
3/19/2008 1

Regular Expressions & Finite

State Automata – Part 2

ICS 482: Natural Language

Processing

Husni Al-Muhtaseb

NLP Credits and

Acknowledgment

These slides were adapted from
presentations of the Authors of the

book
SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

and some modifications from
presentations found in the WEB by

several scholars including the
following

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

NLP Credits and

Acknowledgment

If your name is missing please contact me

muhtaseb

At

Kfupm.

Edu.

sa

NLP Credits and

AcknowledgmentHusni Al-Muhtaseb

James Martin

Jim Martin

Dan Jurafsky

Sandiway Fong

Song young in

Paula Matuszek

Mary-Angela Papalaskari

Dick Crouch

Tracy Kin

L. Venkata
Subramaniam

Martin Volk

Bruce R. Maxim

Jan Hajič

Srinath Srinivasa

Simeon Ntafos

Paolo Pirjanian

Ricardo Vilalta

Tom Lenaerts

Heshaam Feili

Björn Gambäck

Christian Korthals
Thomas G.
Dietterich
Devika
Subramanian
Duminda
Wijesekera
Lee McCluskey
David J. Kriegman

Kathleen McKeown

Michael J. Ciaraldi

David Finkel

Min-Yen Kan

Andreas Geyer-
Schulz

Franz J. Kurfess

Tim Finin

Nadjet Bouayad

Kathy McCoy

Hans Uszkoreit

Azadeh Maghsoodi

Khurshid Ahmad

Staffan Larsson

Robert Wilensky

Feiyu Xu

Jakub Piskorski

Rohini Srihari

Mark Sanderson

Andrew Elks

Marc Davis

Ray Larson

Jimmy Lin

Marti Hearst

Andrew McCallum

Nick Kushmerick

Mark Craven

Chia-Hui Chang

Diana Maynard

James Allan

Martha Palmer
julia hirschberg
Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-Grubbs
Thomas K Harris
John Hutchins
Alexandros
Potamianos
Mike Rosner
Latifa Al-Sulaiti
Giorgio Satta
Jerry R. Hobbs
Christopher
Manning
Hinrich Schütze
Alexander Gelbukh
Gina-Anne Levow
Guitao Gao
Qing Ma
Zeynep Altan

3/19/2008 5

Previous Lectures

• 1 Assignment #1

• 1 Pre-start online questionnaire

• 2 Introduction to NLP

• 2 Phases of an NLP system

• 2 NLP Applications

• 3 Chatting with Alice

• 3 Regular Expressions

• 3 Finite State Automata

• 3 Regular languages

• 3 Assignment #2

3/19/2008 6

Objective of Today’s Lecture

• Regular Expressions

• Regular languages

• Deterministic Finite State Automata

• Non-deterministic Finite State Automata

• Accept, Reject, Generate terms

3/19/2008 7

Review

• Regular expressions are a textual

representation of FSAs

• Recognition is the process of determining

if a string/ input is in the language defined

by some machine

– Recognition is straightforward with

deterministic machines

3/19/2008 8

Regular Expressions

• Matching strings with regular expressions is

a matter of

– translating the expression into a machine

(table) and

– passing the table to an interpreter

3/19/2008 9

Substitutions in RE

• Substitutions

• Memory (\1, \2, etc. refer back to matches)

• Put angle brackets around all integers

• Practice with Microsoft Word

s/colour/color/

s/([0-9]+)/<\1>/

3/19/2008 10

Eliza-style regular expressions

s/I am/You are/

s/I’m/You are/

s/my/your/

Eliza is an ‘old version’ of ALICE.

Step 1: replace first person references with second person references

Step 2: use additional regular expressions to generate replies

Step 3: use scores to rank possible transformations

3/19/2008 11

Eliza-style regular expressions

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO

HEAR YOU ARE \1/

s/.* YOU ARE (depressed|sad) .*/WHY DO YOU

THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC

EXAMPLE/

Eliza is an ‘old version’ of ALICE.

Step 1: replace first person references with second person references

Step 2: use additional regular expressions to generate replies

Step 3: use scores to rank possible transformations

3/19/2008 12

Three Views: REs, FSA, RL

• Three equivalent formal ways to look at

what we’re up to

Regular Expressions

Regular LanguagesFinite State Automata

3/19/2008 13

Finite-state automata

(machines)

baa!
baaa!
baaaa!
baaaaa!
...

q0 q1 q2 q3 q4

b a a !

a

baa+!

state transition
final

state

baa!

baaa!
baaaa!
baaaaa!
...

3/19/2008 14

Input tape

a b a ! b

q0

3/19/2008 15

State-transition tables

Input

State b a !

0 1 Ø Ø

1 Ø 2 Ø

2 Ø 3 Ø

3 Ø 3 4

4 Ø Ø Ø

3/19/2008 16

More Formally

• You can specify an FSA by enumerating

the following things.

– The set of states: Q

– A finite alphabet: Σ

– A start state

– A set of accept/final states

– A transition function that maps Q x Σ to Q

3/19/2008 17

Finite-state automata

• Q: a finite set of N states q0, q1, … qN

• : a finite input alphabet of symbols

• q0: the start state

• F: the set of final states

• (q,i): transition function

3/19/2008 18

Alphabets

• Alphabets means we need a finite set of

symbols in the input.

• These symbols can and will stand for

bigger objects that can have internal

structure.

3/19/2008 19

Dollars and Cents

3/19/2008 20

Recognition

• The process of determining if a string

should be accepted by a machine

• The process of determining if a string is in

the language we’re defining with the

machine

• The process of determining if a regular

expression matches a string

3/19/2008 21

Recognition

• in the start state

• Examine the current input (tape)

• Consult the transition table

• Go to the next state and update the tape

pointer

• Repeat until you run out of tape

3/19/2008 22

D-RECOGNIZE

function D-RECOGNIZE (tape, machine) returns accept or reject

index Beginning of tape

current-state Initial state of machine

loop

if End of input has been reached then

if current-state is an accept state then

return accept

else

return reject

else if transition-table [current-state, tape[index]] is empty then

return reject

else

current-state transition-table [current-state, tape[index]]
index index + 1

end

3/19/2008 23

D-Recognize

• Deterministic means that at each point in

processing there is always one unique

thing to do (no choices)

• D-recognize algorithm is a simple table-

driven interpreter

• The algorithm is universal for all

unambiguous languages

– To change the machine, you change the table

3/19/2008 24

Recognition as Search

• You can view this algorithm as a kind of

state-space search

• States are pairings of tape positions and

state numbers

• Operators are compiled into the table

• Goal state is a pairing with the end of tape

position and a final accept state

3/19/2008 25

Generative Formalisms

• Formal Languages are sets of strings
composed of symbols from a finite set of
symbols

• Finite-state automate define formal
languages (without having to enumerate
all the strings in the language)

• The term Generative is based on the view
that you can run the machine as a
generator to get strings from the language

3/19/2008 26

Generative Formalisms

• FSAs can be viewed from two

perspectives:

– Acceptors that can tell you if a string is in the

language

– Generators to produce all and only the strings

in the language

3/19/2008 27

D-RECOGNIZE

function D-RECOGNIZE (tape, machine) returns accept or reject

index Beginning of tape

current-state Initial state of machine

loop

if End of input has been reached then

if current-state is an accept state then

return accept

else

return reject

else if transition-table [current-state, tape[index]] is empty then

return reject

else

current-state transition-table [current-state, tape[index]]
index index + 1

end

3/19/2008 28

1. Index the tape to the beginning and the machine to the

initial state.

2. First check to see if you have any more input

•If no and you’re in a final state, ACCEPT

•If no and you’re in a non-final state reject

3. If you have more input check what state you’re in by

consulting the transition table. The index of the Current

State tells you what row in the table to consult. The index

on the tape symbol tells you what column to consult in the

table. Loop through until no more input then go back to 2.

Deterministic Algorithm

3/19/2008 29

Adding a failing state

q0 q1 q2 q3 q4

b a a !

a

qFa

!

b

! b ! b

b

a

!

3/19/2008 30

Languages and automata

• Formal languages: regular languages, non-regular
languages

• deterministic vs. non-deterministic FSAs

• Epsilon () transitions
– is the empty string & Ø is the empty set (empty regular

language)

3/19/2008 31

Deterministic

Non- Deterministic

Non- Deterministic

3/19/2008 32

Using NFSAs to accept strings

• Backup: add markers at choice points,

then possibly revisit unexplored markers

• Look-ahead: look ahead in input

• Parallelism: look at alternatives in parallel

3/19/2008 33

Using NFSAs

Input

State b a !

0 1 Ø Ø Ø

1 Ø 2 Ø Ø

2 Ø 2,3 Ø Ø

3 Ø Ø 4 Ø

4 Ø Ø Ø Ø

3/19/2008 34

Non-Determinism

Det

Non-Det

3/19/2008 35

Non-Determinism cont.

• Another technique

– Epsilon transitions

• these transitions do not examine or advance the

tape during recognition

ε

3/19/2008 36

Equivalence

• Non-deterministic machines can be

converted to deterministic

• They have the same power; non-

deterministic machines are not more

powerful than deterministic ones

• It also means that one way to do

recognition with a non-deterministic

machine is to turn it into a deterministic

one

3/19/2008 37

Non-Deterministic Recognition
• In a ND FSA there exists at least one

path through the machine for a string
that is in the language defined by the
machine

• But not all paths directed through the
machine for an accept string lead to an
accept state

• No paths through the machine lead to
an accept state for a string not in the
language

3/19/2008 38

Non-Deterministic Recognition

• Success in a non-deterministic recognition

occurs when a path is found through the

machine that ends in an accept

• Failure occurs when none of the possible

paths lead to an accept state

3/19/2008 39

Example

b a a a ! \

q0 q1 q2 q2 q3 q4

3/19/2008 40

Example

3/19/2008 41

Example

3/19/2008 42

Example

3/19/2008 43

Example

3/19/2008 44

Example

3/19/2008 45

Example

3/19/2008 46

Example

3/19/2008 47

Example

3/19/2008 48

States in Search Space

• States in the search space are pairings of

tape positions and states in the machine

• By keeping track of as yet unexplored

states, a recognizer can systematically

explore all the paths through the machine

given an input

3/19/2008 49

Components of ND Automaton

Search State: records the choice points by storing state,

input pairs so you know what state you were at and what

input you had read when the derivation branched.

Agenda: At each point of nondeterminism the algorithm

postpone pursuing some choices (paths) in favor of others.

The agenda records what these choices are as they are

encountered.

Since this is non-deterministic, we have to allow the state to

transition to multiple points (a list of destination nodes).

3/19/2008 50

1: Can you accept the string given input and state

2: If not , check the agenda and given the current state

and the input then generate a new set of possible search

states based on the state you are in and new input.

Explore these states.

3: If not, see if there are alternative search states waiting

to be explored on the agenda.

If either (2) or (3) end up, the states they lead you to

become the current search state.

Even if one path doesn’t succeed always need to check the

agenda because you may come to (Final state, 0-input

pair) on another path.

Non Deterministic Algorithm

3/19/2008 51

Search in NFSA

• Depth first Search
• Last in First Out (LIFO)

• States arranged in a STACK

• Breadth first Search

– First in first out (FIFO)

– States organized in a queue

3/19/2008 52

•Depth first search is optimal when one alternative is

highly favored because in most cases, you will never get to

the less favored alternatives.

•Breadth first search is optimal when can’t predict which

alternative likely to work out. You will do extra work by

computing paths that won’t lead to final output, but when

error is detected at one path, don’t have to back up to get

to other paths. Can just proceed with next step.

•Unfortunately, often can’t tell which will save the most

work.

When to choose what?

3/19/2008 53

Infinite Search

• If we’re not careful such searches can go

into an infinite loop.

3/19/2008 54

Why to use Non-determinism

• Non-determinism doesn’t get us more

formal power and it causes headaches so

why to use it?

– More natural solutions

– Deterministic Machines are too big

3/19/2008 55

Compositional Machines

• Formal languages are sets of strings

• We can talk about various set operations

(intersection, union, concatenation)

3/19/2008 56

Union

• Accept a string in

either of two

languages

3/19/2008 57

Concatenation

• Accept a string consisting of a string from

language L1 followed by a string from

language L2.

3/19/2008 58

Negation

• Construct a machine M2 to accept all

strings not accepted by machine M1 and

reject all the strings accepted by M1

– Invert all the accept and not accept states in

M1

• Does that work for non-deterministic

machines?

3/19/2008 59

Intersection

• Accept a string that is in both of two

specified languages

• An indirect construction…

• A^B = ~(~A or ~B)

3/19/2008 60

Thank you

السلام عليكم ورحمة الله

