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Abstract

Routing algorithms used in wormhole switched networks
must all provide a solution to the deadlock problem. If the
routing algorithm allows deadlock cycles to form, then it
must provide a deadlock recovery mechanism. Because
deadlocks are anomalies that occur while routing, the
deadlock recovery mechanism should not allocate any
expensive hardware resources for the sake of handling such
a rare event. Rather, it should only dedicate a minimal set
of required resources to the recovery process in order to
engage most of the hardware resources to the task of
routing normal packets. This paper proposes a new
deadlock recovery mechanism to be used with the True
Fully Adaptive Routing algorithm. The new deadlock
recovery mechanism takes advantage of the concept behind
wormhole switching. The scheme is efficient in terms of
hardware requirements, causes fewer deadlocks and can
compete with other expensive deadlock recovery schemes.

Key words: Deadlock recovery, wormhole switching,
adaptive routing, performance evaluation.

1. Introduction

Massively parallel processors (MPP) are an important
class of parallel machines that can provide the envisioned
computation platform for solving the so-called grand
challenge problems. Several variations of these machines
are commercially available today. These machines are
composed of many nodes that communicate with each other
over a set of switches and communication links collectively
known as the interconnection network. The performance of
the interconnection network is the most critical factor
affecting the performance of the entire parallel machine.

Wormhole switching is the most popular switching
technique that has been applied to the interconnection
networks of parallel multicomputers. Wormhole switching
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is well suited for application in multicomputer
interconnection networks as it allows for the design of
simple, low-cost hardware router nodes, while providing
low latency, high-bandwidth communication [1].

Routing algorithms, used to route packets in wormhole
networks, are characterized by how they approach and
overcome the issue of deadlock. Earlier work proposed in
the literature has adopted the view that routing algorithms
should be intrinsically deadlock-free. By providing a
sufficient condition that prevents the occurrence of
deadlocks, and by having the routing algorithm uphold this
condition while routing, freedom of deadlock is guaranteed.
Such algorithms are called deadlock-avoidance routing
algorithms [2-4).  Deadlock-recovery algorithms on the
other hand allow packets to be routed on all available
channel resources without guarding against the possibility of
deadlock. Once deadlocks occur, they are detected and a
particular deadlock-recovery mechanism is invoked to
resolve the deadlock situation [5-6]. Both of these
techniques are similar in the sense that in each case the
routing algorithm must utilize some resources, but they
differ in the amount and expense of those resources. It has
been established through research that deadlocks are
generally rare events, and are more likely to occur as
networks reach or are beyond their saturation point [7, 8].
To this effect, almost all deadlock-avoidance algorithms
allocate more expensive resources to avoid deadlocks than is
necessary. This observation has paved the way for deadlock-
recovery techniques to be more widely accepted as a
legitimate contender to deadlock-avoidance techniques.

Routing algorithms are also characterized by the
amount of adaptivity they provide. Deterministic algorithms
do not provide any adaptivity. The route taken is determined
at the source node by considering only the source and
destination node addresses. Deterministic routers allow for
the design of fast and simple routers. They suffer from a
serious drawback however; they do not allow the router to
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react to the current status of the network [2, 9].

Adaptive routing algorithms on the other hand can
react to network conditions as they allow packets to be
routed along alternate paths. The routing decision is
performed in a distributed fashion by each intermediate
node along the way. Adaptive algorithms are further
classified as to the amount of adaptivity they provide.
Algorithms with limited adaptivity are called partially
adaptive, while fully adaptive algorithms allow routing on
all possible paths. When the routing algorithm is only
allowed to route along available shortest paths between any
pair of nodes, the algorithm is called minimal otherwise, it is
called nonminimal routing, or misrouting. In minimal
routing each route taken by a packet must bring the packet
closer to its destination [9, 10]. Fully adaptive routing
algorithms that employ deadlock-recovery techniques truly
utilize all of the available buffer resources for routing
packets, without excluding any for the sake of deadlock
prevention. Therefore they are known as True Fully
Adaptive Routing (TFAR) algorithms [5, 6, 11].

The amount of adaptivity provided by the routing
algorithm is generally tightly correlated to the underlying
router hardware complexity, which has the undesirable
consequence of reducing the clock speeds at which the
interconnection network can operate, and therefore to the
overall performance of the multicomputer [11, 12].

The Dimension-Ordered Routing (DOR) algorithm is a
deterministic deadlock-avoidance algorithm proposed by
Dally and Seitz in [2]. Each packet is routed in one
dimension at a time arriving at the proper coordinate in each
dimension before proceeding to the next dimension. By
enforcing a strictly monotonic order on the dimensions
traversed, deadlock-free routing is guaranteed.

Planar-Adaptive-Routing (PAR) is a partially adaptive
deadlock-avoidance algorithm. PAR restricts adaptability by
only allowing a packet to be routed through a sequence of 2-
dimensional planes at a time, until the packet reaches its
destination. This reduces the requirements for deadlock
prevention. PAR requires only three virtual channels per
physical channel regardless of the network dimension [10].

Disha is a TFAR algorithm with a progressive
deadlock-recovery mechanism. The main idea of this
deadlock-recovery is to allocate a central buffer in each
node. This buffer is connected to the router’s crossbar via
an input port, and is accessible by all neighboring nodes.
When a deadlock is detected, one of the packets involved in
the deadlock is moved to the deadlock buffer of the next
node along its path. From that point on, the packet
continues to advance using only this “floating lane”
composed of all the deadlock buffers throughout the
network until it reaches its destination. = Hardware
requirements for Disha include a central buffer that is
connected to the crossbar through an extra input port at each

133

node, a hardware token signal wires connected to all nodes
in order to synchronize the recovery process, an extra status
line to select the deadlock buffer, and a crossbar
reconfiguration buffer is needed to temporarily store any
broken connection inside the crossbar while forwarding the
deadlocked packet [6]. The added hardware contributes,
even if slightly, to the complexity of the crossbar switch.
This hardware is on the critical path of routing all packets,
and therefore will affect the overall speed of the switching
process [11]. Disha nonetheless has been shown to
outperform most other routing algorithms.

The proposed algorithm presented in this paper is a
TFAR algorithm along with a new deadlock-recovery
mechanism. It attempts to provide deadlock-recovery using
minimal hardware resources, and more importantly this
extra hardware is not on the critical path of routing normal
packets so as not to affect the overall speed of the router.

In section 2, the proposed deadlock-recovery
mechanism is presented. Section 3 outlines the evaluation
methodology and the assumptions made about the
simulation environment. Section 4 discusses the simulation
results. Finally, section 5 presents a conclusion.

2. Proposed deadlock-recovery mechanism

The work proposes using the True Fully Adaptive
Routing algorithm and a new deadlock-recovery
mechanism. TFAR algorithm routes packets on all available
channels and buffer resources without regard to the
possibility of deadlock. Once deadlocks are detected, the
proposed recovery mechanism is invoked. The deadlock
detection mechanism used here is based on the one
described in [13].

The deadlock-recovery scheme proposed is a new
approach. Since deadlocks are rare, only as few resources
as possible should be dedicated to handle this rare event.
The proposed approach takes advantage of the concept
behind wormhole routing. Namely the low number of edge
buffer requirements per channel, which can be as low as one
flit buffer, and the flow control mechanism already in place,
and which carries control information in the opposite
direction to that of data flow.

2.1 Operation of proposed recovery mechanism

The proposed mechanism allocates a central buffer of
the same capacity as the edge buffer, which is usually one or
two flits deep. This central buffer will be used to break a
deadlock cycle at the node where the header of the blocked
packet resides. The flow control mechanism is also
extended by one more signal, the break/reconnect line.

When a deadlock situation is detected in a node, the
edge buffer that contains the header of the blocked packet is



stored in the central buffer, and then cleared to receive other
flit(s). Flow control in the opposite direction, using the
added line, signals the previous node where the packet came
from to break and free the connection through its crossbar,
to enable other packets to pass through it. This operation is
referred to as a breakMode operation. Each node containing
part of the blocked packet propagates a breakMode signal to
the previous node until the tail flit or the source node of the
packet has been reached. A breakMode operation performs
several steps. First, it moves the flit(s) of the deadlocked
packet from the edge buffer to the central buffer. Second, it
saves the input and output port numbers made by the packet
through the crossbar of that node. Third, it clears this
connection through the crossbar, so that other packets can
utilize it. This way the remaining packets that are involved
in the deadlocked situation can advance, and will eventually
free up their occupied resources. Once the node with the
separated header in its central queue has a free edge buffer,
the header is rerouted again. If the routing is successful, a
flow control reconnect signal is sent back to the node
containing the remainder of the packet in order to
reestablish the connection through its crossbar, and resume
the interrupted operation of routing the packet. This signal,
referred to as a connectMode operation, propagates back
along the same path taken by the breakMode signal and
reverses what the latter has done using the trails that were
previously saved by it. Figure 1 provides an illustration of
this mechanism. If packet 1 is marked as deadlocked, then
the header of the packet (H1) will be moved to the CB of
that node. A breakMode signal is sent to the previous node
where the data flits(s) of the packet reside (D1). The
breakMode operation will move the data flit(s) to the CB,
and will clear the crossbar connection established by the
packet. This way packet 4 which has been blocked by
packet 1 can now advance.

In wormhole routing once a channel accepts the header
of a packet, then it must accept all the remaining flits of the
packet in a pipeline fashion. This definition does not allow
for the interleaving of flits between packets. This definition
is modified by this approach to state that once a channel
accepts the header of a packet, then it must accept all the
remaining flits of the packet eventually, and in a pipeline
fashion during periods of data flow (connect mode). But
here the limited interleaving of flits in order to break
deadlock cycles is allowed.

2.2 Hardware requirements

The hardware required by this approach is moderate
and more importantly does not increase the complexity of
either the crossbar switch, the virtual channel controller
(VCC), nor does it lie on the critical path of the routing
decision for normal packets. Both of these factors have
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been shown to increase the cost and decrease the speed of
the router [11].

A central buffer is required per node. The capacity of
this central buffer should be the same as that of an edge
buffer. The central buffer is connected to all the input ports
of the switch and can output to any output port. It has a
similar architecture to the central queue used in the Chaos
router [14]. Two 7-bit registers per node are needed to store
the input and output switch port. A break/reconnect signal
wire is also needed in order to break and reconnect packets.
This wire is very similar to the flow control wires already
used for wormhole switching. Its main function is to signal
the previous node to perform either a breakMode or a
connectMode operation. Instead of having to use two wires
for each mode, we just use one wire with a bit in each node.
‘When a break signal is received by a node, it toggles this
bit, so that the next time it receives it, it will actually be
interpreted as a connect signal.

This hardware is sufficient to perform sequential
deadlock recovery. That is one deadlocked packet is
handled at a time. Sequential deadlock recovery will be
used throughout our simulation. Concurrent recovery is
beyond the scope of this paper.

3. Performance evaluation

The simulator developed as part of this effort is written
in Java. It is configurable for a wide range of topologies,
network sizes, routing algorithms, selection functions,
arbitration policies, and various configuration parameters,
such as the number of virtual channels, capacity of each
virtual channel, and the packet length.

3.1 Multicomputer model

The following assumptions are made about the
multicomputer and its interconnection network:

e Each node has a processor, a router, and the crossbar
switch. The processor and the router are connected via
one injection and one delivery channels

o Injection queues are allowed to grow without bounds.
Latency figures calculated include source queuing time

e  Flits passed to the delivery channel are assumed to be
consumed immediately by the processor

o The router of each node is connected to neighboring
routers via dual uniplex channels

e Each uniplex channel is associated with a multi-flit
FIFO queue (input buffered)

s A physical channel is associated with a configurable
number of multi-flit queues, referred to here as virtual
channels, or edge buffers. The virtual channels are
multiplexed over the physical channel. If more than
one virtual channel can utilize the physical channel,



channel bandwidth is assigned to the virtual channels in
a demand-slotted round robin fashion

A flit can be transferred across a physical channel in
one clock cycle

A header flit can be processed by the node’s routing
unit within one clock cycle

Only one header is processed by the routing unit at a
time, if more than one header requires the routing unit,
they are serviced in a round robin fashion

3.2 Message generation

A packet is broken down into flits. Each packet
contains a header flit, data flit(s), and a tail flit. Header is
assumed to fit in one flit, so routing can take place as soon
as the header flit arrives at the input queue of a node.
Packet generation rate is constant and the same for all
nodes for a given run as determined by the injection
period of that run. Packet destinations are chosen
uniformly amongst all the nodes in the network for
uniform traffic, otherwise the traffic pattern is non-
uniform and would be specified. After generating a
packet, a node waits for a random number of cycles before
generating the next one. This random number of cycles is
bounded between 0 and the current injection period value.
The current injection period is determined by dividing the
maximum injection period of the network by the specified
load factor. The maximum injection period is determined
from the maximum wire capacity supported by the
network. The maximum wire capacity for a particular
network is calculated as in [10]. For this simulation we
normalize the maximum injection period to correspond to
2/3 (66.67%) of the maximum wire capacity for a better
chart drawing scale. When the load factor is set to the
maximum value of 1.0, then the injection period would
equal the maximum injection period. The normalized load
factor is used to drive the packet generation for a
particular run, and is used to plot all the results in this
simulation.

3.3 Performance metrics

The two most important performance metrics are
latency and throughput. Latency is measured as the
number of clock cycles from the time the packet has been
generated by the processor, until the tail flit of the packet
has been delivered to the destination node. Throughput is
the maximum number of packets delivered per unit of time.
It is normalized to be the maximum number of flits
delivered per clock cycle. It can be derived directly from the
current load factor unless the network is saturated at that
point. ’

Because these metrics may fluctuate widely at the
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initial transient state of the network. The metrics are only
collected after the network has reached the steady state. The
end of the transient state is detected when the flit injection
rate and the flit delivery rate have stabilized. More precisely
the transient period is declared over when the flit injection
rate and the flit delivery rate are within 0.05% of each other
for two consecutive 500-clock cycle periods. Statistics are
collected for 50,000 clock cycles plus the number of cycles
it took to reach the steady state. This was found to be
sufficient for the network size simulated.

A steady state solution exists if the flit generation rate
and the flit delivery rate are equal, otherwise, the network is
saturated for that run. If a steady state solution exists, then
a simulation run can be terminated whenever the metric
measured is within 0.05% of its previous value for 10
consecutive 500-clock cycle periods. This is to save
simulation time and resources.

4. Simulation results

This section will present the simulations for a 256-
nodes 2-dimensional, 16x16, mesh topology network with
three virtual channels. The network size was selected for
reasonable simulation times. Packets used will all be 32-
flits long, while flits are 32-bits wide. The selection
function, which selects a single path from the set of all
possible paths to route the packet through, will attempt to
locate a free channel for the packet first. If that is not
possible, it selects amongst the choices according to the
Straight-First flavor of selection. The timeout value, after
which a packet is marked as deadlocked, is 10 clock cycles
unless otherwise specified. The proposed routing algorithm
is evaluated against three others: DOR, PAR, and Disha.

4.1 Cost model

This section compares the cost of the additional
hardware resources, needed by both the Disha and the
proposed model, in terms of the speed achievable by the two
routers. We first consider the wunified-crossbar design,
which consists of a single large crossbar connecting all input
to output ports. According to the cost model in [11], the
router’s data through latency can be computed using Ty =
Tg + Ty + T, where Ty is flow controller delay, T, is the
crossbar switch delay, and T, is the virtual channel
controller delay. For a 0.8 micron CMOS gate array
technology, T, =2.2 ns, T, = 0.4 + 0.6 log P ns, and T, =
1.24 + 0.6 log V ns, where P is the number of input ports to
the crossbar switch, and V is the number of virtual channels
(V=3). For our simulated network, the data through latency
of Disha is Tyg,, = 7.1 ns, while T4 = 7 ns. Although the
difference is small, it gives the proposed mechanism a slight
advantage, especially that the performance results of the



next section are very close and since each clock cycle is
actually targer for the Disha case.

The sitwation is compounded when we cousider a
medular router design such as the enhanced-hierarchical
router. Modular routers will be more likely used in future
multicomputers. Bach subcrossbar input size can be
calculated using P = 2r + C -+ 1, where # is the dimension of
the network, and C the nimber of connect channels used
between suberossbars [13]. For our network and assuming
one comect charmel, Ty, = 5.5 ns, While Tppyeq = 54 n,
These values are the delay through a single sub-crossbar,
More than one sub-~crossbar may be traversed to pet the flit
to the desived virtual channel, making the data through delay
additive in nature, This again gives more of a performance
advantage for the proposed recovery scheme.

4.2 Uniform traffic

Simulation results for the uniform traffic pattern is
shown in figure 2. The PAR algorith displays the worst
performanee, it salurates around 0.35 of the normalized wire
capacity. DOR does relatively well as the traffic is already
uniformly distributed, satuating around 0.65. The
perfortmance of Disha and the proposed algorithm are
almost identical. ‘They both saturate at 0.7 of wire capacity.
As we mentioned in seetion 4.1, this gives an advantage to
the proposed scheme as it has lower data through latency
cycle. Deadlocks occur in both algotithms around the
saturation point, but wo see that the proposed deadlock
recovery mechanism can match that of Disha, This is in
spite of the fact that the hardware resources used by Disha
can be used to progress deadlocked packets. The resources
used by the proposed scheme however, are not progressive
in nature; they are merely used to preempt the deadlocked
packet to a storage that is distributed throughout the
network, This suggests that the Disha extra lane can
actually be used for rouling normal packets, which will
achieve a higher saturation point in the presence of an
cfficient deadlock recovery mechanism.

4.3 Non-mmiform traffic

Three traffic patierns are cvaluated, bit-reversal,
dimension-reversal, and hot spot waffic. In bit-reversal
traffic, a node with binary addvess @y, @4, . ., @), o Sends a
packet to a node with binary address a,, a,, ..., @po, @y
This iraffic pattern causes nodes on certain rows to send
packets to nodes on certain columns, causing various
packets of conflicts near the center of the network. The
simulation results are shown in figure 3. The uneven iraffic
distribution causes DOR to saiurate early, while adaptive
algorithms do a better job in dissipating the congestion,
Agan Disha and the proposed algorithm have almost
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identical performance with a 0.63 saturation point.

The dimension-reversal traific pattem causes a node
with address (xy) to send packets to node {yx). For 2D
netwotks this is the same as the matrix transpose traffic
pattern. It has a similar effect as the bit-reversal pattern, but
tends to concenirate the conflicts along the diagonal line of
the network. In our simulation, whenever the source and
destination nodes addresses are the same, a packet with a
random destination is injected instead, so as to allow for
more deadlocks to occur. TFigure 4 shows that the
performance of both the proposed and the Disha algorithma
are similar, satyrating around 0.65 of the nomalized wire
capacity.

The hot spot traffic pattern used causes 5% of all
network fraffic to be destined toward a single node that is
randomly selected, while the remaining taffic is
uniformly distributed.  This pattern causes a serious
congestion near the hot spot node, whicli in turn causes all
the routing algorithms to have early saturation points. The
timeout used in our simulation for this pattern is 35 clock
cycles, Examining figure 5, we notice that PAR saturates
at 0.2875 and DOR at 0.3 of the wire capacity. The
proposed algorithm and Disha both saturate roughly at
around 0.3125, but we can notice that the proposed
scheme demonstrates a slightly higher saturation behavior,
This is duc to the fact that the number of deadlocks
detected by the proposed mechanism is much lower than
those detected by the Disha algorithm. TFigure 6 illusteates
this by plotting the number of deadlocks detected
normalized to the total number of packets delivered by the
network as a function of the normalized load factor. We
can see that the number of deadlocks detected by Disha
has almost an exponential growth, while the proposed
mechanism maintains a linear nature. This imporiant
ohservation is generally true for all {raffic patterns, but is
more obvious in this case. The rcason for this behavior is
that in the proposed scheme, deadlocked packets are
completely removed from the network quickly so other
packets can advance.  Disha on the other hand,
progressively advances the deadlocked packet to its
destination over a slower lane, causing more congestion to
form behind it, and therefore more deadlocks. The
proposed mechanism however, does not have a clear
performance advantage because the latencies of the
deadlocked packets are larger due to the fact that they wait
for other packets to pass by, In this traffic pattern, the
deadlocked packets may wait for longer periods before
finding a free virtual channel to reroute the packet on,
The congestion presented by this traffic pattern can be
effectively dealt with by increasing the humber of delivery
channels at each node.

5. Conclnding remarks



In this paper, we presented a new deadlock recovery
mechanism to be used with True Fully Adaptive Routing
algorithms in wormhole switched networks. The main
advantages of the proposed scheme can be smmmarized as
follows. First, this scheme creates a new category of
deadlock recovery techniques. Previously known
categories are cither Progressive, meaning that when
deadlocks occur, the deadlocked packets are advanced to
their destinations nsing some reserved set of resources, as
in Disha. Abort-and-Retry category means that when
deadlocks are detected, the packet is disposed of and
retransmitted at a later time. The proposed approach
cannot be characterized as either of these two. Rather, it
creates a new category with a preemptive nature. As a
consequence, this approach uses moderate hardware
resources, and more importantly the needed hardware does
not merease the complexity of the crossbar switch, nor does
it lie on the critical path of ronting packets. Second, The
scheme takes advantage of the concept behind wormhole
routing, namely, the low number of edge buffer.
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