N-Gram - Part 2
 ICS 482 Natural Language
 Processing

Lecture 8: N-Gram - Part 2 Husni Al-Muhtaseb

بسم اللّه الرحمن الرحيم
 ICS 482 Natural Language Processing

Lecture 8: N-Gram - Part 2 Husni Al-Muhtaseb

NLP Credits and Acknowledgment

These slides were adapted from presentations of the Authors of the book
SPEECH and LANGUAGE PROCESSING:
An Introduction to Natural Language Processing,
and some modifications from
presentations found in the WEB
by several scholars including the following

NLP Credits and
 Acknowledgment

If your name is missing please contact me muhtaseb

At
Kfupm.
Edu.
sa

NLP Credits and Acknowledgment

 Husni Al-Muhtaseb Heshaam Feili Khurshid Ahmad Martha PalmerJames Martin
Jim Martin
Dan Jurafsky
Sandiway Fong
Song young in
Paula Matuszek
Mary-Angela
Papalaskari
Dick Crouch
Tracy Kin
L. Venkata

Subramaniam
Martin Volk
Bruce R. Maxim
Jan Hajič
Srinath Srinivasa
Simeon Ntafos
Paolo Pirjanian
Ricardo Vilalta
Tom Lenaerts

Björn Gambäck
Christian Korthals
Thomas G.
Dietterich
Devika
Subramanian
Duminda
Wijesekera
Lee McCluskey
David J.
Kriegman
Kathleen
McKeown
Michael J. Ciaraldi
David Finkel
Min-Yen Kan
Andreas GeyerSchulz
Franz J. Kurfess
Tim Finin
Nadjet Bouayad Kathy MrCov

Staffan Larsson julia hirschberg
Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-
Grubbs
Thomas K Harris John Hutchins
Alexandros
Potamianos
Mike Rosner
Latifa AI-Sulaiti Giorgio Satta Jerry R. Hobbs Christopher Manning Hinrich Schütze Alexander Gelbukh Gina-Anne Levow Guitao Gao Qing Ma

Previous Lectures

- Pre-start questionnaire
- Introduction and Phases of an NLP system
- NLP Applications - Chatting with Alice
- Finite State Automata \& Regular Expressions \& languages
- Deterministic \& Non-deterministic FSAs
- Morphology: Inflectional \& Derivational
- Parsing and Finite State Transducers
- Stemming \& Porter Stemmer
- 20 Minute Quiz
- Statistical NLP - Language Modeling
- N Grams

Today's Lecture

- NGrams
- Bigram
- Smoothing and NGram
- Add one smoothing
- Witten-Bell Smoothing

Simple N-Grams

- An N-gram model uses the previous N -1 words to predict the next one:
- $P\left(w_{n} \mid w_{n-1}\right)$
- We'll be dealing with

P (<word> | <some previous words>)

- unigrams: $\mathrm{P}(\mathrm{dog})$
- bigrams: $P(d o g \mid$ big $)$
- trigrams: $\mathrm{P}(\mathrm{dog} \mid$ the big)
- quadrigrams: $P($ dog | the big dopey $)$

Chain Rule

conditional probability:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

$$
\text { So: } \quad P(A \wedge B)=P(B \mid A) P(A)
$$

$$
\begin{aligned}
& P(A \wedge B)=P(A \mid B) P(B) \\
& \text { and } \\
& P(A \wedge B)=P(B \mid A) P(A)
\end{aligned}
$$

"the dog": $\quad P($ The $\wedge d o g)=P(d o g \mid$ the $) P($ the $)$
"the dog bites":
$P($ The $\wedge d o g \wedge$ bites $)=P($ The $) P(d o g \mid$ The $) P($ bites \mid The $\wedge d o g)$

Chain Rule

the probability of a word sequence is the probability of a conjunctive event.

$$
\begin{aligned}
P\left(w_{1}^{n}\right)= & P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}^{2}\right) \ldots P\left(w_{n} \mid w_{1}^{n-1}\right) \\
& =\prod_{k=1}^{n} P\left(w_{k} \mid w_{1}^{k-1}\right)
\end{aligned}
$$

Unfortunately, that's really not helpful in general. Why?

Markov Assumption

$$
P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)
$$

$\square \mathrm{P}\left(\mathrm{w}_{\mathrm{n}}\right)$ can be approximated using only $\mathrm{N}-1$ previous words of context

- This lets us collect statistics in practice
- Markov models are the class of probabilistic models that assume that we can predict the probability of some future unit without looking too far into the past
- Order of a Markov model: length of prior context

Language Models and N-grams

- Given a word sequence: $w_{1} w_{2} w_{3} \ldots w_{n}$
- Chain rule
- $\mathrm{p}\left(w_{1} w_{2}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right)$
- $\mathrm{p}\left(w_{1} w_{2} w_{3}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{1} w_{2}\right)$
- $\mathrm{p}\left(w_{1} w_{2} w_{3} \ldots w_{n}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{1} w_{2}\right) \ldots \mathrm{p}\left(w_{n} \mid w_{1} \ldots w_{n-2} w_{n-1}\right)$
- Note:
- It's not easy to collect (meaningful) statistics on $\mathrm{p}\left(w_{n} \mid w_{n-1} w_{n-2} \ldots w_{1}\right)$ for all possible word sequences
- Bigram approximation
- just look at the previous word only (not all the proceedings words)
- Markov Assumption: finite length history
- 1st order Markov Model
- $\mathrm{p}\left(w_{1} w_{2} w_{3} . . w_{n}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{1} w_{2}\right) . . \mathrm{p}\left(w_{n} \mid w_{1} \ldots w_{n-3} w_{n-2} w_{n-1}\right)$
- $\mathrm{p}\left(w_{1} w_{2} w_{3} . . w_{n}\right) \approx \mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{2}\right) . . \mathrm{p}\left(w_{n} \mid w_{n-1}\right)$
- Note:
- $\mathrm{p}\left(w_{n} \mid w_{n-1}\right)$ is a lot easier to estimate well than $\mathrm{p}\left(w_{n} \mid w_{1} . . w_{n-2} w_{n-1}\right)$ ir

Language Models and N-grams

- Given a word sequence: $w_{1} w_{2} w_{3} \ldots w_{n}$
- Chain rule
- $\mathrm{p}\left(w_{1} w_{2}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right)$
- $\mathrm{p}\left(w_{1} w_{2} w_{3}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{1} w_{2}\right)$
- $\mathrm{p}\left(w_{1} w_{2} w_{3} \ldots w_{n}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{1} w_{2}\right) \ldots \mathrm{p}\left(w_{n} \mid w_{1} \ldots w_{n-2} w_{n-1}\right)$
- Trigram approximation
- 2nd order Markov Model
- just look at the preceding two words only
- $\mathrm{p}\left(w_{1} w_{2} w_{3} w_{4} \ldots w_{n}\right)=\mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{1} w_{2}\right)$ $\mathrm{p}\left(w_{4} \mid w_{1} w_{2} w_{3}\right) \ldots \mathrm{p}\left(w_{n} \mid w_{1} \ldots w_{n-3} w_{n-2} w_{n-1}\right)$
- $\mathrm{p}\left(w_{1} w_{2} w_{3} \ldots w_{n}\right) \approx \mathrm{p}\left(w_{1}\right) \mathrm{p}\left(w_{2} \mid w_{1}\right) \mathrm{p}\left(w_{3} \mid w_{1} w_{2}\right) \mathrm{p}\left(w_{4} \mid w_{2} w_{3}\right) \ldots \mathrm{p}\left(w_{n} \mid w_{n-2}\right.$ w_{n-1})
- Note:
- $\mathrm{p}\left(w_{n} \mid w_{n-2} w_{n-1}\right)$ is a lot easier to estimate well than $\mathrm{p}\left(w_{n} \mid w_{1} \ldots w_{n-2} w_{n-1}\right)$ but harder than $\mathrm{p}\left(w_{n} \mid w_{n-1}\right)$

Corpora

\square Corpora are (generally online) collections of text and speech

- e.g.
- Brown Corpus (1M words)
- Wall Street Journal and AP News corpora
- ATIS, Broadcast News (speech)
- TDT (text and speech)
- Switchboard, Call Home (speech)
- TRAINS, FM Radio (speech)

Sample Word frequency (count)Data (The Text REtrieval Conference) - (from B. Croft, UMass)

Frequent Word	Number of Occurrences	Percentage of Total
the	$7,398,934$	5.9
of	$3,893,790$	3.1
to	$3,364,653$	2.7
and	$3,320,687$	2.6
in	$2,311,785$	1.8
is	$1,559,147$	1.2
for	$1,313,561$	1.0
The	$1,144,860$	0.9
that	$1,066,503$	0.8
said	$1,027,713$	0.8

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus $125,720,891$ total word occurrences; 508,209 unique words

Counting Words in Corpora

- Probabilities are based on counting things, so
- What should we count?
- Words, word classes, word senses, speech acts ...?
- What is a word?
- e.g., are cat and cats the same word?

■ September and Sept?

- zero and oh?
- Is seventy-two one word or two? AT\&T?
- Where do we find the things to count?

Terminology

- Sentence: unit of written language
- Utterance: unit of spoken language
- Wordform: the inflected form that appears in the corpus
- Lemma: lexical forms having the same stem, part of speech, and word sense
- Types: number of distinct words in a corpus (vocabulary size)
- Tokens: total number of words

Training and Testing

- Probabilities come from a training corpus, which is used to design the model.
- narrow corpus: probabilities don't generalize
- general corpus: probabilities don't reflect task or domain
- A separate test corpus is used to evaluate the model

Simple N-Grams

- An N-gram model uses the previous N -1 words to predict the next one:
- $P\left(w_{n} \mid w_{n-1}\right)$
- We'll be dealing with P(<word> | <some prefix>)
- unigrams: $\mathrm{P}(\mathrm{dog})$
- bigrams: $P(d o g \mid$ big $)$
- trigrams: $\mathrm{P}(\mathrm{dog} \mid$ the big)
- quadrigrams: $\mathrm{P}(\mathrm{dog} \mid$ the big red $)$

Using N-Grams

- Recall that
- $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1 . . \mathrm{n}-1}\right) \approx \mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{\mathrm{n}-\mathrm{N}+1 . . n-1}\right)$
\square For a bigram grammar
- P(sentence) can be approximated by multiplying all the bigram probabilities in the sequence
- $\mathrm{P}(\mathrm{I}$ want to eat Chinese food $)=P(I \mid$ <start>) P(want | I) P(to | want) P(eat | to) P (Chinese | eat) P (food | Chinese) P(<end>|food)

Chain Rule

- Recall the definition of conditional probabilities

$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{P(B)}
$$

- Rewriting

$$
P\left(A^{\wedge} B\right)=P(A \mid B) P(B)
$$

ㅁ Or...

$$
P(\text { The big })=P(\text { big } \mid \text { the }) P(\text { the })
$$

- Or...

$$
P(\text { The big })=P(\text { the }) P(\text { big } \mid \text { the })
$$

Example

\square The big red dog

- $P($ The $) * P($ big \mid the $) * P($ red \mid the big $) * P(d o g \mid$ the big red)
- Better P (The| <Beginning of sentence>) written as $\mathrm{P}($ The $\mid<\mathrm{S}>$)
\square Also <end> for end of sentence

General Case

- The word sequence from position 1 to n is w_{1}^{n}
- So the probability of a sequence is

$$
\begin{aligned}
P\left(w_{1}^{n}\right) & =P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}^{2}\right) \ldots P\left(w_{n} \mid w_{1}^{n-1}\right) \\
& =P\left(w_{1}\right) \prod_{k=2}^{n} P\left(w_{k} \mid w_{1}^{k-1}\right)
\end{aligned}
$$

Unfortunately

- That doesn't help since its unlikely we'll ever gather the right statistics for the prefixes.

Markov Assumption

- Assume that the entire prefix history isn't necessary.
- In other words, an event doesn't depend on all of its history, just a fixed length near history

Markov Assumption

- So for each component in the product replace each with its approximation (assuming a prefix (Previous words) of N)

$$
P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)
$$

- Bigrams:
- Trigrams:
- Four-grams: $P($ dog|the big red)

In general, we'll be dealing with P (Word| Some fixed prefix)

Note: prefix is Previous words

N -gram models can be trained by counting and normalization

Bigram: $\quad P\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)}{C\left(w_{n-1}\right)}$

Ngram:

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{C\left(w_{n-N+1}^{n-1} w_{n}\right)}{C\left(w_{n-N+1}^{n-1}\right)}
$$

An example

ㅁ <s> I am Sam < \s>

- <s> Sam I am < \s>
- <s> I do not like green eggs and meet < \s>

$$
\begin{aligned}
& P(I \mid<s>)=\frac{2}{3}=0.67 \\
& P(\operatorname{Sam} \mid<s>)=\frac{1}{3}=0.33 \\
& P(a m \mid I)=\frac{2}{3}=0.67 \\
& P(<\backslash s>\mid \operatorname{Sam})=\frac{1}{2}=0.5 \\
& P(<s>\mid \operatorname{Sam})=\frac{1}{2}=0.5 \\
& P(\operatorname{Sam} \mid a m)=\frac{1}{2}=0.5 \\
& P(\text { do } \mid I)=\frac{1}{1}=1.0
\end{aligned}
$$

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{C\left(w_{n-N+1}^{n-1} w_{n}\right)}{C\left(w_{n-N+1}^{n-1}\right)} \quad \begin{aligned}
& P(\operatorname{Sam} \mid<s>)=\frac{1}{3}=0.33 \\
& P(a m \mid I)=\frac{2}{3}=0.67
\end{aligned}
$$

BERP Bigram Counts

BErkeley Restaurant Project (speech)

	I	Want	To	Eat	Chinese	Food	lunch
I	8	1087	0	13	0	0	0
Want	3	0	786	0	6	8	6
To	3	0	10	860	3	0	12
Eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
Food	19	0	17	0	0	0	0
Lunch	4	0	0	0	0	1	0

BERP Bigram Probabilities

- Normalization: divide each row's counts by appropriate unigram counts

I	Want	To	Eat	Chinese	Food	Lunch
3437	1215	3256	938	213	1506	459

- Computing the probability of I I
- C(I|I)/C(all I)
- $\mathrm{p}=8$ / $3437=.0023$
- A bigram grammar is an NxN matrix of probabilities, where N is the vocabulary size

A Bigram Grammar Fragment from BERP

Eat on	.16	Eat Thai	.03
Eat some	.06	Eat breakfast	.03
Eat lunch	.06	Eat in	.02
Eat dinner	.05	Eat Chinese	.02
Eat at	.04	Eat Mexican	.02
Eat a	.04	Eat tomorrow	.01
Eat Indian	.04	Eat dessert	.007
Eat today	.03	Eat British	.001

<start> I	.25	Want some	.04
<start> I'd	.06	Want Thai	.01
<start> Tell	.04	To eat	.26
<start> I'm	.02	To have	.14
I want	.32	To spend	.09
I would	.29	To be	.02
I don't	.08	British food	.60
I have	.04	British restaurant	.15
Want to	.65	British cuisine	.01
Want a	.05	British lunch	.01

Language Models and N-grams

- Example:

W_{n-1}		I	want	to	eat	Chinese	food	lunc
	I	8	1087	0	13	0	0	0
	want	3	0	786	0	6	8	6
	to	3	0	10	860	3	0	12
	eat	0	0	2	0	19	2	52
	Chinese	2	0	0	0	0	120	1
	food	19	0	17	0	0	0	0
	lunch	4	0	0	0	0	1	0

Figure 6.4 Bigram counts for seven of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of $\approx 10,000$ sentences.
bigram probabilities

	I	want	to	eat	Chinese	food	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

sparse matrix
 zeros probabilities unusable (we'll need to do smoothing)

Figure 6.5 Bigram probabilities for seven of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of $\approx 10,000$ sentences.

Example

- P(I want to eat British food) $=$ P(I|<start>) P(want|I) P(to|want) P(eat|to) P(British|eat) P(food|British)
= .25*.32*.65*.26*.001*. $60=$
0.0000081
(different from textbook)

口 vs. I want to eat Chinese food $=.00015$

Note on Example

- Probabilities seem to capture "syntactic" facts, "world knowledge"
- eat is often followed by a NP
- British food is not too popular

What do we learn about the language?

- What's being captured with ...
- $\mathrm{P}($ want | I) $=.32$
- $P($ to \mid want $)=.65$
$\square P($ eat | to $)=.26$
- $\mathrm{P}($ food \mid Chinese $)=.56$
- $P($ lunch \mid eat $)=.055$

Some Observations

ㅁ P(I \| I)

- P(want|I)
- P(I \| food)
- I I I want
- I want I want to
- The food I want is

\square What about

- P(I | I) = . 0023 I I I I want
- P(I | want) $=.0025$ I want I want
$\square P(I \mid$ food $)=.013$ the kind of food I want is ...

To avoid underflow use Logs

- You don't really do all those multiplies. The numbers are too small and lead to underflows
- Convert the probabilities to logs and then do additions.
- To get the real probability (if you need it) go back to the antilog.

Generation

- Choose N-Grams according to their probabilities and string them together

BERP

- I want want to
to eat
eat Chinese
Chinese food food.

Some Useful Observations

- A small number of events occur with high frequency
- You can collect reliable statistics on these events with relatively small samples
- A large number of events occur with small frequency
- You might have to wait a long time to gather statistics on the low frequency events

Some Useful Observations

- Some zeroes are really zeroes
- Meaning that they represent events that can't or shouldn't occur
- On the other hand, some zeroes aren't really zeroes
- They represent low frequency events that simply didn't occur in the corpus

Problem

- Let's assume we're using N-grams
- How can we assign a probability to a sequence where one of the component ngrams has a value of zero
\square Assume all the words are known and have been seen
- Go to a lower order n-gram
- Back off from bigrams to unigrams
- Replace the zero with something else

Add-One

- Make the zero counts 1.
- Justification: They're just events you haven't seen yet. If you had seen them you would only have seen them once. so make the count equal to 1 .

Add-one: Example

unsmoothed bigram counts:

(I	want	to	eat	Chinese	food	lunch	...	Total (N)
$\begin{aligned} & \\ & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & \vdots \\ & \frac{\hbar}{n} \end{aligned}$	I	8	1087	0	13	0	0	0		3437
	want	3	0	786	0	6	8	6		1215
	to	3	0	10	860	3	0	12		3256
	eat	0	0	2	0	19	2	52		938
	Chinese	2	0	0	0	0	120	1		213
	food	19	0	17	0	0	0	0		1506
	lunch	4	0	0	0	0	1	0		459
	...									

unsmoothed normalized bigram probabilities:

	I	want	to	eat	Chinese	food	lunch	\ldots	Total
I	.0023 $(8 / 3437)$.32	0	.0038 $(13 / 3437)$	0	0	0		1
want	.0025	0	.65	0	.0049	.0066	.0049		1
to	.00092	0	.0031	.26	.00092	0	.0037		1
eat	0	0	.0021	0	.020	.0021	.055		1
Chinese	.0094	0	0	0	0	.56	.0047		1
food	.013	0	.011	0	0	0	0		1
lunch	.0087	0	0	0	0	.0022	0		1
...									

Add-one: Example (con't)

add-one smoothed bigram counts:

	I	want	to	eat	Chinese	food	lunch	\ldots	Total (N+V)
I	89	1087	1	14	1	1	1		3437
		1088							
want	3	4	787	1	7	9	7	2831	
to	4	1	11	861	4	1	13	4872	
eat	1	1	23	1	20	3	53	2554	
Chinese	3	1	1	1	1	121	2	1829	
food	20	1	18	1	1	1	1	3122	
lunch	5	1	1	1	1	2	1		2075

add-one normalized bigram probabilities:

	I	want	to	eat	Chinese	food	/unch	\ldots	Total
I	.0018 $(9 / 5053)$.22	.0002	.0028 $(14 / 5053)$.0002	.0002	.0002		1
want	.0014	.00035	.28	.00035	.0025	.0032	.0025		1
to	.00082	.00021	.0023	.18	.00082	.00021	.0027		1
eat	.00039	.00039	.0012	.00039	.0078	.0012	.021		1
Chinese	.0016	.00055	.00055	.00055	.00055	.066	.0011		1
food	.0064	.00032	.0058	.00032	.00032	.00032	.00032		1
lunch	.0024	.00048	.00048	.00048	.00048	.0022	.00048		1

The example again

unsmoothed bigram counts:
$V=1616$ word types

	I	want	to	eat	Chinese	food	lunch	\ldots	Total (N)
I	8	1087	0	13	0	0	0		3437
want	3	0	786	0	6	8	6		1215
to	3	0	10	860	3	0	12	3256	
eat	0	0	2	0	19	2	52	938	
Chinese	2	0	0	0	0	120	1		213
food	19	0	17	0	0	0	0	1506	
lunch	4	0	0	0	0	1	0	459	

Smoothed P(I eat)
$=(C(I$ eat $)+1) /(n b$ bigrams starting with "I" $+n b$ of possible bigrams starting with
"I")
$=(13+1) /(3437+1616)$
$=0.0028$

Smoothing and N -grams
 - Add-One Smoothing
 - add 1 to all frequency counts
 - Bigram
 $\mathrm{p}\left(w_{n} \mid w_{n-1}\right)=\left(\mathrm{C}\left(w_{n-1} w_{n}\right)+1\right) /\left(\mathrm{C}\left(w_{n-1}\right)+\mathrm{V}\right)$
 - $\left(\mathrm{C}\left(w_{n-1} w_{n}\right)+1\right) * \mathrm{C}\left(w_{n-1}\right) /\left(\mathrm{C}\left(w_{n-1}\right)+\mathrm{V}\right)$

want
3437
1215
to 3256
eat 938
Chinese 213

- Frequencies

	I		want	to	eat	Chinese	food lunch
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

	I	want	to	eat	Chinese	food	lunch
I	6.12	740.05	0.68	9.52	0.68	0.68	0.68
want	1.72	0.43	337.76	0.43	3.00	3.86	3.00
to	2.67	0.67	7.35	575.41	2.67	0.67	8.69
eat	0.37	0.37	1.10	0.37	7.35	1.10	19.47
Chinese	0.35	0.12	0.12	0.12	0.12	14.09	0.23
food	9.65	0.48	8.68	0.48	0.48	0.48	0.48
lunch	1.11	0.22	0.22	0.22	0.22	0.44	0.22

Remarks:

add-one causes large changes in some frequencies due to relative size of $V(1616)$

$$
\text { want to: } 786 \Rightarrow 338
$$

$$
=(786+1) * 1215 /(1215+1616)
$$

$$
\left(c_{i}+1\right) \frac{N}{N+V}
$$

Problem with add-one smoothing

- bigrams starting with Chinese are boosted by a factor of 8 ! (1829 / 213) unsmoothed bigram counts:

$\begin{aligned} & \\ & 0 \\ & 1 \\ & 0 \\ & 3 \end{aligned}$		I	want	to	eat	Chinese	food	lunch	...	Total (N)
	I	8	1087	0	13	0	0	0		3437
	want	3	0	786	0	6	8	6		1215
	to	3	0	10	860	3	0	12		3256
	eat	0	0	2	0	19	2	52		938
去	Chinese	2	0	0	0	0	120	1		213
	food	19	0	17	0	0	0	0		1506
	lunch	4	0	0	0	0	1	0		459

add-one smoothed bigram counts:

Problem with add-one smoothing (con't)

- Data from the AP from (Church and Gale, 1991)
- Corpus of 22,000,000 bigrams
- Vocabulary of 273,266 words (i.e. 74,674,306,756 possible bigrams)
- 74,671,100,000 bigrams were unseen
- And each unseen bigram was given a frequency of 0.000295
$\begin{array}{|l|l|l|l|}\hline \begin{array}{c}\text { Freq. from } \\ \text { training data }\end{array} \\$\cline { 2 - 4 } \& $\left.\mathrm{f}_{\mathrm{mLE}} & \mathrm{f}_{\text {empirical }} & \mathrm{f}_{\text {add-one }} \\ \hline 0 & 0.000027 & \mathbf{0 . 0 0 0 2 9 5} \\ \hline \begin{array}{c}\text { Freq. from } \\ \text { held-out data }\end{array} & \begin{array}{ll|l|}\hline\end{array} \\ \hline 1 & 0.448 & 0.000274 \\ \hline 2 & 1.25 & 0.000411 \\ \hline 3 & 2.24 & 0.000548 \\ \hline 4 & 3.23 & 0.000685 \\ \hline\end{array}\right\}$
- Total probability mass given to unseen bigrams $=$ (74,671,100,000 x 0.000295) / 22,000,000 ~99.96 !!!!

Smoothing and N-grams

- Witten-Bell Smoothing
- equate zero frequency items with frequency 1 items
- use frequency of things seen once to estimate frequency of things we haven't seen yet
- smaller impact than Add-One
- Unigram
- a zero frequency word (unigram) is "an event that hasn't happened yet"
- count the number of words (T) we've observed in the corpus (Number of types)
- $p(w)=T /\left(Z^{*}(N+T)\right)$
$\square \mathrm{w}$ is a word with zero frequency
$\square \mathrm{Z}=$ number of zero frequency words
$\square \mathrm{N}=$ size of corpus

Distributing

- The amount to be distributed is

$$
\frac{T}{N+T}
$$

- The number of events with count zero

Z

- So distributing evenly gets us

Smoothing and N-grams

- Bigram
- $\mathrm{p}\left(w_{n} \mid w_{n-1}\right)=\mathrm{C}\left(w_{n-1} w_{n}\right) / \mathrm{C}\left(w_{n-1}\right)$
(original)
- $\mathrm{p}\left(w_{n} \mid w_{n-1}\right)=\mathrm{T}\left(w_{n-1}\right) /\left(\mathrm{Z}\left(w_{n-1}\right) *\left(\mathrm{~T}\left(w_{n-1}\right)+\mathrm{N}\right)\right)$
for zero bigrams (after Witten-Bell)
$\square \mathrm{T}\left(w_{n-1}\right)=$ number of bigrams beginning with w_{n-1}
$\square \mathrm{Z}\left(w_{n-1}\right)=$ number of unseen bigrams beginning with w_{n-1}
$\square \mathrm{Z}\left(w_{n-1}\right)=$ total number of possible bigrams beginning with w_{n-1} minus the ones we've seen
$\square \mathrm{Z}\left(w_{n-1}\right)=\mathrm{V}-\mathrm{T}\left(w_{n-1}\right)$
- $\mathrm{T}\left(w_{n-1}\right) / \mathrm{Z}\left(w_{n-1}\right) * \mathrm{C}\left(w_{n-1}\right) /\left(\mathrm{C}\left(w_{n-1}\right)+\mathrm{T}\left(w_{n-1}\right)\right)$
- estimated zero bigram frequency
- $\mathrm{p}\left(w_{n} \mid w_{n-1}\right)=\mathrm{C}\left(w_{n-1} w_{n}\right) /\left(\mathrm{C}\left(w_{n-1}\right)+\mathrm{T}\left(w_{n-1}\right)\right)$
\square for non-zero bigrams (after Witten-Bell)

Smoothing and N-grams

- Witten-Bell Smoothing
- use frequency (count) of things seen once to estimate frequency (count) of things we haven't seen yet
- Bigram
- $\mathrm{T}\left(w_{n-1}\right) / \mathrm{Z}\left(w_{n-1}\right) * \mathrm{C}\left(w_{n-1}\right) /\left(\mathrm{C}\left(w_{n-1}\right)+\mathrm{T}\left(w_{n-1}\right)\right) \quad$ estimated zero bigram frequency (count)
- $\mathrm{T}\left(w_{n-1}\right)=$ number of bigrams beginning with w_{n-1}
- $\mathrm{Z}\left(w_{n-1}\right)=$ number of unseen bigrams beginning with w_{n-1}

	I want	to	eat Chinese	food lunch			
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

Remark:

smaller changes

	I	want	to	eat	Chinese	food	lunch
I	7.785	1057.763	0.061	12.650	0.061	0.061	0.061
want	2.823	0.046	739.729	0.046	5.647	7.529	5.647
to	2.885	0.084	9.616	826.982	2.885	0.084	11.539
eat	0.073	0.073	1.766	0.073	16.782	1.766	45.928
Chinese	1.828	0.011	0.011	0.011	0.011	109.700	0.914
food	18.019	0.051	16.122	0.051	0.051	0.051	0.051
lunch	3.643	0.026	0.026	0.026	0.026	0.911	0.026

Distributing Among the Zeros

a If a bigram " $w_{x} w_{i}$ " has a zero count

'Thank you

هالسلام عليكم ورحمة اله

