
A New Deadlock Recovery Mechanism for Fully Adaptive
Routing Algorithms

*Z. H. Al-Awwami, **M. S. Obaidat, and *M. Al-Mulhem
Monmouth University and KF’UPM

* Department of Information and Computer Science, KFUPM, Dhahran 31261, Saudi Arabia

**Corresponding Author: Professor M. S. Obaidat, Department of Computer Science, Monmouth
University, W. Long Branch, NJ 07764, USA

E-mail: Obaidat@,monmouth.edu

Abstract
Routing algorithms used in wormhole switched networks
must all provide a solution to the deadlock problem. If the
routing algorithm allows deadlock cycles to form, then it
must provide a deadlock recovery mechanism. Because
deadlocks are anomalies that occur while routing, the
deadlock recovery mechanism should not allocate any
expensive hardware resources for the sake of handling such
a rare event. Rather, it should only dedicate a minimal set
of required resources to the recovery process in order to
engage most of the hardware resources to the task of
routing normal packets. This paper proposes a new
deadlock recovery mechanism to be used with the True
Fully Adaptive Routing algorithm. The new deadlock
recovery mechanism takes advantage of the concept behind
wormhole switching. The scheme is eficient in terms of
hardware requirements, causes fewer deadlocks and can
compete with other expensive deadlock recovery schemes.

Key words: Deadlock recovery, wormhole switching,
adaptive routing, performance evaluation.

1. Introduction

Massively parallel processors (MPP) are an important
class of parallel machines that can provide the envisioned
computation platform for solving the so-called grand
challenge problems. Several variations of these machines
are commercially available today. These machmes are
composed of many nodes that communicate with each other
over a set of switches and communication links collectively
known as the interconnection network. The performance of
the interconnection network is the most critical factor
affecting the performance of the entire parallel machine.

Wormhole switching is the most popular switchmg
technique that has been applied to the interconnection
networks of parallel multicomputers. Wormhole switching

is well suited for application in multicomputer
interconnection networks as it allows for the design of
simple, low-cost hardware router nodes, while providing
low latency, high-bandwidth communication [11.

Routing algorithms, used to route packets in wormhole
networks, are characterized by how they approach and
overcome the issue of deadlock. Earlier work proposed in
the literature has adopted the view that routing algorithms
should be intrinsically deadlock-free. By providing a
sufficient condition that prevents the occurrence of
deadlocks, and by having the routing algorithm uphold this
condition while routing, freedom of deadlock is guaranteed.
Such algorithms are called deadlock-avoidance routing
algorithms [2-41. Deadlock-recovery algorithms on the
other hand allow packets to be routed on all available
channel resources without guarding against the possibility of
deadlock. Once deadlocks occur, they are detected and a
particular deadlock-recovery mechanism is invoked to
resolve the deadlock situation [5-61. Both of these
techniques are similar in the sense that in each case the
routing algorithm must utilize some resources, but they
differ in the amount and expense of those resources. It has
been established through research that deadlocks are
generally rare events, and are more likely to occur as
networks reach or are beyond their saturation point [7, 81.
To this effect, almost all deadlock-avoidance algorithms
allocate more expensive resources to avoid deadlocks than is
necessary. This observation has paved the way for deadlock-
recovery techniques to be more widely accepted as a
legitimate contender to deadlock-avoidance techniques.

Routing algorithms are also characterized by the
amount of adaptivity they provide. Deterministic algorithms
do not provide any adaptivity. The route taken is determined
at the source node by considering only the source and
destination node addresses. Deterministic routers allow for
the design of fast and simple routers. They suffer from a
serious drawback however; they do not allow the router to

0-7803-5979-8100 $1 0.00 0 2000 IEEE 132

mailto:Obaidat@,monmouth.edu

react to the current status of the network [2,9].
Adaptive routing algorithms on the other hand can

react to network conditions as they allow packets to be
routed along alternate paths. The routing decision is
performed in a distributed fashion by each intermediate
node along the way. Adaptive algorithms are further
classified as to the amount of adaptivity they provide.
Algorithms with limited adaptivity are called partially
adaptive, while fully adaptive algorithms allow routing on
all possible paths. When the routing algorithm is only
allowed to route along available shortest paths between any
pair of nodes, the algorithm is called minimal otherwise, it is
called nonminimal routing, or misrouting. In minimal
routing each route taken by a packet must bring the packet
closer to its destination [9, 101. Fully adaptive routing
algorithms that employ deadlock-recovery techniques truly
utilize all of the available buffer resources for routing
packets, without excluding any for the sake of deadlock
prevention. Therefore they are known as True Fully
Adaptive Routing (TFAR) algorithms [5 , 6, 111.

The amount of adaptivity provided by the routing
algorithm is generally tightly correlated to the underlying
router hardware complexity, which has the undesirable
consequence of reducing the clock speeds at which the
interconnection network can operate, and therefore to the
overall performance of the multicomputer [11, 121.

The Dimension-Ordered Routing (DOR) algorithm is a
deterministic deadlock-avoidance algorithm proposed by
Dally and Seitz in [2]. Each packet is routed in one
dimension at a time arriving at the proper coordinate in each
dimension before proceeding to the next dimension. By
enforcing a strictly monotonic order on the dimensions
traversed, deadlock-free routing is guaranteed.

Planar-Adaptive-Routing (PAR) is a partially adaptive
deadlock-avoidance algorithm. PAR restricts adaptability by
only allowing a packet to be routed through a sequence of 2-
dimensional planes at a time, until the packet reaches its
destination. %s reduces the requirements for deadlock
prevention. PAR requires only three virtual channels per
physical channel regardless of the network dimension [101.

Disha is a TFAR algorithm with a progressive
deadlock-recovery mechanism. The main idea of this
deadlock-recovery is to allocate a central buffer in each
node. This buffer is connected to the router’s crossbar via
an input port, and is accessible by all neighboring nodes.
When a deadlock is detected, one of the packets involved in
the deadlock is moved to the deadlock buffer of the next
node along its path. From that point on, the packet
continues to advance using only this “floating lane”
composed of all the deadlock buffers throughout the
network until it reaches its destination. Hardware
requirements for Disha include a central buffer that is
connected to the crossbar through an extra input port at each

node, a hardware token signal wires connected to all nodes
in order to synchronize the recovery process, an extra status
line to select the deadlock buffer, and a crossbar
reconfiguration buffer is needed to temporarily store any
broken connection inside the crossbar while fonvardmg the
deadlocked packet [6]. The added hardware contributes,
even if slightly, to the complexity of the crossbar switch.
This hardware is on the critical path of routing all packets,
and therefore will affect the overall speed of the switching
process [l l] . Disha nonetheless has been shown to
outperform most other routing algorithms.

The proposed algorithm presented in this paper is a
TFAR algorithm along with a new deadlock-recovery
mechanism. It attempts to provide deadlock-recovery using
minimal hardware resources, and more importantly this
extra hardware is not on the critical path of routing normal
packets so as not to affect the overall speed of the router.

In section 2, the proposed deadlock-recovery
mechanism is presented. Section 3 outlines the evaluation
methodology and the assumptions made about the
simulation environment. Section 4 discusses the simulation
results. Finally, section 5 presents a conclusion.

2. Proposed deadlock-recovery mechanism

The work proposes using the True Fully Adaptive
Routing algorithm and a new deadlock-recovery
mechanism. TFAR algorithm routes packets on all available
channels and buffer resources without regard to the
possibility of deadlock. Once deadlocks are detected, the
proposed recovery mechanism is invoked. The deadlock
detection mechanism used here is based on the one
described in [131.

The deadlock-recovery scheme proposed is a new
approach. Since deadlocks are rare, only as few resources
as possible should be dedicated to handle this rare event.
The proposed approach takes advantage of the concept
behind wormhole routing. Namely the low number of edge
buffer requirements per channel, which can be as low as one
flit buffer, and the flow control mechanism already in place,
and which carries control information in the opposite
direction to that of data flow.

2.1 Operation of proposed recovery mechanism

The proposed mechanism allocates a central buffer of
the same capacity as the edge buffer, which is usually one or
two flits deep. This central buffer will be used to break a
deadlock cycle at the node where the header of the blocked
packet resides. The flow control mechanism is also
extended by one more signal, the breakheconnect line.

When a deadlock situation is detected in a node, the
edge buffer that contains the header of the blocked packet is

133

stored in the central buffer, and then cleared to receive other
flit(s). Flow control in the opposite direction, using the
added line, signals the previous node where the packet came
from to break and free the connection through its crossbar,
to enable other packets to pass through it. This operation is
referred to as a breakMode operation. Each node containing
part of the blocked packet propagates a breamode signal to
the previous node until the tail flit or the source node of the
packet has been reached. A breakMode operation performs
several steps. First, it moves the flit(s) of the deadlocked
packet from the edge buffer to the central buffer. Second, it
saves the input and output port numbers made by the packet
through the crossbar of that node. Third, it clears this
connection through the crossbar, so that other packets can
utilize it. This way the remaining packets that are involved
in the deadlocked situation can advance, and will eventually
free up their occupied resources. Once the node with the
separated header in its central queue has a free edge buffer,
the header is rerouted again. If the routing is successful, a
flow control reconnect signal is sent back to the node
containing the remainder of the packet in order to
reestablish the connection through its crossbar, and resume
the interrupted operation of routing the packet. This signal,
referred to as a connectMode operation, propagates back
along the same path taken by the breamode signal and
reverses what the latter has done using the trails that were
previously saved by it. Figure 1 provides an illustration of
this mechanism. If packet 1 is marked as deadlocked, then
the header of the packet (Hl) will be moved to the CB of
that node. A breamode signal is sent to the previous node
where the data flits(s) of the packet reside (Dl). The
breakMode operation will move the data flit(s) to the CB,
and will clear the crossbar connection established by the
packet. This way packet 4 which has been blocked by
packet 1 can now advance.

In wormhole routing once a channel accepts the header
of a packet, then it must accept all the remaining flits of the
packet in a pipeline fashion. This definition does not allow
for the interleaving of flits between packets. This definition
is modified by this approach to state that once a channel
accepts the header of a packet, then it must accept all the
remaining flits of the packet eventually, and in a pipeline
fashion during periods of data flow (connect mode). But
here the limited interleaving of flits in order to break
deadlock cycles is allowed.

2.2 Hardware requirements

The hardware required by this approach is moderate
and more importantly does not increase the complexity of
either the crossbar switch, the virtual channel controller
(VCC), nor does it lie on the critical path of the routing
decision for normal packets. Both of these factors have

been shown to increase the cost and decrease the speed of
the router [1 11.

A central buffer is required per node. The capacity of
this central buffer should be the same as that of an edge
buffer. The central buffer is connected to all the input ports
of the switch and can output to any output port. It has a
similar architecture to the central queue used in the Chaos
router [14]. Two 7-bit registers per node are needed to store
the input and output switch port. A breakheconnect signal
wire is also needed in order to break and reconnect packets.
This wire is very similar to the flow control wires already
used for wormhole switching. Its main function is to signal
the previous node to perform either a breamode or a
connectMode operation. Instead of having to use two wires
for each mode, we just use one wire with a bit in each node.
When a break signal is received by a node, it toggles this
bit, so that the next time it receives it, it will actually be
interpreted as a connect signal.

This hardware is sufficient to perform sequential
deadlock recovery. That is one deadlocked packet is
handled at a time. Sequential deadlock recovery will be
used throughout our simulation. Concurrent recovery is
beyond the scope of thls paper.

3. Performance evaluation

The simulator developed as part of this effort is written
in Java. It is configurable for a wide range of topologies,
network sizes, routing algorithms, selection functions,
arbitration policies, and various configuration parameters,
such as the number of virtual channels, capacity of each
virtual channel, and the packet length.

3.1 Multicomputer model

The following assumptions are made about the
multicomputer and its interconnection network

Each node has a processor, a router, and the crossbar
switch. The processor and the router are connected via
one injection and one delivery channels
Injection queues are allowed to grow without bounds.
Latency figures calculated include source queuing time
Flits passed to the delivery channel are assumed to be
consumed immediately by the processor
The router of each node is connected to neighboring
routers via dual uniplex channels
Each uniplex channel is associated with a multi-flit
FIFO queue (input buffered)
A physical channel is associated with a configurable
number of multi-flit queues, referred to here as virtual
channels, or edge buffers. The virtual channels are
multiplexed over the physical channel. If more than
one virtual channel can utilize the physical channel,

channel bandwidth is assigned to the virtual channels in
a demand-slotted round robin fashion
A flit can be transferred across a physical channel in
one clock cycle
A header flit can be processed by the node’s routing
unit within one clock cycle
Only one header is processed by the routing unit at a
time, if more than one header requires the routing unit,
they are serviced in a round robin fashon

3.2 Message generation

A packet is broken down into flits. Each packet
contains a header flit, data flit(s), and a tail flit. Header is
assumed to fit in one flit, so routing can take place as soon
as the header flit arrives at the input queue of a node.
Packet generation rate is constant and the same for all
nodes for a given run as determined by the injection
period of that run. Packet destinations are chosen
uniformly amongst all the nodes in the network for
uniform traffic, otherwise the traffic pattern is non-
uniform and would be specified. After generating a
packet, a node waits for a random number of cycles before
generating the next one. This random number of cycles is
bounded between 0 and the current injection period value.
The current injection period is determined by dividing the
maximum injection period of the network by the specified
load factor. The maximum injection period is determined
from the maximum wire capacity supported by the
network. The maximum wire capacity for a particular
network is calculated as in [lo]. For this simulation we
normalize the maximum injection period to correspond to
213 (66.67%) of the maximum wire capacity for a better
chart drawing scale. When the load factor is set to the
maximum value of 1.0, then the injection period would
equal the maximum injection period. The normalized load
factor is used to drive the packet generation for a
particular run, and is used to plot all the results in this
simulation.

3.3 Performance metrics

The two most important performance metrics are
latency and throughput. Latency is measured as the
number of clock cycles from the time the packet has been
generated by the processor, until the tail flit of the packet
has been delivered to the destination node. Throughput is
the maximum number of packets delivered per unit of time.
It is normalized to be the maximum number of flits
delivered per clock cycle. It can be derived directly from the
current load factor unless the network is saturated at that
point.

Because these metrics may fluctuate widely at the

initial transient state of the network. The metrics are only
collected after the network has reached the steady state. The
end of the transient state is detected when the flit injection
rate and the flit delivery rate have stabilized. More precisely
the transient period is declared over when the flit injection
rate and the flit delivery rate are within 0.05% of each other
for two consecutive 500-clock cycle periods. Statistics are
collected for 50,000 clock cycles plus the number of cycles
it took to reach the steady state. This was found to be
sufficient for the network size simulated.

A steady state solution exists if the flit generation rate
and the flit delivery rate are equal, otherwise, the network is
saturated for that run. If a steady state solution exists, then
a simulation run can be terminated whenever the metric
measured is within 0.05% of its previous value for 10
consecutive 500-clock cycle periods. This is to save
simulation time and resources.

4. Simulation results

This section will present the simulations for a 256-
nodes 2-dimensional, 16x16, mesh topology network with
three virtual channels. The network size was selected for
reasonable simulation times. Packets used will all be 32-
flits long, while flits are 32-bits wide. The selection
function, which selects a single path from the set of all
possible paths to route the packet through, will attempt to
locate a free channel for the packet first. If that is not
possible, it selects amongst the choices according to the
Straight-First flavor of selection. The timeout value, after
which a packet is marked as deadlocked, is 10 clock cycles
unless otherwise specified. The proposed routing algorithm
is evaluated against three others: DOR, PAR, and Disha.

4.1 Cost model

This section compares the cost of the additional
hardware resources, needed by both the Disha and the
proposed model, in terms of the speed achievable by the two
routers. We fist consider the unified-crossbar design,
which consists of a single large crossbar connecting all input
to output ports. According to the cost model in [l l] , the
router’s data through latency can be computed using Td =
T, + Tcb + T,, where Tfc is flow controller delay, Tcb is the
crossbar switch delay, and T,, is the virtual channel
controller delay. For a 0.8 micron CMOS gate array
technology, T, = 2.2 ns, Tcb = 0.4 + 0.6 log P ns, and T, =

1.24 + 0.6 log V ns, where P is the number of input ports to
the crossbar switch, and V is the number of virtual channels
(V=3). For our simulated network, the data through latency
of Disha is Tdisha = 7.1 ns, while Tpuposed = 7 11s. Although the
difference is small, it gives the proposed mechanism a slight
advantage, especially that the performance results of the

135

next scction are very cloac and since each clock cycle is
actually largcr far the Disha case.

The situation i s compounded whcn we consider a
modiilar router design such as the ernhnwceri-hier~rchicaI
router. Modular routers will be more likcly used iii future
multicomputers. Each subcrossbar input sizc car) be
calculated using P = 2n + C -1 1, where n is the dimension of
thc network, and C the number of connect channels used
bctween subcrossbars [15]. For our network and assuming
oiic connect channel, TJSllr = 5.5 ns, while T- = 5.4 w.
These values arc the delay through a single sub-crossbar,
More than one sub-crossbar may be traversed to get the flit
to the desired virtual channel, making thc data through delay
additive in nahire. This again gives more of a pcrformancc
advantage for the proposed recovery schemc.

4.2 Uniform traffic

Simulation results for thc uniform traffic pattern is
shown in figure 2. The PAR algoritlim displays the worst
performance, it saturates around 0.35 of the nonnalized wire
capacity. DOR does relatively well as the traffic is already
uniformly distributed, saturating around 0.65. The
performance of Disha and the proposed algorithm are
almost idcntical. They both saturate at 0.7 of wire capacity.
As we mentioned in section 4.1, this gives an advantage to
the proposed sclicme as it has lower data through latency
cycle. Deadlocks occiir in both algoriflms around the
saturation point, but we see that the proposed deadlock
recovcry mechanism can match that of Disha. This is in
spite of the fact that the hardware resourccs used by Disha
can be uscd to progress dcadlockcd packets. The resources
ascd by the proposed scheme however, are not progressive
in nature; they arc merely used to preempt the deadlocked
packet to a storage that is distributed throughout the
network. This suggests that the Disha extra lane can
actually be used for routing normal packets, which will
achieve a Iiiglier saturation point in the presence of an
cfficient deadlock recovery mechanism.

4.3 Non-uiiiform traffic

Thee traffic pattenis are cvaluated, bit-reverml,
~~i~~cris ion-~ever.sa~, and hot spot traffic. In bit-rcversd
traffic, a node with binary addrcss an.,, an.>,. . ,, a,, uo sends a
packet to a node with binary address a,,, nl, ..., an.$.
This traffic pattern causes nodes on certain rows to send
packets to nodes on ccttain colunms, causing various
packets of conflicts near tllc center of the network. The
aimulatiori results arc shown in figure 3. The unevcn traffic
distribution causes DOR to saturate cady, whilo adaptive
algorilhms do a better job in dissipating the congestion.
Again D3isha and thc proposed algorithm have almost

identical perforinance with a 0.65 saturation point.
The dimension-reveusd traffic pattcm C~USCS a node

with address (xy) to scnd packcts to nodc (yx). For 2D
nctworks this is the saine as the matrix transposc traffic
pattern. It has a similar cffect as the bit-revcrsal pattern, but
tends to coriccntrate thc conflicts along the diagonal line of
the network. In our sininlation, whenever the source and
destination nodes addresses are the samc, a packet with a
random destination is injected instead, so as to allow for
more deadlocks to occiir. Figure 4 shows that thc
performance of both the proposed and the Disha algorithms
are similar, saturating aroiind 0.65 of thc nomializcd wire
capacity.

'The hot spot traffic pattcrn used causcs 5% of all
network iraffic to be destined toward a single node that is
randomly selectcd, while the rcmaining traffic is
uniformly distributed. This pattcrn causes a serious
congestion near tlic hot spot node, which in turn causes all
the routing algorithms to have early saturation points. Thc
timeout used in our simulation for this pattern is 35 clock
cycles. Examining figure 5, we notice that PAR sahiratcs
at 0.2875 arid DOR at 0.3 of the wire capacity. The
proposed algorithm and Disha both saturate roughly at
around 0.3125, bnt we can notice that the proposed
scheme demonstrates a slightly higher saturation behavior.
This is duc to thc fact that the numbcr of deadlocks
detccted by the proposed mcchanism is much lowcr than
those detccted by the Disha algorithm. Figure 6 illuslrates
this by plotting the riuinber of deadlocks detected
normalized to thc total number of packets delivered by thc
network as a ftinction of the normalized load factor. We
can see that the number o f deadlocks dctected by Disha
has almost an cxponential growth, while thc proposed
niechanism maintains il linear nature. This imporiant
observation is generally true for all traffic patterns, but is
morc obvious in this casc. The reason for this behavior is
that in the proposcd schemc, deadlocked packets are
completely removcd from thc network quickly so other
packets can advaiice. Disha on thc other hand,
progressively advances the deadlocked packet to its
destination ovcr a slower lane, causing more congestion to
form behind it, and therefore more deadlocks. The
proposed mechanism liowcver, does not have a dear
performance advantage bccause the latencies of the
deadlocked packets are tacger due to the fact that they wait
for other packets to pass by. In this traffic pattern, the
dcadlocked packets may wait for longer periods bcfore
finding a frce virtual cliannel to reroute thc packet on,
Thc congestion preseiitcd by this traffic pattern can be
effectively dealt with by increasing the number of delivery
channels at each node.

5. Concluding remarks

136

In this paper, we prcsented a new deadlock recovery
mechanism to be used with Tme Fuliy Adaptive Routing
algorithms in wormhole switched networks. Thc main
advantages of the proposed scheme can be summarized as
follows. First, this scheme creates a new category of
deadlock recovery techniques. Previously known
categories are cither Progressive, meaning that when
deadlocks occur, the deadlocked packets are advanced to
their dcstinations using some reserved set of resources, as
in Disha. Abort-and-Retry category means that when
deadlocks are detected, the packet is disposed of and
retransmitted at a later time. The proposed approach
cannot bc characterized BS either of these two. Rather, it
creates a new category with a preemptive nature. As a
consequence, this approach uses moderate hardware
resources, and more importantly the needed hardware does
not increase the complexity ofthe crnssbar switch, nor does
it lie on the critical path of routing packets. Second, ?he
schcme takes advantngc of the concept behind wormhole
routing, namely, the low niimber o f edge buffer.

References

[I] William J. Dally, “Performance Analysis of k-aty n-cuhc
Interconncction Netwarks,” E E E Traiislrclioris on Conputem,
Vol. 39, No. 6 , pp. 775-785, Junc 1990.

[2] William J. Dolly, Charles L. Seitz, “Deadlock-Frce Message
Routing in Multiproccssor Intcrconnection Nctworks,” 1RKE
Tmtisactiom on Computers, Vol. C-36, No. 5 , pp. 547-553, May
1987.

[33 Jose Duato, ”A New Theory of Deadlock-Frcc Adaptive
Routing in Wormholc Nctworks,” 1EL.E Tramrrctioiis on Parallel
Aird Dhtributed @,ytenis, Vol. 4, No. 12, pp. 1320-1331,
Docember 1993.

[4] Jose Duafo, ”A Necessary and Suficient Condition for
Deadlock-Frcc Adaptive Routing in Wormholc Networks,” IEEE
Transactiorrs on Parallel A i d Distrihufed S’yskwis, Vol. 6, No.
10,pp. 10554067, October 1935.

[5] J. M. Martinez, P. Lopez, 1. Duato, T. M. Pinkston,
“Software-Rascd Deadtock Rccovery Techniquc for True Fully
Adaptive Routing in Wormhole Networks,” In Procccdings of the
1997 Intcmdtional SymDosium on h”lc1 Processinr. PP. 182-
lS9, 1997.

[6] Anan K. V., Titnothy Mark Pinkston, “An Efficient, Fully
Adaptivc Deadlock Rccovery Sclicmc; DISAA,” br Proceediiigs
aftlie 1995 Inferiinlional Synposiuiii mi Cornputer drcliitecltire,
pp. 201-210, June 1995.

[7] Timothy Mark Pinkston, Sugath Wamakulasuriya, ”On
Deadlocks in Interconnection Networks,” In I’roceedin~s of the
1997 htcrnntionai S)“osiiun oji Cumpitier. Arclriicchrrc, pp.
38-49, June1997.

requirements per channel, which can be as IOW as one flit
buffer, and the flow control mcchanism already in place,
which carries control information in the opposite direction
to that of data flow. Third, there arc no extra delays for this
approach, when using a router model that uses InputlOutput
buffered nodes. Disha suffers from this problem, as output
buffers will have to be cleared, and stored in some extra
hardware during the pragrcssive deadlock rccovery phase.
This extra overhead Is not modeled in this study. Fourth,
the scheme causes less deadlocks to form as dcmonstrated
by the Hot Spot Deadlock chart. Finally, Our scheme is
more suitable to modular router designs, which are more
likely to be adopted in tlic future

[E] Sugath Wamaku\asirriya, Timothy Mark Pinkston,
”Characterization of Deadlocks in Intcrconncction Nctworks,” h
Proceedings of the 1997 internnlional Confirencc on Pardel
Processing, pp. 80-86, 1997.

[9] Lioiicl M. Ni, Philip K. McKinley, “A Survcy of Wonnholc
Routing Techniqucs in Direct Networks,” W E Computer, Vol.
26, No. 2, pp. G2-76, February 1993.

[101 Jae H. Kim, “Planar-Adaptive Routing (PAR): Low-Cost
Adaptivc Nctworks for Multiprocessors,” Mosfer IRwis,
Univcrsily olIlljnois at Urbana-Chnrnp;ligii, 1993.

[I I] Andrew A. Chien, “A Cost and Speed Model for k-ary n-
eubc Wormhole Routcrs,” IEEE Trnrisacrioris oli Parallel and
Dislributd+dcms, Vol. 9, No. 2, pp. 150-162, Fcbruary 1998.

E121 Kazuhiro Aoyama, “Dcsign Issues in lmplcmcnting an
Adaptivc Router,” Musfcr nesis, University of Illinois at
Urbana-Champaign, 1993.

[!3] P. Lopez, J. M. Martinez, J. Dudto, “A Very Bffcicnt
Distributcd Deadlock Detcction Mechanism for Wormhole
Neiworks,” In the ID38 Intcmational Symposium on High-
Pcrfomiance Computer Architecture, pp, 57-66, 1998.

[I41 Kevin Dolding, ”Chaotic Routing - Dcsign and
Implcmentation of an Adaptive Multicomputer Network Router,”
Doclord Disserfation, University of Washington, 1993.

[l5] Yungho Choi, Timothy Mark Pinkston, ”Crossbar
Analysis for Optimal Deadlock Rccovcry Router Architccturc,”
SMART Itiierconnecls Group
h i l p : /hvw, USC. cdu/depficeq/piii ~ Y ~ o ~ S M A X T . htin I , pp. 5 8 3 -
,588, 1997.

137

P

H Header flit@) - Packet connected through XBar

D Data flit(s) e Flow Control breaklreconnect

CB Central buffer Packet awaiting crossbar port

Figure I. Detailed view of two deadlocked
packets in the proposed router design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m i z e d lJx%wi&

c
.- 500
$
$ 4 0 0

04 I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

" d i z e d LceMate

-+--DOR d!
- * -PAR I
--o-.Diiha I

*Proposed I

I

I

I

I

" , , I . , I , , , , ,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
N m l i z e d Load-Rak

I I
I

I
I

I I

! !
!

I !
,e !

o ai a2 a3 a4 a5 a6 a7 a8 a9 1

k d i z e d k.&Ri&

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N m l i z e d LoadRate

138

