X; and Z; € yU{Y}, 15,...,Y,},t; and ¢; € I, for
j=1,....n

These evaluation rules are rewritten in MRG grammar as
{] (XhA):_ q1 (XlaZl)

t,(X, 4):- g0 (X, Z2)

and associated with the corresponding MRG ‘A4’ production as
external constraints.

If some ¥, let us say Y;, k € {1,...,m}, is a terminal then we create
a nonterminal W; and the following MRG production

VV/C = {Yk} {} {EI;E27 ce 7En}

where E,E,, ..., E, are the external constraints of the form:

H (X, W)= 0(Xa, Vi)

tn(Xh VVk) : _tn(Xla Yk)

where #,(X;, %), ..., 1,(X1, ¥;) are constraints involving ¥, in RG/1
productions. Add W, to the set Vi, and the production

Wi = {Y }{}{E\,E»,...,E,} to the set P'. We create another
MRG production (corresponding to the given RG/1 production)
of the form:

4= {ya Yllla Yzlzv Tt I/Vklkv' T Yrrlzm} {rl(yv Ylll)a 1”2()/, Yzlz)v' s

e, W), 0, YY), Ry Ry, . R} {EL Esy . En}

where [y, [»,..., [, denotes different occurrences of symbols

Y, Y,,..., Y, on RHS of production. E|, E,, .. ., E, are the external
constraints of the MRG production. The external constraints in
this case are nothing but the evaluation rules of the corresponding
RG/1 grammar, which are rewritten as discussed earlier. Add this
production to the set P'. Finally, add 4, Y}, Y»,..., Y, (if they are
already not added) to the set Vj.

End {of procedure}

Lemma 2. If L = L(G) for some RGI/1 grammar G, then L = L(G") for the
corresponding MRG grammar G'.

Proof. We will prove this lemma in two parts. First we will prove that all
v € L(G) also belongs to L(G"). Then we will prove that if a sentence v € L(G),
then v ¢ L(G").

Part

1:

L(G) for RG/l grammar G is defined as L(G)=

*

{(T,RT) | (5,0)=(T,RT) and T consists of terminal symbols only}.

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 29

In the derivation of any sentence in G, at any derivation step, only the
leftmost nonterminal in the sentential form will be expanded, i.e., the sentence
(T,RT) will be obtained by the following sequence of derivations:

({S},0) = (1,RT,) = (I»,RT) = --- = (T,,RT,) = (T,RT),

where at each step the leftmost nonterminal in 7;(1 < i < n) will be expanded. In
other words the sentence (7,RT) will be derived from S by expanding the
derivation tree in top—down breadth first order.

In the MRG grammar obtained by procedure ‘CONVERT’ of Lemma 1,
S' = S and all the leftmost nonterminals expanded at various steps in RG/1
(nonterminals in 7;(1 <i< n)) belong to Vl\ll. Also, there exists some produc-
tions involving these nonterminals in G' which has the same RHS as G pro-
ductions. Apart from this, the derivation in MRG also proceeds in top—down
breath first manner. From all these facts it is clear that every sentence gener-
ated by RG/1 grammar G can also be generated by MRG grammar G'.

Part 2: Now let us prove that if a sentence v = (T, RT) ¢ L(G) then it does
not belong to L(G).

A sentence v = (T,RT) ¢ L(G) if there does not exist a leftmost derivation
for it. Such a case is possible when a leftmost nonterminal in a particular
sentential form cannot be expanded. Since Vy C J4, this nonterminal also
belongs to V4! . Because the derivation of the sentential forms in MRG and RG/
1 grammars is the same and S' = S, such a nonterminal also appears in MRG
sentential form; and it cannot be expanded. So MRG derivation for v is not
possible. In other words v & L(G').

3. The MRG parsing algorithm

The MRG parsing algorithm is a table based predictive parser. The parser
takes as input a visual sentence represented as the pair (7,RT), where T'is a set
of symbols and RT is a set of constraints among these symbols. We assume
that both 7" and RT are totally ordered as explained earler. An outline of the
parser is given in the next section (Section 3.1) and the details of the parsing
algorithm is given in the following one (Section 3.2).

3.1. The parser

The system diagram of the MRG parser is shown in Fig. 2. The visual
sentence to be parsed is stored in an input buffer called INP which consist of
two parts; symbols part and constraints part. The symbols part stores the
symbols of the input sentence (the set of icons in 7); and the constraints part
stores the constraints of the input sentence (the set of constraints in RT). The
parser uses the following data structures:

30 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

INP
symbols constraints
9 9 SIVA
(T T 1] vt
R \ Parsing Algorithm ~ ——
TQ Parse Table M
Fig. 2. The system diagram of the MRG parser.
1. A total of |Jk| temporary queues (g1,9>, - . -, q|k|)- These queues are created
at the beginning of the parsing process to hold the intermediate nodes of the

parse tree.

2. A data structure called R. This data structure is used to hold the internal
constraints of the applied productions which are not yet resolved. These
constraints come from the applied productions.

3. A data structure called TQ. This data structure contains all the constraints,
involving all the symbols considered so far, at a particular parsing step.
These constraints come from the input sentences.

4. A parse table M, which is organized as a two-dimensional array. For a given
MRG grammar the nonterminals along the rows and terminals along the
columns index the parse table M. For example a production of the form
A:={y, Y'Y, ... Y!"} {internal constraints} {external constraints} will
be stored in row indexed by ‘4’ and column indexed by ‘y’, in the parse ta-
ble. An entry of the parse table could be a blank, or it may store a produc-
tion of the grammar. Blank entries denote errors.

The parsing algorithm works top—down and explores the nodes of the parse
tree in a breadth first manner. At a particular step during parsing, the algo-
rithm tries to find a production M(4,a), where A4 is the nonterminal in the
parse tree to be expanded and ‘@’ is the current input symbol. If no production
is found it reports an error and stops. If a production is found, the parser adds
the internal constraints of the production to R. The parser then removes all the

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 31

constraints involving current input symbol ‘@’ from RT and adds them to TQ.
Then the parser tries to resolve the constraints in R involving the current oc-
currence of A. If a constraint is fully resolved (i.e., if it contains only terminals),
then it is removed from both R and TQ. Finally, the input symbol ‘@’ is re-
moved from 7 and the parsing process repeats with the next input symbol and
the next parse tree node in the breadth first order.

In brief, the parsing algorithm produces the top—down parse of the input
sentence as it traverses the parse tree in a breadth first manner. At a particular
step during parsing it applies a production and adds the internal constraints of
the production to R. These constraints will be resolved and satisfied at later
steps of parsing.

3.2. The algorithm

This section presents the MRG parsing algorithm (Algorithm 1). Initially a
total of |Ir| queues (q1,4>,-..,q) are created. In addition to the data
structures mentioned in the previous sections, Algorithm 1 uses the following
operations and variables:

1. Head(g) is a function which returns the first element of the queue g.
2. Enqueue(q, S) is a function which adds the element S to the end of the queue

q.

3. Dequeue(q) is a function which removes the first element from the queue g.
4. INP.symbols and INP.constraints return the symbols and constraints parts
of the INP buffer. Both parts of the INP buffer are organized as queues.

5. The variables k, [, m,i and p are used in Algorithm 1, where k is a counter, /

represent the occurrence of the nonterminals on the RHS of a production, m

is the maximum number of symbols excluding the primary symbol on the

RHS of a production, i is the level of the parse tree and p is a counter.

Algorithm 1. The MRG parsing algorithm.

Input: Totally ordered visual sentence v and parsing table M for MRG
grammar G.
Output: Top—-down parse for v if v is in L(G), otherwise error.
Method:
Initially, the input sentence v in the form (7, RT) is stored in the input buffer
INP,
where T is stored in the INP.symbols part and RT is stored in INP.con-
straints part.
Begin /* Method */

Create |I&| queues (¢1,42, .-, qn));

Enqueue(q;, S°);

k:=0;i:=1;p:=l;qn0:=1;TQ :={};R:={};

32 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

While (INP.symbols not empty) do
Begin
If (queue ¢g_no not empty) then
A := Head(g-no);
If (superscript on 4 <= p) then
Dequeue(g_no);
a: = Head(INP.symbols);
If (M(4,a) not blank) then
Apply production M(4,a);
Print the pair (4, a);
Add internal constraints to R. Prior to adding the constraints
to R, nonterminals in the internal constraints are attached
superscript i and subscript k£ + /, and primary symbol is
attached superscript of ‘a’;
Remove the constraints involving current input symbol ‘@’
from INP.constraints and add them to TQ;
Resolve the constraints in R according to the external
constraints. Those constraints that appear in both
R and TQ should be removed from both;
Insert the symbol X/, of the RHS of the applied production
into the queue numbered ‘pos’ where ‘pos’ is the position
of rin Iy;
If (p! =) then
Dequeue(INP.symbols);
k:=k+m;
else
i=i+1;
Dequeue(INP.symbols);
k:=k+m;
endif;
else /* else of ‘If (M(4,a) not blank)’ */
Print error message and stop;
endif;
else /* else of ‘If (subscript on 4 <= p)’ */
q-no :=gno + 1;
If (9-no <= |IR|) then

k:=k+ m;
else

p=p+1li:=i+1;qno:=qgno+ l;k:=k+m;
endif;

endif; /* endif of If (subscript on 4 <= p) */
else /* else of ‘If (queue ¢_no not empty’ */

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 33

If (All queues empty) then
Print error message and stop;
else
g-no :=g-no + 1;
If (¢-no <= |I&|) then

k:=k+ m;
else
p=p+Llii:=i+1;gno:=1;k:=k+m;
endif;
endif’

endif; /* endif of ‘If (queue ¢_no not empty)’ */

end; /* end of main while loop */

If (91,92, -.,qp, R, TQ and INP.constraints are empty) then
Print successful parsing and stop;

else
Print error message and stop;

endif;

end. /* method */

Example 5. Let us apply our parsing algorithm to the visual sentence of Ex-
ample 1. The MRG grammar for this sentence is given in Example 1. It is also
reproduced below for the sake of convenience.

G:= (W, ", IR, S, P) = ({S,4,B}, {4, v7,x,»}, {enclose, above}, S, P)
where P consists of

1. §:={A, 4" 4*}{enclose(A, A"), enclose(A, 4?),above(4', 4?)};

2. A:={vy,B',B*} {enclose(v/,B"), enclose(v,B?), above(B',B?)} {enclose
(A" 4):- enclose(A",v7); above(4”,4):- above(4”,v7); above(4,A"):-
above(s7,4™); above(yy”,4):- above(\y”,v7); above(4,y"):- above
(v, v")}

3. B:={x} {} {enclose(/",B):- enclose(s/",x); above(B",B):- above(B", x);
above(B, B™):- above(x,B")};

4. B:={y} {} {enclose(s/", B):- enclose(/",y); above(B™, B):- above(B™,y);
above(B, B"):- above(y, B"); above(x”, B):- above(x™,y)}.

As shown in Example 3, this sentence has the following representation:
v=(T,RT)
= ({AL !, vy 22 %) {enclose(A!, '), enclose (A, 72),

enclose(v7',x"), enclose(v7', "), above(v7!, /%), enclose (72, x%),

enclose(v7%,), above(x', '), above(x?, y*)}).

34 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

The parsing steps for this sentence are as follows:

Initially: INP := ({INP.symbols},{INP.constraints}) : = ({A!, !, 2 x!,
y,x2, 37}, {enclose(A!,s7'), enclose(A!, 7?), enclose(s/!, x!), enclose(v/!, 1),
above(v/!, /?), enclose(s/?,x?), enclose(5/%,1?), above(x!, y!), above(x?,)*)})

a1 ={8"};qp:={};i:=1;p:=1l;gmo:= 1;k:=0;TQ := {};R:={};
Iteration 1. After checking that the queue ¢_no is not empty, assigning the
Head(¢_no) to 4, dequeuing queue ¢_no, and assigning Head(INP.symbols) to
‘@’, we get

A4:=58%q = {}q2 = {}1a:= A
Production 1 (the content of M(4,a)) is applied. After adding the internal
constraints to R we get

R := {enclose(A', 4}),enclose(A', 4}), above(4], 4})}.

There are no constraints in R involving S°, so no constraints are resolved.
After removing the constraints involving ‘@’ from INP.constraints and
adding them to TQ we get

TQ := {enclose(A', /'), enclose(A', 7?)}.

There are no constraints common to both R and TQ, so nothing is removed
from R and TQ.
After inserting the symbols into the queues we get

g1 = {41, 4} = {}1i:=2.
After dequeuing INP.symbols, we get
INP := ({/', 7% x",»', %%, %}, {enclose(v/', x"), enclose (7', v'),
above(v', %), enclose(v7%, x?), enclose(v/%, 17), above(x', "),
above(x?,»)}), i:=2k:=2.
Iteration 2: After checking that the queue ¢_no is not empty, assigning the

Head(¢_no) to 4, dequeuing queue ¢_no, and assigning Head(INP.symbols) to
‘@’, we get

A=Apq= kg = {ha=v"

Production 2 (the content of M(4,a)) is applied. After adding the internal
constraints to R we get

R := {enclose(A', 4}),enclose(A', 43),above(4], 43), enclose(/', B3),
enclose(v/', B), above(B3, B3) }.

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 35

After resolving the constraints in R we get
R := {enclose(A', /'), enclose(A', 4), above(v/', 4}), enclose(v/', B3),
enclose(v/', BS), above(B3, B3)}.

After removing the constraints involving ‘a’ from INP.constraints and adding
them to TQ we get

TQ := {{enclose(A', /"), enclose(A', /%), enclose(', x"),
enclose(', "), above(v',) }.

The constraint enclose(A!, /') is common to both R and TQ, so it is removed
from both. R and TQ become

R := {enclose(A', 4}), above(s/', 4}), enclose(v/', B2), enclose(/', B3),
above(B2, B2)}.

TQ := {enclose(A', /%), enclose(', x'), enclose(s7', '),
above(v!, v2)}.
After inserting the symbols into the queues we get
q1 1= {4, B3, B} g2 = {}.
After dequeuing INP.symbols we get
INP := ({7, x", ', %%, 1}, {enclose(/?, x*), enclose (7%, %),
above(x',y'),above(x*,)?)}), k:=4.

Iteration 3: After checking that the queue ¢_no is not empty, assigning the
Head(¢_no) to A4, dequeuing ¢_no, and assigning Head(INP.symbols) to ‘a’, we
get

A:=Ayq1 = {B3,B}};q2 = {};a:= "

Production 2 (the content of M(4,a)) is applied. After adding the internal
constraints to R we get

R := {enclose(A', 4}), above(s/', 4}), enclose(v/', B2), enclose(v/', B3),
above (B2, BY), enclose(v/?, B2), enclose(v/?, B2), above(B2, B2)}.
After resolving the constraints in R we get
R = {enclose(A', /%), above(v/', /%), enclose(/', B), enclose (7', BS),
above(B3, B), enclose(v/%, B3), enclose (7%, Bz), above(B3, Bg) }.

After removing the constraints involving ‘a’ from INP.constraints and adding
them to TQ, we get

36 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

TQ := {enclose(A', /), enclose(v/', x'), enclose (7', »'),
above(', /), enclose(v/%, x%), enclose(v/2, %) }.
The constraints enclose(A', 57?) and above(7!, 7?) are removed from both R
and TQ, so R and TQ become
R := {enclose(v/', B3), enclose(v/', B), above(B3, B;), enclose(/%, B),
enclose(v/?, By), above(B3, By) },

TQ := {enclose(7',x"), enclose(s7', "), enclose(v/?, x*), enclose (72, %) }.

After inserting the symbols into the queues we get
q1 = {B3, B}, B3, Bg}iqo = {3
After dequeuing INP.symbols we get
INP := ({x',»',2%,)7}, {above(x', y'), above(x*,)?)}), k:=6.

Iteration 4: After checking that the queue ¢g_no is not empty, assigning the
Head(¢_no) to 4, we see that the superscript on A is not less than or equal to p.
So we increment the ¢_no, which now becomes 2; £k = 8.

Iteration 5: In this iteration we find queue numbered 2 to be empty. We
increment ¢_no, which now exceeds |I&|. So ¢g-no :=1; p:=2;i:=3; k:= 10.

Iteration 6: After checking that the queue ¢g_no is not empty, assigning the
Head(¢_no) to A4, dequeuing ¢_no, and assigning Head(INP.symbols) to ‘a’, we
get

A:=B3q = {B3, B, B} qy = {};a:=x".

Production 3 (the content of M (4, a)) is applied. Nothing is added to R since
there are no internal constraints in this production.
After resolving the constraints in R we get

R :={enclose(/',x"), enclose(s/', B%), above(x', B2), enclose(v/%, B2),
enclose(/%, By), above(Bz, By) }.

After removing the constraints involving ‘a’ from INP.constraints and adding
them to TQ we get

TQ := {enclose(7',x"), enclose(v/', y"), enclose (v, x%),
enclose(%, %), above(x', y')}.
After removing the common constraint enclose(s7!,x'") from R and TQ we get
R = {enclose(v/', B}), above(x', B}), enclose(s/?, B3),
enclose(v/%, By), above(B3, By) },

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 37

TQ := {enclose(7', "), enclose(7%, x?), enclose(v/?, %), above(x!, ') }.

There are no symbols in this production to be inserted into the queues. After
dequeuing INP.symbols we get

INP := ({y',x*,)*}, {above(x*,)")}), k:=12.

Iteration 7. After checking that the queue ¢_no is not empty, assigning the
Head(¢_no) to A4, dequeuing ¢_no, and assigning Head(INP.symbols) to ‘a’, we
get

A= Biqu = {B5,B}iqr = {}a:=y".

Production 4 (the content of M (4, a)) is applied. Nothing is added to R since
there are no internal constraints in this production.
After resolving the constraints in R we get

R := {enclose(v/', "), above(x', "), enclose(v/?, B3),
enclose(v/?, BZ), above (B2, BZ)}.
Nothing is added to TQ at this step. Therefore,
TQ := {enclose(/', y"), enclose(s/?, x*), enclose(7?, 1), above(x', ') 1.

After removing the common constraints enclose(v/', y!) and above (x!,y!) from
R and TQ we get

R := {enclose(v/?, B}), enclose(v/%, B), above(B3, B;) },

TQ := {enclose(7%,x?), enclose(v/%,17)}.

There are no symbols in this production to be inserted into the queues. After
dequeuing INP.symbols we get

INP := ({x?,1%}, {above(x*,3*)}), k:=14.

Iteration 8: After checking that the queue ¢_no is not empty, assigning the
Head(¢_no) to 4, dequeuing ¢_no, and assigning Head(INP.symbols) to ‘a’, we
get

A:=B%q = {B};q» = {};a:=x"
Production 3 (the content of M (4, a)) is applied. Nothing is added to R since
there are no internal constraints in this production.

After resolving the constraints in R we get

R := {enclose(v/%,x%), enclose(v/?, Bz), above(x*, B) }.

Removing the constraint involving x> from INP.constraints and adding it to
TQ we get

38 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

TQ := {enclose(/?,x?), enclose(v7%, 1), above(x?, %) }.
After removing the common constraint enclose(s72,x?) from R and TQ we get
R := {enclose(/?, B;),above(x*, Bg) },

TQ := {enclose(vz,yz), abOVe(xzvyz)}-

There are no symbols in this production to be inserted into the queues. After
dequeuing INP.symbols we get

INP := ({’},{}), k:=16.

Iteration 9: After checking that the queue ¢_no is not empty, assigning the
Head(¢_no) to 4, dequeuing ¢_no, and assigning Head(INP.symbols) to ‘a’, we
get

A:=Bgq = {};q2:= {}a:= "

Production 4 (the content of M(4, a)) is applied. Nothing is added to R since
there are no internal constraints in this production.
After resolving the constraints in R we get

R := {enclose(7%,?), above(x?,1*)}.
No constraints are added to TQ because INP.constraints is empty. Therefore,
TQ := {enclose(/%,), above(x?,1%)}.

After removing the common constraints enclose(5/2, %) and above(x?, »?) from
R and TQ we get

Ri={}.

TQ :={}.

There are no symbols in this production to be inserted into the queues.

After dequeuing INP.symbols we get

INP := ({},{}), k:=18.

Iteration 10: In this iteration INP.symbols is empty. Checks are made to see
whether all queues (R, TQ, INP.constraints) are empty or not. All these queues
are empty and therefore the algorithm announces successful completion of
parsing.

3.3. Parser correctness

This section proves the correctness of the MRG parsing algorithm. The

proof is established using the following three steps:

1. we will prove that the parsing algorithm halts in a finite time (after finite
number of steps);

2. we will prove that given MRG grammar and a syntactically incorrect input
sentence, the parsing algorithm will reject it and print an error message;

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 39

3. we will prove that given MRG grammar and a syntactically correct input
sentence, the parsing algorithm will produce a correct top—down parse for
the input sentence.

The following lemma gives the proof for step 1.

Lemma 3. The parsing algorithm will halt in a finite number of steps.

Proof. Looking at the MRG parsing algorithm (Algorithm 1), we see that the
main loop of the parsing algorithm is repeated ‘n’ times, where n is the number
of symbols of the input sentence. Within this loop each step takes a constant
(finite) time. If an input sentence is syntactically correct then the loop is exe-
cuted ‘n’ times. After the termination of the loop the parsing algorithm ter-
minates successfully. If an input sentence is syntactically wrong then the loop is
exited prematurely and the algorithm terminates with an error message. So in
all the cases (i.e., whether the input sentence is correct or wrong) the parsing
algorithm terminates after a finite number of steps.

Before establishing the proof for the other two steps let us give some defi-
nitions.

Definition 4. A visual sentence v = (7,RT) is said to be syntactically correct
with respect to MRG grammar G, if v € L(G). The definition of L(G) is given in
Section 2.1.

Definition 5. A visual sentence v = (T, RT) is said to be syntactically incorrect
with respect to MRG grammar G, if v ¢ L(G).

Lemma 4. Given MRG grammar for a visual language and a syntactically in-
correct sentence v = (T,RT) as input, the parsing algorithm will reject it with an
error message.

Proof. We will consider various cases under which a sentence becomes incor-
rect and show how they are detected.

Case 1: When a user constructs a visual sentence using terminal symbols
from 1 but do not combine them according to the syntax of the language. For
example the following sentence:

s

aa
does not belong to L(G) for G given in Example 2, even though the symbols it
uses belongs to V1. Such errors will be caught by the parsing algorithm during

parsing when it searches for the production M (4, a). The entry M(4,a) in such
a case will be blank causing the parser to reject the input sentence and prints an

40 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

error message. In this case the parser finds that M (S, #) is empty so it termi-
nates the parsing process and prints an error message.

Case 2: When a user constructs an incomplete visual sentence. Let us say a
user constructs the following sentence

&'

Even though the above sentence uses terminals from V4, it is not a valid
sentence of L(G), for G given in Example 2. The parsing algorithm will catch
such errors when it tries to expand a nonterminal in the parse tree but finds no
input corresponding to it in the input sentence. For the given sentence, at first
step the parser applies production 1 of Example 2 to expand S. After this step
when it tries to expand B it finds no input. At this point the parser prints an
error and stops.

We think that all the syntactically incorrect sentences fall into one of the
above categories.

Lemma 5. Given MRG grammar and a syntactically correct sentence, the
parsing algorithm will produce a correct top—down parse tree for the sentence.

Proof. As it is evident by now, our parsing algorithm constructs the parse tree
for an input sentence in a top—down breadth first manner. Since this is the only
type of derivation allowed in MRG (see the description of MRG sentential
form in Section 2.1 and the parsing steps in Example 5), the parse tree pro-
duced by our algorithm is correct.

Theorem 1. Let G be MRG grammar and v = (T,RT) be an input sentence. The
parsing algorithm will produce a correct parse iff v € L(G).

Proof. Lemmas 3-5.

3.4. Parser time complexity

Lemma 6. The number of times the main while loop of the parsing algorithm is
repeated is n*|Vx| or O(n).

Proof. Consider Algorithm 1. In the worst case symbols are added to only one
queue, remaining queues are kept empty. Also only one symbol is added to the
queue at a time. Let us assume that after application of the first production
(first iteration of the while loop or first step of parsing), symbols are added only
to the last queue (gjy|). The initial configuration of the queues will be as fol-
lows:

a1 ={ e ==} an = {}

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 41

In the first iteration S° will be expanded and a nonterminal symbol, let us say 4
(written as 4}), will be inserted into gy, . In the second iteration g, is found to
be empty so the parser goes to ¢;. Since ¢, is also empty, it goes to g3, and so on
until it reaches g, . The number of iterations required to reach gy 1S gy |-1-
Once gy is reached, the symbol 4| will be expanded to another symbol, let us
say B (written as B? where s = |Iz|"m + 1). At the end of this iteration only two
symbols of the input sentence are parsed. The first one is parsed when S is
expanded, and the second one when A is expanded. The parsed symbols are
primary symbols of applied productions. Still (n — 2) symbols of the input
sentence are to be parsed.

In the next iteration (the iteration immediately after the iteration in which 4
is expanded) the parser finds the superscript of B to be greater than p (p is
initialized to 1), so it loops back and goes to ¢, after incrementing p and i. It
finds g, to be empty, goes to g, and so on till it reaches gy |. At this point it
expands B. So to expand every nonterminal on g;| the parser performs | /x| + 1
iterations. Since there are (n — 2) symbols yet to be analyzed, the parser needs
(n —2)"(|Vx| + 1) iterations. Therefore the total number of iterations required
to parse a sentence of ‘n’ symbols is / =1 iteration for expansion of S+
(JVr| — 1) iterations required to reach g5, + 1 iteration to expand 4 + (n — 2)°
(|"x] + 1) iterations required to parse the remaining n — 2 symbols.

Therefore,

I=1+R|l-1+1+nm-=2)(R|+1)=m-1D"(K+1).
Assuming n>> 1, |Tz| > 1 we get

So in the worst case the while loop is repeated n*|Fx| times. Since |IR] is
constant for a given grammar, we can say that the number of times the main
while loop repeated is O(n).

Theorem 2. The time complexity of the parsing algorithm is O(n).

Proof. Let us derive the time complexity for the parsing algorithm. The
statement for creating |Vk| queues takes O(|Fk|) time. The statements for ini-
tializing g1, k, i, p, ¢_no, TQ and R takes constant time.

The main while loop of the parsing algorithm is repeated at most n*|IR|
times(see Lemma 6). Within the while loop, the time taken by various state-
ments is as follows:

The statement that checks whether INP.symbols is empty is executed in
constant time. The statement which checks whether all queues are empty takes
O(|"&|) time. The following blocks of statements also take constant time;

e [s queue numbered g_no empty.
e 4 := Head(g-no).

o~
[\§)

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

Is superscript on 4 < p.

Dequeue(g_no).

a: = Head(INP.symbols).

g-no :=gno + 1.

Is g.no = |IR| + 1.

p:=P+1

iti+1.

g-no := 1.

Is TQ empty.

Is INP.constraints empty.

Since the parse table is organized as 2D array indexed by nonterminals
along the rows and terminals along the columns, the statement ‘Is M(4,a)
blank?’ takes constant time. The time taken for applying a production M (4, a)
and adding its internal constraints to R is constant; because once the grammar
is given we can consider the number of symbols and the internal constraints of
any production as constants. Since the constraints of the input sentence are
totally ordered, the constraints involving current input symbol ‘@’ appears
towards the beginning of INP.constraints. The time taken to remove these
constraints and add it to TQ, is constant. Since R is of constant length and can
be organized as an array, constraints involving current occurrence of nonter-
minal A can be accessed in constant time. These constraints can then be re-
solved. A fully resolved constraint can be removed from both R and TQ. This
operation also takes constant time. The time taken to insert symbols on the
RHS of an applied production into queues is constant, because once the
grammar is given the number of symbols on the RHS of any MRG production
is constant. The time taken for the statements ‘Is p=i{ and ‘De-
queue(INP.symbols)’ is constant.

So time taken for 1 iteration of while loop is bounded by some constant, let
us say o0;. 0; could be O(|IR]), or o, where ¢ is time taken by any other
statement in the while loop. Since the while loop is repeated n*|Vx| times; the
time taken for execution of the while loop is n*|Vx|*d;.

Total time complexity of the algorithm = Time taken for the execution
of statements occurring before the while loop + Time taken for the
execution of the while loop body.

The time taken by the execution of statements before the while loop is
constant, therefore

Total time complexity of the algorithm

= Time taken for the execution of the while loop body = n*|Vx|*d;.

|7x| and 9, are constant, therefore the time complexity of the algorithm is O(n).

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 43

4. Comparison of MRG with RG-based formalisms

This section presents in details a comparison between the MRG and RG/1
formalisms, because of the similarity between the two. It has been shown that
MRG and RG/1 grammars have the same expressive power (Lemma 1). The
main differences between MRG and RG/1 grammars are the following:

(1) In MRG grammar, the evaluation rules are associated with the pro-
ductions as external constraints. In RG/1 grammar, the evaluation rules are
stored in a separate set R. The association of evaluation rules with the pro-
ductions, in MRG, helps in improving the clarity of productions. It is clear
how the symbols on RHS of a production should be linked to the neighbors of
the symbol on the LHS of a production, in a derivation tree, when the pro-
duction is applied. In RG/1 formalism the evaluation rules are maintained in a
separate set R and hence it is not clear how the symbols on RHS of a pro-
duction should be linked to the neighbors of symbol on LHS of a particular
production, in a derivation tree, when the production is applied. In MRG the
evaluation rules are distributed among all the productions except the first
production (production having starting symbol S as LHS). Due to the distri-
bution of evaluation rules in MRG the time taken to apply a production during
parsing is reduced.

(2) In MRG grammar we have two types of productions, whereas in RG/1
we have only one type of production. In type 1 production of MRG, the
symbols on RHS other than primary symbol should be nonterminals. In RG/1
productions these symbols can be terminals or nonterminals. This factor
however does not reduce the expressiveness of MRG because, for each terminal
on RHS of an RG/1 production, other than primary symbol, we can create a
nonterminal and use it in place of the terminal, in RHS of corresponding MRG
production. Of course we have to add a type 2 production having the newly
created nonterminal as LHS and the terminal symbol as RHS Example 6 will
clarify this procedure.

Example 6. If we have an RG/1 production
4:= {a7 Yl7 YZab}{x(a7 Yl)>y(a7 Yz),Z(Cl,b)},

where 4, Y;,Y, € Vy and a,b € I7.
The corresponding MRG production set can be written as

A={a. ¥}, Yy, s H{x(a, ¥)), ¥(a, ¥y),z(a, Y H{},

Y3 = {b}{}{z(a, ¥3) : —z(a, D)},

where Y; is the newly created nonterminal.

44 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

It is clear from Example 6 that the above type of substitution increases the
sizes of production and nonterminal sets. Since the sizes of nonterminal and
production sets increase just by a constant amount, the asymptotic time
complexity of the MRG parsing algorithm will not be affected.

(3) In type 1 production of MRG the primary symbol can be related to all
other symbols on RHS by arbitrary relation symbols. These relation symbols
need not be distinct. In RG/1 grammar the primary symbol is to be related to
all the other symbols of RHS via distinct relation symbols. This restriction
reduces the clarity of RG/1 grammars. Sentences such as the one shown in Fig.
1 cannot easily be expressed using RG/1 grammar.

Theorem 2 shows that the time complexity of the MRG parsing algorithm
is O(n), which is more efficient than RG/1 parsing algorithm with time
complexity O(nlogn). Both parsing algorithms work top—down and construct
the parse tree in a breadth first order. Both of these algorithms use a main
loop which is repeated n times, where ‘#’ is the number of symbols in the
input sentence. The difference between these two algorithms is in the way
they resolve the internal constraints. In RG/1 parsing algorithm, when the
algorithm finds that two symbols are potentially context identical it saves the
information of all the dpcis (description of potentially contextual identities) in
the set D. The time taken for constructing, inserting, and deleting dpcis is
O(logn).

On the other hand, MR G parsing algorithm does not use the concept of dpcis.
It uses superscript and subscripts on nonterminals to identify internal con-
straints involving them. The set of internal constraints that are not yet resolved
can be organized as a 3D array indexed by nonterminals, superscripts, and
subscripts. Since access time in an array is constant, the constraints involving
a particular occurrence of a nonterminal can be accessed in constant time.

5. Conclusions

We have proposed a new grammatical formalism called MRG to model
VPL. This is basically a restricted form of the RG obtained by restricting the
type of productions. It has been shown that the expressive power of MRG
grammar is equivalent to RG/1 grammar. However, MRG grammar is supe-
rior to RG/1 grammar in terms of clarity of grammar productions.

An efficient MRG parsing algorithm is also proposed. It has been shown
that the MRG parsing algorithm is more efficient than the RG/1 parsing al-
gorithm. The time complexity of the parsing algorithm is derived and is found
to be linear. A number of examples of visual sentences have been used to clarify
the MRG grammar and its parsing algorithm. The working of the parsing
algorithm has been demonstrated by tracing the parsing of one visual sentence
and showing in details the parsing steps.

M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46 45

Acknowledgements

We would like to thank KFUPM for providing the computing facilities to
carry out this work.

References

[11 A. Aho, R. Sethi, J. Ullman, Compilers: Principles Techniques and Tools, Addison-Wesley,
Reading, MA, 1986.

[2] M.A. Ahmed, A parsing algorithm for iconic visual programming languages, Master’s thesis,
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, December 1996.

[3] C. Crimi, A. Guerico, G. Nota, G. Pacini, G. Tortora, M. Tucci, Relation grammars for
modelling multi-dimensional structures, in: Proceedings of the IEEE Workshop on Visual
Languages, IEEE Computer Society Press, Silver spring, MD, 1990, pp. 168-173.

[4] S. Chang, Ten years of visual languages research, in: Proceedings of the IEEE Symposium on
Visual Languages, IEEE Computer Society Press, Silver spring, MD, 1994, pp. 196-205.

[5] J. Earley, An efficient context-free parsing algorithm, Communications of the ACM 13 (2)
(1970) 94-102.

[6] F. Ferrucci, G. Pacini, G. Satta, M.I. Sessa, G. Tortora, M. Tucci, G. Vitiello, Symbol-relation
grammars: a formalism for graphical languages, Information and Computation 131 (0090)
(1996) 1-46.

[71 F. Ferrucci, G. Pacini, G. Tortora, M. Tucci, G. Vitiello, Efficient parsing of multi-
dimensional structures, in: Proceedings of the IEEE Workshop on Visual Languages, IEEE
Computer Society Press, Silver spring, MD, 1991, pp. 105-110.

[8] G. Costagliola, A. DeLucia, S. Orefice, G. Tortora, A parsing methodology for the

implementation of visual systems, IEEE Transactions on Software Engineering 23 (12) (1997)

777-799.

G. Costagliola, S. Chang, DR PARSERS: A generalization of LR parsers, in: Proceedings of

the IEEE Workshop on Visual Languages, IEEE Computer Society Press, Silver spring, MD,

1990, pp. 174-180.

[10] G. Costagliola, M. Tomita, S. Chang, A generalized parser for 2D languages, in: Proceedings
of the IEEE Workshop on Visual Languages, IEEE Computer Society Press, Silver spring,
MD, 1991, pp. 98-104.

[11] G. Costagliola, S. Orefice, A. DeLucisa, Automatic generation of visual programming
enviroments, IEEE Computer (1995) 56-66.

[12] E. Golin, A method for the specification and parsing of visual languages, Ph.D. thesis, Brown
University, USA, May 1991.

[13] K. Wittenburg, L. Weitzman, J. Talley, Unification-based grammars and tabular parsing for
graphical languages, Journal of Visual Languages and computing 2 (1991) 347-370.

[14] F. Lakin, Spatial parsing for visual languages, in: S. Chang, T. Ichikawa, P. Ligomenides
(Eds.), Visual Languages, Plenum Press, New York, 1989, pp. 35-85.

[15] M. Hirakawa, N. Monden, I. Yoshimoto, M. Tanaka, T. Ichikawa, HI-VISUAL: a language
supporting visual interaction in programming, in: S. Chang, T. Ichikawa, P. Ligomenides
(Eds.), Visual Languages, Plenum Press, New York, 1989, pp. 233-259.

[16] M. Pong, N. Ng, PIGS-a system for programming with interactive graphical support, Software
— Practice and Experience 13 (9) (1983) 847-855.

[17] M. Tucci, F. Ferrucci, G. Tortora, G. Vitiello, A predictive parser for visual languages
specified by relation grammars, in: Proceedings of the IEEE Workshop on Visual Languages,
IEEE Computer Society Press, Silver Spring, MD, 1994, pp. 245-252.

[9

—

46 M. Al-Mulhem, M. Ather | Information Sciences 131 (2001) 19-46

[18] M. Tucci, G. Vitiello, G. Costagliola, Parsing nonlinear languages, IEEE Transactions on
Software Engineering 20 (9) (1994) 720-739.

[19] R. Korfhage, M. Korfhage, Criteria for iconic languages, in: S. Chang, T. Ichikawa, P.
Ligomenides (Eds.), Visual Languages, Plenum Press, New York, 1989, pp. 207-231.

[20] S. Chang, M. Tauber, B. Yu, J. Yu, A visual language compiler, IEEE Transactions on
Software Engineering 15 (10) (1989) 506-525.

[21] S. Chang, T. Ichikawa, P. Ligomenides, Visual Languages, Plenum Press, New York, 1989.

[22] N. Shu, Visual Programming, Van Nostrand Reinhold, New York, 1988.

[23] K. Wittenburg, Earley-style parsing for relational grammars, in: Proceedings of the IEEE
Workshop on Visual Languages, IEEE Computer Society Press, Silver Spring, MD, 1992, pp.
192-199.

