N-Gram: Part 1 ICS 482 Natural Language Processing

Lecture 7: N-Gram: Part 1

Husni Al-Muhtaseb

بسم اله الرحمن الرحيم
 ICS 482 Natural Language Processing

Lecture 7: N-Gram: Part 1
Husni Al-Muhtaseb

NLP Credits and Acknowledgment

These slides were adapted from presentations of the Authors of the book

SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition
and some modifications from presentations found in the WEB by several scholars including the following

NLP Credits and Acknowledgment

If your name is missing please contact me muhtaseb

At
Kfupm.
Edu.

NLP Credits and

	echestampeint	Khurshid Ahmad	Martha Palmer
Martin	Björn Gambäck	Staffan Larsson	julia hirschberg
Jig Martin	Christian Korthals	Robert Wilensky	Elaine Rich
Dan Jurafsky	Thomas G. Dietterich		Christof Monz
Siway Fong	Devika Subramanian	Feiyu Xu	Bonnie J. Dorr
	Duminda Wijesekera	Jakub Piskorski	Nizar Habash
	Lee McCluskey	Rohini Srihari	Massimo Poesio
M y-Angela Papalaskari	David J. Kriegman	Mark Sanderson	David Goss-Grubbs Thomas K Harris
	Kathleen McKeown	Andrew Elks	John Hutchins
	Michael J. Ciaraldi	Marc Davis	Alexandros
ata Subramaniam	David Fin	Ray Larson	Potamianos Mike Rosner
tin	er-So	Jimmy Lin	Latifa Al-Sulaiti
uce R. Maxim	Franz J. Kurfess	Marti Hearst	Giorgio Satta
.	Tim Finin	Andrew McCallum	Cristopher Manning
th Srinivas	Nadjet Bouayad	Nick Kushmerick	Hinrich Schütze
eon Ntafos	Kathy McCoy	Mark Craven	Alexander Gelbukh
Paolo Pirjanian	Hans Uszkoreit	Chia-Hui Chang	Gina-Anne Levow
Rigrardo Vilalta	Azadeh Maghsoodi	Diana Maynard	Qitao Gao
Tom Lenaerts		James Allan	$\underset{\text { Zeynep Altan }}{\text { Qing Ma }}$

Previous Lectures

- Pre-start questionnaire
- Introduction and Phases of an NLP system
- NLP Applications - Chatting with Alice
- Regular Expressions, Finite State Automata, and Regular languages
- Deterministic \& Non-deterministic FSAs
- Morphology: Inflectional \& Derivational
- Parsing and Finite State Transducers
- Stemming \& Porter Stemmer

Today's Lecture

- 20 Minute Quiz
- Words in Context
- Statistical NLP - Language Modeling
- N Grams

NLP - Machine Translation

Where we are?

Discussed individual words in isolation

- Start looking at words in context
- An artificial task: predicting next words in a sequence

Try to complete the following

- The quiz was ------
- In this course, I want to get a good -----

Can I make a telephone -----

- My friend has a fast -----
- This is too -------
- الوقت كالسيف إن لم تقطعه -------

لا إله إلا أنت سبحانك إني كنت من -------

Human Word Prediction

- Some of us have the ability to predict future words in an utterance

How?

- Domain knowledge
- Syntactic knowledge
- Lexical knowledge

Claim

- A useful part of the knowledge is needed to allow Word Prediction (guessing the next word)
- Word Prediction can be captured using simple statistical techniques
- In particular, we'll rely on the notion of the probability of a sequence (e.g., sentence) and the likelihood of words co-occurring

Why to predict?

- Why would you want to assign a probability to a sentence or...
- Why would you want to predict the next word...
- Lots of applications

Lots of applications

- Example applications that employ language models:
- Speech recognition
- Handwriting recognition
- Spelling correction
- Machine translation systems
- Optical character recognizers

Real Word Spelling Errors

- Mental confusions (cognitive)
- Their/they're/there
- To/too/two
- Weather/whether
- Typos that result in real words
- Lave for Have

Real Word Spelling Errors

- They are leaving in about fifteen minuets to go to her horse. horse: house, minuets: minutes
- The study was conducted mainly be John Black be: by
- The design an construction of the system will take more than a year. an: and
- Hopefully, all with continue smoothly in my absence. With: will
- I need to notified the bank of.... notified: notify
- He is trying to fine out. fine: find

Real Word Spelling Errors

- Collect a set of common pairs of confusions
- Whenever a member of this set is encountered compute the probability of the sentence in which it appears
- Substitute the other possibilities and compute the probability of the resulting sentence
- Choose the higher one

Mathematical Foundations

Reminder

3/19/2008

Motivations

- Statistical NLP aims to do statistical inference for the field of NL

Statistical inference consists of taking some data (generated in accordance with some unknown probability distribution) and then making some inference about this distribution.

Motivations (Cont)

- An example of statistical inference is the task of language modeling (ex how to predict the next word given the previous words)
- In order to do this, we need a model of the language.
- Probability theory helps us finding such model

Probability Theory

- How likely it is that an A Event (something) will happen
- Sample space Ω is listing of all possible outcome of an experiment
- Event A is a subset of Ω
- Probability function (or distribution)

$$
P: \Omega \rightarrow[0,1]
$$

Prior Probability

Prior (unconditional) probability: the probability before we consider any additional knowledge

$$
P(A)
$$

Conditional probability

- Sometimes we have partial knowledge about the outcome of an experiment
- Conditional Probability
- Suppose we know that event B is true
- The probability that event A is true given the knowledge about B is expressed by

$$
P(A \mid B)
$$

Conditionals Defined

Conditionals

$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{P(B)}
$$

Rearranging

$$
P\left(A^{\wedge} B\right)=P(A \mid B) P(B)
$$

And also

$$
\begin{aligned}
P\left(A^{\wedge} B\right) & =P(B \mid A) P(A) \\
P\left(A^{\wedge} B\right)=P\left(B^{\wedge} A\right) & =P(B \mid A) P(A)
\end{aligned}
$$

Conditional probability (cont)

$$
\begin{aligned}
P(A, B) & =P(A \mid B) P(B) \\
& =P(B \mid A) P(A)
\end{aligned}
$$

- Joint probability of A and B.

Bayes' Theorem

- Bayes' Theorem lets us swap the order of dependence between events
We saw that $\quad P(A \mid B)=\frac{P(A, B)}{P(B)}$
Bayes' Theorem:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayes

. We know...

- So rearranging things

$$
\begin{aligned}
& P(A \wedge B)=P(A \mid B) P(B) \\
& \text { and }
\end{aligned}
$$

$$
\begin{gathered}
P(A \wedge B)=P(B \mid A) P(A) \\
P(A \mid B) P(B)=P(B \mid A) P(A)
\end{gathered}
$$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayes

"Memorize" this

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Example

- S:stiff neck, M: meningitis
- $\mathrm{P}(\mathrm{S} \mid \mathrm{M})=0.5, \mathrm{P}(\mathrm{M})=1 / 50,000 \mathrm{P}(\mathrm{S})=1 / 20$
- Someone has stiff neck, should he worry?

$$
\begin{aligned}
& P(M \mid S)=\frac{P(S \mid M) P(M)}{P(S)} \\
& \quad=\frac{0.5 \times 1 / 50,000}{1 / 20}=0.0002
\end{aligned}
$$

More Probability

-The probability of a sequence can be viewed as the probability of a conjunctive event -For example, the probability of "the clever student" is:
$P($ the \wedge clever \wedge student $)$

Chain Rule

conditional probability: $\quad P(A \mid B)=\frac{P(A \wedge B)}{P(B)}$

$$
P(A \wedge B)=P(B \mid A) P(A)
$$

$$
\begin{aligned}
& P(A \wedge B)=P(A \mid B) P(B) \\
& \text { and } \\
& P(A \wedge B)=P(B \mid A) P(A)
\end{aligned}
$$

"the student":

$$
P(\text { The } \wedge \text { student })=P(\text { student } \mid \text { the }) P(\text { the })
$$

"the student studies": $P($ The \wedge student \wedge studies $)=$ $P($ The $) P($ student \mid The $) P($ studies \mid The \wedge student $)$

Chain Rule

the probability of a word sequence is the probability of a conjunctive event.

$$
\begin{aligned}
P\left(w_{1}^{n}\right)= & P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}^{2}\right) \ldots P\left(w_{n} \mid w_{1}^{n-1}\right) \\
& =\prod_{k=1}^{n} P\left(w_{k} \mid w_{1}^{k-1}\right)
\end{aligned}
$$

Unfortunately, that's really not helpful in general. Why?

Markov Assumption

$$
P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)
$$

- $P\left(W_{n}\right)$ can be approximated using only $\mathrm{N}-1$ previous words of context
- This lets us collect statistics in practice
- Markov models are the class of probabilistic models that assume that we can predict the probability of some future unit without looking too far into the past
- Order of a Markov model: length of prior context

Corpora

- Corpora are (generally online) collections of text and speech
- e.g.
- Brown Corpus (1M words)
- Wall Street Journal and AP News corpora
- ATIS, Broadcast News (speech)
- TDT (text and speech)
- Switchboard, Call Home (speech)
- TRAINS, FM Radio (speech)

Counting Words in Corpora

- Probabilities are based on counting things, so
- What should we count?
- Words, word classes, word senses, speech acts ...?
- What is a word?
- e.g., are cat and cats the same word?
- September and Sept?
- zero and 0 ?
- Is seventy-two one word or two? AT\&T?
- Where do we find the things to count?

Terminology

- Sentence: unit of written language
- Utterance: unit of spoken language
- Wordform: the inflected form that appears in the corpus
- Lemma: lexical forms having the same stem, part of speech, and word sense
- Types: number of distinct words in a corpus (vocabulary size)
- Tokens: total number of words

Training and Testing

- Probabilities come from a training corpus, which is used to design the model.
- narrow corpus: probabilities don't generalize
- general corpus: probabilities don't reflect task or domain
- A separate test corpus is used to evaluate the model, typically using standard metrics
- held out test set
- cross validation

Simple N-Grams

An N-gram model uses the previous $\mathrm{N}-1$ words to predict the next one:

- $P\left(w_{n} \mid w_{n-1}\right)$
- Dealing with $P(<$ word $>\mid<$ some prefix $>)$
unigrams: $P($ student $)$
- bigrams: $P($ student \mid clever $)$
trigrams: $P($ student \mid the clever) quadrigrams: $P($ student \mid the clever honest $)$

