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Previous Lectures

• 1 Assignment #1

• 1 Pre-start online questionnaire

• 2 Introduction to NLP

• 2 Phases of an NLP system

• 2 NLP Applications

• 3 Chatting with Alice

• 3 Regular Expressions

• 3 Finite State Automata

• 3 Regular languages

• 3 Assignment #2
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Objective of Today’s Lecture

• Regular Expressions

• Regular languages

• Deterministic Finite State Automata

• Non-deterministic Finite State Automata

• Accept, Reject, Generate terms
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Review

• Regular expressions are a textual 

representation of FSAs

• Recognition is the process of determining 

if a string/ input is in the language defined 

by some machine

– Recognition is straightforward with 

deterministic machines
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Regular Expressions

• Matching strings with regular expressions is 

a matter of 

– translating the expression into a machine 

(table) and

– passing the table to an interpreter
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Substitutions in RE

• Substitutions

• Memory (\1, \2, etc. refer back to matches)

• Put angle brackets around all integers

• Practice with Microsoft Word

s/colour/color/

s/([0-9]+)/<\1>/
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Eliza-style regular expressions

s/I am/You are/

s/I’m/You are/

s/my/your/

Eliza is an ‘old version’ of ALICE.

Step 1: replace first person references with second person references

Step 2: use additional regular expressions to generate replies

Step 3: use scores to rank possible transformations
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Eliza-style regular expressions

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO 

HEAR YOU ARE \1/

s/.* YOU ARE (depressed|sad) .*/WHY DO YOU 

THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC 

EXAMPLE/

Eliza is an ‘old version’ of ALICE.

Step 1: replace first person references with second person references

Step 2: use additional regular expressions to generate replies

Step 3: use scores to rank possible transformations
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Three Views: REs, FSA, RL

• Three equivalent formal ways to look at 

what we’re up to

Regular Expressions

Regular LanguagesFinite State Automata
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Finite-state automata 

(machines)

baa!
baaa!
baaaa!
baaaaa!
...

q0 q1 q2 q3 q4

b a a !

a

baa+!

state transition
final

state

baa!

baaa!
baaaa!
baaaaa!
...



3/19/2008 14

Input tape

a b a ! b

q0
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State-transition tables

Input

State b a !

0 1 Ø Ø

1 Ø 2 Ø

2 Ø 3 Ø

3 Ø 3 4

4 Ø Ø Ø
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More Formally

• You can specify an FSA by enumerating 

the following things.

– The set of states: Q

– A finite alphabet: Σ

– A start state

– A set of accept/final states

– A transition function that maps Q x Σ to Q
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Finite-state automata

• Q: a finite set of N states q0, q1, … qN

• : a finite input alphabet of symbols

• q0: the start state

• F: the set of final states

• (q,i): transition function
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Alphabets

• Alphabets means we need a finite set of 

symbols in the input.

• These symbols can and will stand for 

bigger objects that can have internal 

structure.
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Dollars and Cents
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Recognition

• The process of determining if a string 

should be accepted by a machine

• The process of determining if a string is in 

the language we’re defining with the 

machine

• The process of determining if a regular 

expression matches a string
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Recognition

• in the start state

• Examine the current input (tape)

• Consult the transition table

• Go to the next state and update the tape 

pointer

• Repeat until you run out of tape
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D-RECOGNIZE

function D-RECOGNIZE (tape, machine) returns accept or reject

index Beginning of tape

current-state Initial state of machine

loop

if End of input has been reached then

if current-state is an accept state then

return accept

else

return reject

else if transition-table [current-state, tape[index]] is empty then

return reject

else

current-state  transition-table [current-state, tape[index]]
index  index + 1

end
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D-Recognize

• Deterministic means that at each point in 

processing there is always one unique 

thing to do (no choices)

• D-recognize algorithm is a simple table-

driven interpreter

• The algorithm is universal for all 

unambiguous languages

– To change the machine, you change the table
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Recognition as Search

• You can view this algorithm as a kind of 

state-space search

• States are pairings of tape positions and 

state numbers

• Operators are compiled into the table

• Goal state is a pairing with the end of tape 

position and a final accept state
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Generative Formalisms

• Formal Languages are sets of strings 
composed of symbols from a finite set of 
symbols

• Finite-state automate define formal 
languages (without having to enumerate 
all the strings in the language)

• The term Generative is based on the view 
that you can run the machine as a 
generator to get strings from the language
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Generative Formalisms

• FSAs can be viewed from two 

perspectives:

– Acceptors that can tell you if a string is in the 

language

– Generators to produce all and only the strings 

in the language
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D-RECOGNIZE

function D-RECOGNIZE (tape, machine) returns accept or reject

index Beginning of tape

current-state Initial state of machine

loop

if End of input has been reached then

if current-state is an accept state then

return accept

else

return reject

else if transition-table [current-state, tape[index]] is empty then

return reject

else

current-state  transition-table [current-state, tape[index]]
index  index + 1

end
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1. Index the tape to the beginning and the machine to the 

initial state.

2. First check to see if you have any more input 

•If no and you’re in a  final state, ACCEPT

•If no and you’re in a non-final state reject

3.  If you have more input check what state you’re in by 

consulting the transition table. The index  of the Current 

State tells you what row in the table to consult.  The index 

on the tape symbol tells you what column to consult in the 

table. Loop through until no more input then go back to 2.

Deterministic  Algorithm
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Adding a failing state

q0 q1 q2 q3 q4

b a a !

a

qFa

!

b

! b ! b

b

a

!
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Languages and automata

• Formal languages: regular languages, non-regular 
languages

• deterministic vs. non-deterministic FSAs

• Epsilon () transitions
–  is the empty string & Ø is the empty set (empty regular 

language)
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Deterministic

Non- Deterministic

Non- Deterministic
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Using NFSAs to accept strings

• Backup: add markers at choice points, 

then possibly revisit unexplored markers

• Look-ahead: look ahead in input

• Parallelism: look at alternatives in parallel
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Using NFSAs

Input

State b a ! 

0 1 Ø Ø Ø

1 Ø 2 Ø Ø

2 Ø 2,3 Ø Ø

3 Ø Ø 4 Ø

4 Ø Ø Ø Ø
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Non-Determinism

Det

Non-Det
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Non-Determinism cont.

• Another technique

– Epsilon transitions

• these transitions do not examine or advance the 

tape during recognition

ε
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Equivalence

• Non-deterministic machines can be 

converted to deterministic 

• They have the same power; non-

deterministic machines are not more 

powerful than deterministic ones

• It also means that one way to do 

recognition with a non-deterministic 

machine is to turn it into a deterministic 

one
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Non-Deterministic Recognition
• In a ND FSA there exists at least one 

path through the machine for a string 
that is in the language defined by the 
machine

• But not all paths directed through the 
machine for an accept string lead to an 
accept state

• No paths through the machine lead to 
an accept state for a string not in the 
language
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Non-Deterministic Recognition

• Success in a non-deterministic recognition 

occurs when a path is found through the 

machine that ends in an accept

• Failure occurs when none of the possible 

paths lead to an accept state
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Example

b a a a ! \

q0 q1 q2 q2 q3 q4
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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States in Search Space

• States in the search space are pairings of 

tape positions and states in the machine

• By keeping track of as yet unexplored 

states, a recognizer can systematically 

explore all the paths through the machine 

given an input
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Components of ND Automaton

Search State: records the choice points by storing state, 

input pairs so you know what state you were at and what 

input you had read when the derivation branched.  

Agenda:  At each point of nondeterminism the algorithm 

postpone pursuing some choices (paths) in favor of others. 

The agenda records what these choices are as they are 

encountered.

Since this is non-deterministic, we have to allow the state to 

transition to multiple points ( a list of destination nodes).
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1:  Can you accept the string given input and state 

2:  If not , check the agenda and given the current state

and the input then generate a new set of possible  search 

states based on the  state you are in and new input. 

Explore these states.

3: If not, see if there are alternative search states waiting 

to be explored  on the agenda.  

If either (2) or (3) end up, the states they lead you to 

become the current search state.

Even if one path doesn’t succeed always need to check the 

agenda because you may come to ( Final state, 0-input 

pair) on another path.

Non Deterministic Algorithm
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Search in NFSA

• Depth first Search
• Last in First Out (LIFO) 

• States arranged in a STACK

• Breadth first Search

– First in first out (FIFO)

– States organized in a queue
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•Depth first search is optimal when one alternative is 

highly favored because in most cases, you will never get to 

the less favored alternatives.

•Breadth first search is optimal when can’t predict which 

alternative likely to work out.  You will do extra  work by 

computing paths that won’t lead to final output, but when 

error is detected at one path, don’t have to back up to get 

to other paths. Can just proceed with next step.

•Unfortunately, often can’t tell which will save  the most 

work.

When to choose what?
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Infinite Search

• If we’re not careful such searches can go 

into an infinite loop.
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Why to use Non-determinism

• Non-determinism doesn’t get us more 

formal power and it causes headaches so 

why to use it?

– More natural solutions

– Deterministic Machines are too big
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Compositional Machines

• Formal languages are sets of strings

• We can talk about various set operations 

(intersection, union, concatenation)
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Union

• Accept a string in 

either of two 

languages
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Concatenation

• Accept a string consisting of a string from 

language L1 followed by a string from 

language L2.
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Negation

• Construct a machine M2 to accept all 

strings not accepted by machine M1 and 

reject all the strings accepted by M1

– Invert all the accept and not accept states in 

M1

• Does that work for non-deterministic 

machines?
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Intersection

• Accept a string that is in both of two 

specified languages

• An indirect construction…

• A^B = ~(~A or ~B)
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Thank you

السلام عليكم ورحمة الله


