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Abstract 
Routing algorithms used in wormhole switched networks 
must all provide a solution to the deadlock problem. If the 
routing algorithm allows deadlock cycles to form, then it 
must provide a deadlock recovery mechanism. Because 
deadlocks are anomalies that occur while routing, the 
deadlock recovery mechanism should not allocate any 
expensive hardware resources for the sake of handling such 
a rare event. Rather, it should only dedicate a minimal set 
of required resources to the recovery process in order to 
engage most of the hardware resources to the task of 
routing normal packets. This paper proposes a new 
deadlock recovery mechanism to be used with the True 
Fully Adaptive Routing algorithm. The new deadlock 
recovery mechanism takes advantage of the concept behind 
wormhole switching. The scheme is eficient in terms of 
hardware requirements, causes fewer deadlocks and can 
compete with other expensive deadlock recovery schemes. 

Key words: Deadlock recovery, wormhole switching, 
adaptive routing, performance evaluation. 

1. Introduction 

Massively parallel processors (MPP) are an important 
class of parallel machines that can provide the envisioned 
computation platform for solving the so-called grand 
challenge problems. Several variations of these machines 
are commercially available today. These machmes are 
composed of many nodes that communicate with each other 
over a set of switches and communication links collectively 
known as the interconnection network. The performance of 
the interconnection network is the most critical factor 
affecting the performance of the entire parallel machine. 

Wormhole switching is the most popular switchmg 
technique that has been applied to the interconnection 
networks of parallel multicomputers. Wormhole switching 

is well suited for application in multicomputer 
interconnection networks as it allows for the design of 
simple, low-cost hardware router nodes, while providing 
low latency, high-bandwidth communication [ 11. 

Routing algorithms, used to route packets in wormhole 
networks, are characterized by how they approach and 
overcome the issue of deadlock. Earlier work proposed in 
the literature has adopted the view that routing algorithms 
should be intrinsically deadlock-free. By providing a 
sufficient condition that prevents the occurrence of 
deadlocks, and by having the routing algorithm uphold this 
condition while routing, freedom of deadlock is guaranteed. 
Such algorithms are called deadlock-avoidance routing 
algorithms [2-41. Deadlock-recovery algorithms on the 
other hand allow packets to be routed on all available 
channel resources without guarding against the possibility of 
deadlock. Once deadlocks occur, they are detected and a 
particular deadlock-recovery mechanism is invoked to 
resolve the deadlock situation [5-61. Both of these 
techniques are similar in the sense that in each case the 
routing algorithm must utilize some resources, but they 
differ in the amount and expense of those resources. It has 
been established through research that deadlocks are 
generally rare events, and are more likely to occur as 
networks reach or are beyond their saturation point [7, 81. 
To this effect, almost all deadlock-avoidance algorithms 
allocate more expensive resources to avoid deadlocks than is 
necessary. This observation has paved the way for deadlock- 
recovery techniques to be more widely accepted as a 
legitimate contender to deadlock-avoidance techniques. 

Routing algorithms are also characterized by the 
amount of adaptivity they provide. Deterministic algorithms 
do not provide any adaptivity. The route taken is determined 
at the source node by considering only the source and 
destination node addresses. Deterministic routers allow for 
the design of fast and simple routers. They suffer from a 
serious drawback however; they do not allow the router to 
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react to the current status of the network [2,9]. 
Adaptive routing algorithms on the other hand can 

react to network conditions as they allow packets to be 
routed along alternate paths. The routing decision is 
performed in a distributed fashion by each intermediate 
node along the way. Adaptive algorithms are further 
classified as to the amount of adaptivity they provide. 
Algorithms with limited adaptivity are called partially 
adaptive, while fully adaptive algorithms allow routing on 
all possible paths. When the routing algorithm is only 
allowed to route along available shortest paths between any 
pair of nodes, the algorithm is called minimal otherwise, it is 
called nonminimal routing, or misrouting. In minimal 
routing each route taken by a packet must bring the packet 
closer to its destination [9, 101. Fully adaptive routing 
algorithms that employ deadlock-recovery techniques truly 
utilize all of the available buffer resources for routing 
packets, without excluding any for the sake of deadlock 
prevention. Therefore they are known as True Fully 
Adaptive Routing (TFAR) algorithms [5 ,  6, 111. 

The amount of adaptivity provided by the routing 
algorithm is generally tightly correlated to the underlying 
router hardware complexity, which has the undesirable 
consequence of reducing the clock speeds at which the 
interconnection network can operate, and therefore to the 
overall performance of the multicomputer [ 11, 121. 

The Dimension-Ordered Routing (DOR) algorithm is a 
deterministic deadlock-avoidance algorithm proposed by 
Dally and Seitz in [2]. Each packet is routed in one 
dimension at a time arriving at the proper coordinate in each 
dimension before proceeding to the next dimension. By 
enforcing a strictly monotonic order on the dimensions 
traversed, deadlock-free routing is guaranteed. 

Planar-Adaptive-Routing (PAR) is a partially adaptive 
deadlock-avoidance algorithm. PAR restricts adaptability by 
only allowing a packet to be routed through a sequence of 2- 
dimensional planes at a time, until the packet reaches its 
destination. %s reduces the requirements for deadlock 
prevention. PAR requires only three virtual channels per 
physical channel regardless of the network dimension [ 101. 

Disha is a TFAR algorithm with a progressive 
deadlock-recovery mechanism. The main idea of this 
deadlock-recovery is to allocate a central buffer in each 
node. This buffer is connected to the router’s crossbar via 
an input port, and is accessible by all neighboring nodes. 
When a deadlock is detected, one of the packets involved in 
the deadlock is moved to the deadlock buffer of the next 
node along its path. From that point on, the packet 
continues to advance using only this “floating lane” 
composed of all the deadlock buffers throughout the 
network until it reaches its destination. Hardware 
requirements for Disha include a central buffer that is 
connected to the crossbar through an extra input port at each 

node, a hardware token signal wires connected to all nodes 
in order to synchronize the recovery process, an extra status 
line to select the deadlock buffer, and a crossbar 
reconfiguration buffer is needed to temporarily store any 
broken connection inside the crossbar while fonvardmg the 
deadlocked packet [6]. The added hardware contributes, 
even if slightly, to the complexity of the crossbar switch. 
This hardware is on the critical path of routing all packets, 
and therefore will affect the overall speed of the switching 
process [ l l ] .  Disha nonetheless has been shown to 
outperform most other routing algorithms. 

The proposed algorithm presented in this paper is a 
TFAR algorithm along with a new deadlock-recovery 
mechanism. It attempts to provide deadlock-recovery using 
minimal hardware resources, and more importantly this 
extra hardware is not on the critical path of routing normal 
packets so as not to affect the overall speed of the router. 

In section 2, the proposed deadlock-recovery 
mechanism is presented. Section 3 outlines the evaluation 
methodology and the assumptions made about the 
simulation environment. Section 4 discusses the simulation 
results. Finally, section 5 presents a conclusion. 

2. Proposed deadlock-recovery mechanism 

The work proposes using the True Fully Adaptive 
Routing algorithm and a new deadlock-recovery 
mechanism. TFAR algorithm routes packets on all available 
channels and buffer resources without regard to the 
possibility of deadlock. Once deadlocks are detected, the 
proposed recovery mechanism is invoked. The deadlock 
detection mechanism used here is based on the one 
described in [ 131. 

The deadlock-recovery scheme proposed is a new 
approach. Since deadlocks are rare, only as few resources 
as possible should be dedicated to handle this rare event. 
The proposed approach takes advantage of the concept 
behind wormhole routing. Namely the low number of edge 
buffer requirements per channel, which can be as low as one 
flit buffer, and the flow control mechanism already in place, 
and which carries control information in the opposite 
direction to that of data flow. 

2.1 Operation of proposed recovery mechanism 

The proposed mechanism allocates a central buffer of 
the same capacity as the edge buffer, which is usually one or 
two flits deep. This central buffer will be used to break a 
deadlock cycle at the node where the header of the blocked 
packet resides. The flow control mechanism is also 
extended by one more signal, the breakheconnect line. 

When a deadlock situation is detected in a node, the 
edge buffer that contains the header of the blocked packet is 

133 



stored in the central buffer, and then cleared to receive other 
flit(s). Flow control in the opposite direction, using the 
added line, signals the previous node where the packet came 
from to break and free the connection through its crossbar, 
to enable other packets to pass through it. This operation is 
referred to as a breakMode operation. Each node containing 
part of the blocked packet propagates a breamode signal to 
the previous node until the tail flit or the source node of the 
packet has been reached. A breakMode operation performs 
several steps. First, it moves the flit(s) of the deadlocked 
packet from the edge buffer to the central buffer. Second, it 
saves the input and output port numbers made by the packet 
through the crossbar of that node. Third, it clears this 
connection through the crossbar, so that other packets can 
utilize it. This way the remaining packets that are involved 
in the deadlocked situation can advance, and will eventually 
free up their occupied resources. Once the node with the 
separated header in its central queue has a free edge buffer, 
the header is rerouted again. If the routing is successful, a 
flow control reconnect signal is sent back to the node 
containing the remainder of the packet in order to 
reestablish the connection through its crossbar, and resume 
the interrupted operation of routing the packet. This signal, 
referred to as a connectMode operation, propagates back 
along the same path taken by the breamode signal and 
reverses what the latter has done using the trails that were 
previously saved by it. Figure 1 provides an illustration of 
this mechanism. If packet 1 is marked as deadlocked, then 
the header of the packet (Hl) will be moved to the CB of 
that node. A breamode signal is sent to the previous node 
where the data flits(s) of the packet reside (Dl). The 
breakMode operation will move the data flit(s) to the CB, 
and will clear the crossbar connection established by the 
packet. This way packet 4 which has been blocked by 
packet 1 can now advance. 

In wormhole routing once a channel accepts the header 
of a packet, then it must accept all the remaining flits of the 
packet in a pipeline fashion. This definition does not allow 
for the interleaving of flits between packets. This definition 
is modified by this approach to state that once a channel 
accepts the header of a packet, then it must accept all the 
remaining flits of the packet eventually, and in a pipeline 
fashion during periods of data flow (connect mode). But 
here the limited interleaving of flits in order to break 
deadlock cycles is allowed. 

2.2 Hardware requirements 

The hardware required by this approach is moderate 
and more importantly does not increase the complexity of 
either the crossbar switch, the virtual channel controller 
(VCC), nor does it lie on the critical path of the routing 
decision for normal packets. Both of these factors have 

been shown to increase the cost and decrease the speed of 
the router [ 1 11. 

A central buffer is required per node. The capacity of 
this central buffer should be the same as that of an edge 
buffer. The central buffer is connected to all the input ports 
of the switch and can output to any output port. It has a 
similar architecture to the central queue used in the Chaos 
router [14]. Two 7-bit registers per node are needed to store 
the input and output switch port. A breakheconnect signal 
wire is also needed in order to break and reconnect packets. 
This wire is very similar to the flow control wires already 
used for wormhole switching. Its main function is to signal 
the previous node to perform either a breamode or a 
connectMode operation. Instead of having to use two wires 
for each mode, we just use one wire with a bit in each node. 
When a break signal is received by a node, it toggles this 
bit, so that the next time it receives it, it will actually be 
interpreted as a connect signal. 

This hardware is sufficient to perform sequential 
deadlock recovery. That is one deadlocked packet is 
handled at a time. Sequential deadlock recovery will be 
used throughout our simulation. Concurrent recovery is 
beyond the scope of thls paper. 

3. Performance evaluation 

The simulator developed as part of this effort is written 
in Java. It is configurable for a wide range of topologies, 
network sizes, routing algorithms, selection functions, 
arbitration policies, and various configuration parameters, 
such as the number of virtual channels, capacity of each 
virtual channel, and the packet length. 

3.1 Multicomputer model 

The following assumptions are made about the 
multicomputer and its interconnection network 

Each node has a processor, a router, and the crossbar 
switch. The processor and the router are connected via 
one injection and one delivery channels 
Injection queues are allowed to grow without bounds. 
Latency figures calculated include source queuing time 
Flits passed to the delivery channel are assumed to be 
consumed immediately by the processor 
The router of each node is connected to neighboring 
routers via dual uniplex channels 
Each uniplex channel is associated with a multi-flit 
FIFO queue (input buffered) 
A physical channel is associated with a configurable 
number of multi-flit queues, referred to here as virtual 
channels, or edge buffers. The virtual channels are 
multiplexed over the physical channel. If more than 
one virtual channel can utilize the physical channel, 



channel bandwidth is assigned to the virtual channels in 
a demand-slotted round robin fashion 
A flit can be transferred across a physical channel in 
one clock cycle 
A header flit can be processed by the node’s routing 
unit within one clock cycle 
Only one header is processed by the routing unit at a 
time, if more than one header requires the routing unit, 
they are serviced in a round robin fashon 

3.2 Message generation 

A packet is broken down into flits. Each packet 
contains a header flit, data flit(s), and a tail flit. Header is 
assumed to fit in one flit, so routing can take place as soon 
as the header flit arrives at the input queue of a node. 
Packet generation rate is constant and the same for all 
nodes for a given run as determined by the injection 
period of that run. Packet destinations are chosen 
uniformly amongst all the nodes in the network for 
uniform traffic, otherwise the traffic pattern is non- 
uniform and would be specified. After generating a 
packet, a node waits for a random number of cycles before 
generating the next one. This random number of cycles is 
bounded between 0 and the current injection period value. 
The current injection period is determined by dividing the 
maximum injection period of the network by the specified 
load factor. The maximum injection period is determined 
from the maximum wire capacity supported by the 
network. The maximum wire capacity for a particular 
network is calculated as in [lo]. For this simulation we 
normalize the maximum injection period to correspond to 
213 (66.67%) of the maximum wire capacity for a better 
chart drawing scale. When the load factor is set to the 
maximum value of 1.0, then the injection period would 
equal the maximum injection period. The normalized load 
factor is used to drive the packet generation for a 
particular run, and is used to plot all the results in this 
simulation. 

3.3 Performance metrics 

The two most important performance metrics are 
latency and throughput. Latency is measured as the 
number of clock cycles from the time the packet has been 
generated by the processor, until the tail flit of the packet 
has been delivered to the destination node. Throughput is 
the maximum number of packets delivered per unit of time. 
It is normalized to be the maximum number of flits 
delivered per clock cycle. It can be derived directly from the 
current load factor unless the network is saturated at that 
point. 

Because these metrics may fluctuate widely at the 

initial transient state of the network. The metrics are only 
collected after the network has reached the steady state. The 
end of the transient state is detected when the flit injection 
rate and the flit delivery rate have stabilized. More precisely 
the transient period is declared over when the flit injection 
rate and the flit delivery rate are within 0.05% of each other 
for two consecutive 500-clock cycle periods. Statistics are 
collected for 50,000 clock cycles plus the number of cycles 
it took to reach the steady state. This was found to be 
sufficient for the network size simulated. 

A steady state solution exists if the flit generation rate 
and the flit delivery rate are equal, otherwise, the network is 
saturated for that run. If a steady state solution exists, then 
a simulation run can be terminated whenever the metric 
measured is within 0.05% of its previous value for 10 
consecutive 500-clock cycle periods. This is to save 
simulation time and resources. 

4. Simulation results 

This section will present the simulations for a 256- 
nodes 2-dimensional, 16x16, mesh topology network with 
three virtual channels. The network size was selected for 
reasonable simulation times. Packets used will all be 32- 
flits long, while flits are 32-bits wide. The selection 
function, which selects a single path from the set of all 
possible paths to route the packet through, will attempt to 
locate a free channel for the packet first. If that is not 
possible, it selects amongst the choices according to the 
Straight-First flavor of selection. The timeout value, after 
which a packet is marked as deadlocked, is 10 clock cycles 
unless otherwise specified. The proposed routing algorithm 
is evaluated against three others: DOR, PAR, and Disha. 

4.1 Cost model 

This section compares the cost of the additional 
hardware resources, needed by both the Disha and the 
proposed model, in terms of the speed achievable by the two 
routers. We fist  consider the unified-crossbar design, 
which consists of a single large crossbar connecting all input 
to output ports. According to the cost model in [ l l ] ,  the 
router’s data through latency can be computed using Td = 
T, + Tcb + T,, where Tfc is flow controller delay, Tcb is the 
crossbar switch delay, and T,, is the virtual channel 
controller delay. For a 0.8 micron CMOS gate array 
technology, T, = 2.2 ns, Tcb = 0.4 + 0.6 log P ns, and T, = 

1.24 + 0.6 log V ns, where P is the number of input ports to 
the crossbar switch, and V is the number of virtual channels 
(V=3). For our simulated network, the data through latency 
of Disha is Tdisha = 7.1 ns, while Tpuposed = 7 11s. Although the 
difference is small, it gives the proposed mechanism a slight 
advantage, especially that the performance results of the 
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next scction are very cloac and since each clock cycle is 
actually largcr far the Disha case. 

The situation i s  compounded whcn we consider a 
modiilar router design such as the ernhnwceri-hier~rchicaI 
router. Modular routers will be more likcly used iii future 
multicomputers. Each subcrossbar input sizc car) be 
calculated using P = 2n + C -1 1, where n is the dimension of 
thc network, and C the number of connect channels used 
bctween subcrossbars [15]. For our network and assuming 
oiic connect channel, TJSllr = 5.5 ns, while T- = 5.4 w. 
These values arc the delay through a single sub-crossbar, 
More than one sub-crossbar may be traversed to get the flit 
to the desired virtual channel, making thc data through delay 
additive in nahire. This again gives more of a pcrformancc 
advantage for the proposed recovery schemc. 

4.2 Uniform traffic 

Simulation results for thc uniform traffic pattern is 
shown in figure 2. The PAR algoritlim displays the worst 
performance, it saturates around 0.35 of the nonnalized wire 
capacity. DOR does relatively well as the traffic is already 
uniformly distributed, saturating around 0.65. The 
performance of Disha and the proposed algorithm are 
almost idcntical. They both saturate at 0.7 of wire capacity. 
As we mentioned in section 4.1, this gives an advantage to 
the proposed sclicme as it has lower data through latency 
cycle. Deadlocks occiir in both algoriflms around the 
saturation point, but we see that the proposed deadlock 
recovcry mechanism can match that of Disha. This is in 
spite of the fact that the hardware resourccs used by Disha 
can be uscd to progress dcadlockcd packets. The resources 
ascd by the proposed scheme however, are not progressive 
in nature; they arc merely used to preempt the deadlocked 
packet to a storage that is distributed throughout the 
network. This suggests that the Disha extra lane can 
actually be used for routing normal packets, which will 
achieve a Iiiglier saturation point in the presence of an 
cfficient deadlock recovery mechanism. 

4.3 Non-uiiiform traffic 

Thee  traffic pattenis are cvaluated, bit-reverml, 
~~i~~cris ion-~ever.sa~,  and hot spot traffic. In bit-rcversd 
traffic, a node with binary addrcss an.,, an.>,. . ,, a,, uo sends a 
packet to a node with binary address a,,, nl, ..., an.$. 
This traffic pattern causes nodes on certain rows to send 
packets to nodes on ccttain colunms, causing various 
packets of conflicts near tllc center of the network. The 
aimulatiori results arc shown in figure 3. The unevcn traffic 
distribution causes DOR to saturate cady, whilo adaptive 
algorilhms do a better job in dissipating the congestion. 
Again D3isha and thc proposed algorithm have almost 

identical perforinance with a 0.65 saturation point. 
The dimension-reveusd traffic pattcm C~USCS a node 

with address (xy) to scnd packcts to nodc (yx). For 2D 
nctworks this is the saine as the matrix transposc traffic 
pattern. It has a similar cffect as the bit-revcrsal pattern, but 
tends to coriccntrate thc conflicts along the diagonal line of 
the network. In our sininlation, whenever the source and 
destination nodes addresses are the samc, a packet with a 
random destination is injected instead, so as to allow for 
more deadlocks to occiir. Figure 4 shows that thc 
performance of both the proposed and the Disha algorithms 
are similar, saturating aroiind 0.65 of thc nomializcd wire 
capacity. 

'The hot spot traffic pattcrn used causcs 5% of all 
network iraffic to be destined toward a single node that is 
randomly selectcd, while the rcmaining traffic is 
uniformly distributed. This pattcrn causes a serious 
congestion near tlic hot spot node, which in turn causes all 
the routing algorithms to have early saturation points. Thc 
timeout used in our simulation for this pattern is 35 clock 
cycles. Examining figure 5, we notice that PAR sahiratcs 
at 0.2875 arid DOR at 0.3 of the wire capacity. The 
proposed algorithm and Disha both saturate roughly at 
around 0.3125, bnt we can notice that the proposed 
scheme demonstrates a slightly higher saturation behavior. 
This is duc to thc fact that the numbcr of deadlocks 
detccted by the proposed mcchanism is much lowcr than 
those detccted by the Disha algorithm. Figure 6 illuslrates 
this by plotting the riuinber of deadlocks detected 
normalized to thc total number of packets delivered by thc 
network as a ftinction of the normalized load factor. We 
can see that the number o f  deadlocks dctected by Disha 
has almost an cxponential growth, while thc proposed 
niechanism maintains il linear nature. This imporiant 
observation is generally true for all traffic patterns, but is 
morc obvious in this casc. The reason for this behavior is 
that in the proposcd schemc, deadlocked packets are 
completely removcd from thc network quickly so other 
packets can advaiice. Disha on thc other hand, 
progressively advances the deadlocked packet to its 
destination ovcr a slower lane, causing more congestion to 
form behind it, and therefore more deadlocks. The 
proposed mechanism liowcver, does not have a dear 
performance advantage bccause the latencies of the 
deadlocked packets are tacger due to the fact that they wait 
for other packets to pass by. In this traffic pattern, the 
dcadlocked packets may wait for longer periods bcfore 
finding a frce virtual cliannel to reroute thc packet on, 
Thc congestion preseiitcd by this traffic pattern can be 
effectively dealt with by increasing the number of delivery 
channels at each node. 

5. Concluding remarks 
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In this paper, we prcsented a new deadlock recovery 
mechanism to be used with Tme Fuliy Adaptive Routing 
algorithms in wormhole switched networks. Thc main 
advantages of the proposed scheme can be summarized as 
follows. First, this scheme creates a new category of 
deadlock recovery techniques. Previously known 
categories are cither Progressive, meaning that when 
deadlocks occur, the deadlocked packets are advanced to 
their dcstinations using some reserved set of resources, as 
in Disha. Abort-and-Retry category means that when 
deadlocks are detected, the packet is disposed of and 
retransmitted at a later time. The proposed approach 
cannot bc characterized BS either of these two. Rather, it 
creates a new category with a preemptive nature. As a 
consequence, this approach uses moderate hardware 
resources, and more importantly the needed hardware does 
not increase the complexity ofthe crnssbar switch, nor does 
it lie on the critical path of routing packets. Second, ?he 
schcme takes advantngc of the concept behind wormhole 
routing, namely, the low niimber o f  edge buffer. 
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H Header flit@) - Packet connected through XBar 

D Data flit(s) e Flow Control breaklreconnect 

CB Central buffer .......... Packet awaiting crossbar port 

Figure I. Detailed view of two deadlocked 
packets in the proposed router design 
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