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Efficient Convex-Elastic Net Algorithm to Solve
the Euclidean Traveling Salesman Problem

Muhammed Al-Mulhem and Tareq Al-Maghrabi

Abstract—This paper describes a hybrid algorithm that combines an
adaptive-type neural network algorithm and a nondeterministic iterative
algorithm to solve the Euclidean traveling salesman problem (E-TSP).
It begins with a brief introduction to the TSP and the E-TSP. Then,
it presents the proposed algorithm with its two major components: the
convex-elastic net (CEN) algorithm and the nondeterministic iterative
improvement (NII) algorithm. These two algorithms are combined into
the efficient convex-elastic net (ECEN) algorithm. The CEN algorithm
integrates the convex-Hull property and elastic net algorithm to generate
an initial tour for the E-TSP. The NII algorithm uses two rearrangement
operators to improve the initial tour given by the CEN algorithm. The
paper presents simulation results for two instances of E-TSP: randomly
generated tours and tours for well-known problems in the literature.
Experimental results are given to show that the proposed algorithm can
find the nearly optimal solution for the E-TSP that outperform many
similar algorithms reported in the literature. The paper concludes with
the advantages of the new algorithm and possible extensions.

Index Terms—Neural network, optimization problems, traveling sales-
man problem (TSP).

I. INRODUCTION

There has been some interest in recent years in using hybrid
algorithms that combine neural-network and operations research
approaches to solve optimization problems [1]. The motivation for
using these approaches is to improve the performance of the neural-
network model and to generate feasible solutions, since neural-
network approaches may not guarantee the generation of feasible
solutions.

The traveling salesman problem (TSP) is a classical optimization
problem which can be defined as follows. LetG = (V;A) be a graph
whereVVV is a set of vertices andAAA is a set of arcs between vertices and
each arc is associated with a non negative cost. The TSP consists of
finding the tour of minimum length that passes through every vertex
exactly once [2]. A special case of the TSP with triangular inequality
is the Euclidean traveling salesman problem (E-TSP).

The E-TSP is to find a closed tour of minimum length through
points that are given in two-dimensional space where the distances
are computed according to the Euclidean metric. It can be defined
formally as follows. LetG = (V;A) be a graph whereVVV is a set of
NNN points in the plane,AAA is a set of edges between these points, and
the Euclidean distance for each edge between pointiii andjjj is CCCiiijjj :
The E-TSP consists of determining a minimum distance tour passing
through each point once [3].

Both the TSP and the E-TSP are NP-hard problems. In an instance
with NNN cities, there are(N !=2N) distinct tours [4]. Thus, it is
unlikely that we can find a polynomial time algorithm for solving
this problem exactly. Finding an efficient algorithm for the E-TSP
that approaches the global minimum solution is a challenging task,
since E-TSP contains several local minima that can mislead most
algorithms. This paper is an attempt in that direction.
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Fig. 1. The ECEN algorithm.

TABLE I
AVERAGE TOUR LENGTH COMPARISON FORECEN WITH OTHER ALGORITHMS

II. THE EFFICIENT CONVEX-ELASTIC NET ALGORITHM

Many local search algorithms have been developed to solve the
E-TSP. However, local search algorithms often get stuck at a local
minima. To reduce the effect of local minima, we introduced an
algorithm that consists of two phases: the first phase consists of the
convex-elastic net (CEN) algorithm, and the second phase consists of
the nondeterministic iterative improvement (NII) algorithm as shown
in Fig. 1. The CEN is a global search algorithm that generates an
initial tour for the second phase (local search) by enforcing the
E-TSP constrains instead of transforming them into penalties. The
NII is a local search algorithm that improves the tour found over
time and local minimas are escaped through the noise added to the
cost function. The two introduced algorithms are combined into a
new one called the efficient convex-elastic net (ECEN) algorithm.

A. The Convex-Elastic Net Algorithm

In 1956, Merril Flood showed a general property for any optimal
tour of the E-TSP [2]. This property is that, in any optimal solution
for E-TSP, vertices located on the convex hull are visited in the
order in which they appear on the convex-hull boundary. We propose
the CEN algorithm that combines this property with the elastic net
approach [5]. The proposed approach creates an initial tour as a rubber
band that is originally shaped as the convex-hull ofNNN cities. In each
iteration the influence of all cities that are not on the rubber band on
the nodes of the rubber band is computed and the nodes are displaced
accordingly. A force,FFF1; that keeps the rubber band nodes together
is applied on each node and another force,FFF2; pulls each node
toward a city, such that the tour is stretched and more cities will
be introduced to the rubber band. Once all cities are included in the
rubber band, the tour found is a suboptimal solution for the given
instance of the E-TSP as shown in Figs. 2 and 3.
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TABLE II
SIMULATION RESULTS FOR SEVERAL PROBLEMS FROM THE OR LITERATURE

Fig. 2. Forces on the rubber band.

Fig. 3. Evolution of the CEN over time.

The CEN algorithm is an adaptive neural-based technique that is
derived from the Kohonen’s self-organizing feature maps approach.
In this technique, the two-dimensional coordinates of cities are the
input pattern and the similarity criteria is the Euclidean nearness. At
each iteration, cities not on the rubber band are presented to the CEN
two-layer network shown in Fig. 4. This figure shows that the CEN
algorithm hasN neurons andM � N connections, whereM is the
maximum number of rubber band nodes andM < 2N: Therefore,
the number of connections isM �N � 2N2: When cities coordinates
are presented to this network, a competition learning phase is initiated
where the nearest prototype (rubber band node) to a particular pattern
(city) is selected as the wining neuron.

B. The NII

The NII is developed to enhance the tour produced by the CEN
algorithm. It uses a set of rearrangement operators to enhance a given
tour. Each tour can be represented by a permutation list of numbers
from 1 toN; whereN is the number of cities. NII algorithm uses two
types of powerful rearrangement operators: an operator for removing
loops from a tour and an operator for changing the cities positions in
a tour. These operators are simple rearrangement operators that are
derived from two known heuristics, namely2-optimal(2-opt) [6] and
the point heuristic[7]. These operators are used here to remove the
intersecting paths from the tour produced by theCEN algorithm.

The NII algorithm starts with a given tour which is taken as the
current tour. Then, one of the two rearrangement operators is applied
to the current tour to getNNN new tours. Next, one of the new tours is

Fig. 4. The structure of the CEN algorithm.

selected based on its probability of selection. After that, the selected
tour becomes the current tour. This process is continued until no
further improvements can be found on the current tour.

The NII algorithm is developed to enhance the tour produced by
the CEN algorithm. This is done by alternatively removing loops
from the tour (reversing subtours) and moving a city from a position
in the tour to another that reduces the tour length.

III. SIMULATION RESULTS

The proposed algorithm has been implemented using C language
and coded on a Pentium 75 MHz PC. Since worst case analysis for
E-TSP is as hard as finding the optimum, we performed probabilistic
analysis only. The performance of our algorithm is tested against
an instance of E-TSP where the cities coordinates are randomly
generated within one unit square. Several test problems in this study
are taken from the literature in order to compare our algorithm to the
experimental results of other researchers.

In comparing our results to the optimal tour length, the expected
length of the optimal tour which is found by Stein in 1977 is used. The
Stein formula forNNN cities distributed uniformly over a unit square
is given by

0:765 �
p
N � Optimal tour length� (0:765 + 4=N)�

p
N:

In this study,0:765�
p
N was taken as the presumed lower bound

optimal solution, and(0:765+4=N)�
p
N was taken as the presumed

upper bound optimal value [3].
Table I shows a comparison for the average tour length of several

methods [8] with the ECEN algorithm for up to 100 cities, where
100 is the largest number of cities reported in the literature for
neural network solutions of E-TSP. It is clear, from Table I, that
the proposed ECEN algorithm produces better solutions than all of
the other algorithms except the elastic net with ten cities, and the
ECEN solutions are within the optimal solution bounds given by the
Stein formula.

The proposed ECEN algorithm has been used to solve several
problems from the operations research literature ranging in size from
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96–318 cities and with known optimum solutions. These problems are
GRID100 [9], KAR100 [7], LIN318 [6], GR96, and GR137 [10]. The
ECEN algorithm found a tour for each one of these problems with
a tour length that was never more than 5% longer than the optimum
tour length. Table II shows the simulation results that compares the
optimal tour length with tour length found by ECEN algorithm for
these problems.

IV. CONCLUSION

In this paper, we have proposed the ECEN algorithm for solving
the E-TSP. The ECEN algorithm has the following advantages. First,
unlike the Hopfield model, it doesn’t produce unfeasible solutions
and there is no need to set the energy function parameters for
each problem size. Second, it generates a suboptimal solutions that
are better than the results generated by the neural-based techniques
reported in literature such asHopfield model, guilty net, andelastic
net. Third, it scales well with problem size. Finally, it can escape
from many local minima by exploring a larger number of solutions.
This is similar to thesimulated annealingtechnique in that it allows
a local modification that increases the length of the tour with some
probability of acceptance.
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A Visual Neural Classifier

Chester Ornes and Jack Sklansky

Abstract—A new neural classifier allows visualization of the training
set and decision regions, providing benefits for both the designer and the
user. We demonstrate the visualization capabilities of thisvisual neural
classifierusing synthetic data, and compare the visualization performance
to Kohonen’s self-organizing map. We show in applications to image
segmentation and medical diagnosis that visualization enables a designer
to refine the classifier to achieve low error rates and enhances a user’s
ability to make classifier-assisted decisions.

Index Terms—Classifier, dimensionality, exploratory data analysis,
multi-expert, multitask learning, neural network, reduction, visualization.

I. INTRODUCTION

The visual neural classifier combines the information provided by
several classification tasks into a visually meaningful and explanatory
display. A user can interact with the display and obtain an explanation
or confirmation of a classifier decision. A designer can identify
difficult-to-classify input patterns that may then be applied to an
additional classification stage.

Visualization is accomplished by a funnel-shaped multilayer di-
mensionality reduction network [2]. The dimensionality reduction
network is configured to learn one or more classification tasks. If
a single dimensionality reduction network does not provide suffi-
ciently accurate classification results, a group of these dimensionality
reduction networks may be arranged in a modular architecture [1].
Among these dimensionality reduction networks, we refer to those
receiving the input data asexperts.The dimensionality reduction
network that combines the decisions of the experts to form the
final classification decision is called avisualization network. Each
dimensionality reduction network contains a two-neuron layer that
displays the training data and the decision boundaries in a two-
dimensional (2-D) space. This architecture facilitates a) interactive
design of the decision function and b) explanation of the relevance
of various training data to the classification decisions.

In the next three sections of this paper we describe the architecture
of the visual neural classifier, the design of a visual neural classifier,
and the motivation for using neural networks with two-neuron hidden
layers. In Section V we describe some of the properties of the visual
neural classifier. In Section VI we describe two disparate applications
of the visual neural classifier: the diagnosis of mammograms and
the segmentation of aerial images. The application to mammograms
shows how the visual neural classifier can raise or lower a user’s
confidence in a classification. The application to aerial images demon-
strates the ability of the visual neural classifier to enhance interactive
design.

II. A RCHITECTURE

Our neural classifier consists of two major parts: a set of experts
and a visualization network. Each expert is a multilayer neural
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