Semantic analysis \& Lexical Semantic

ICS 482 Natural Language

 ProcessingLecture 22: Semantic analysis \& Lexical Semantic

Husni Al-Muhtaseb

بسم الله الرحمن الرحيم ICS 482 Natural Language Processing

Lecture 22: Semantic analysis \& Lexical Semantic

Husni Al-Muhtaseb

Acknowledgment

These slides were adapted from presentations of the Authors of the book

SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition
and some modifications from presentations found in the WEB by several scholars including the following

NLP Credits and Acknowledgment

If your name is missing please contact me muhtaseb
At
Kfupm.
Edu.
sa

NLP Credits and Acknowledgment

Husni Al-Muhtaseb
James Martin
Jim Martin
Dan Jurafsky
Sandiway Fong
Song young in
Paula Matuszek
Mary-Angela Papalaskari
Dick Crouch
Tracy Kin
L. Venkata Subramaniam
Martin Volk
Bruce R. Maxim
Jan Hajič
Srinath Srinivasa
Simeon Ntafos
Paolo Pirjanian
Ricardo Vilalta

Khurshid Ahmad	Martha Palmer Staffan Larsson julia hirschberg
Robert Wilensky	Elaine Rich
Christof Monz	
Feiyu Xu	Bonnie J. Dorr
Jakub Piskorski	Nizar Habash
Rohini Srihari	Massimo Poesio
David Goss-Grubbs	
Mark Sanderson	Thomas K Harris
Andrew Elks	John Hutchins
Marc Davis	Alexandros
Ray Larson	Potamianos
Mike Rosner	
Jimmy Lin	Latifa Al-Sulaiti
Marti Hearst	Giorgio Satta
Andrew McCallum	Jerry R. Hobbs
Christopher Manning	
Nick Kushmerick	Hinrich Schütze
Mark Craven	Alexander Gelbukh
Chia-Hui Chang	Gina-Anne Levow
Guitao Gao	

Previous Lectures

- Introduction and Phases of an NLP system
$\square \quad$ NLP Applications - Chatting with Alice
- Finite State Automata \& Regular Expressions \& languages
- Morphology: Inflectional \& Derivational
$\square \quad$ Parsing and Finite State Transducers, Porter Stemmer
$\square \quad$ Statistical NLP - Language Modeling
- N Grams, Smoothing
- Parts of Speech - Arabic Parts of Speech
$\square \quad$ Syntax: Context Free Grammar (CFG) \& Parsing
- Parsing: Earley's Algorithm
- Probabilistic Parsing
- Probabilistic CYK - Dependency Grammar
\square Semantics: Representing meaning - FOPC
\square Lexicons and Morphology - invited lecture
- Semantics: Representing meaning

ㅁ Semantic Analysis: Syntactic-Driven Semantic Analysis

Today's Lecture

- Semantic Analysis (~ Ch 15)
- Syntactic-Driven Semantic Analysis
- Semantic Grammars
- Presentations
- Evaluation
- How to give good presentation

AyCaramba

Meat

- $\mathbf{S} \rightarrow \mathbf{N P}$ VP
$\square \quad\{$ VP.sem(NP.sem) $\}$
- VP \rightarrow Verb NP
- \{Verb.sem(NP.sem) \}
- Verb \rightarrow serves $\quad \cdot \lambda x \lambda y \exists e \operatorname{Serving}(e)^{\wedge} \operatorname{Server}(e, y)^{\wedge} \operatorname{Served}(e, x)$
- NP \rightarrow PropNoun
\square \{PropNoun.sem\}
- $\quad \mathbf{N P} \rightarrow$ MassNoun
\square \{MassNoun.sem\}
ㅁ PropNoun \rightarrow AyCarambă \square
\{AyCaramba\}
- MassNoun \rightarrow meat

Which FOPC representation is better?

$\lambda x \lambda y \exists \operatorname{eServing}(e) \wedge \operatorname{Server}(e, y) \wedge \operatorname{Served}(e, x)$
$\lambda x \lambda y \exists e \operatorname{Isa}(e, S e r v i n g) \wedge \operatorname{Server}(e, y)$
$\wedge \operatorname{Served}(e, x)$

Possible pop-quiz: Redo previous example using second representation

Syntax-Driven Semantic Analysis Semantic Augmentation to CFG Rules

ㅁ Revise Verb attachment
Verb \rightarrow serves $\{\lambda x \lambda y \exists e$ Isa $(e$, Serving $) \wedge \operatorname{Server}(e, y) \wedge \operatorname{Served}(e, x)\}$

Predicate-Argument Semantics

\square The functions/operations permitted in the semantic rules fall into two classes

- Pass the semantics of a daughter up unchanged to the mother
- Apply (as a function) the semantics of one of the daughters of a node to the semantics of the other daughters

Predicate-Argument Semantics

$\square \mathrm{S} \rightarrow \mathrm{NP}$ VP
\square VP \rightarrow Verb NP

$\square\{$ VP.sem (NP.sem) $\}$
ㅁ $\{$ Verb.sem (NP.sem)
\square in each rule there's a daughter whose semantics is a function and one that isn't.

Integration with a Parser

\square Assume you're using a dynamic-programming style parser (Earley or CYK).
\square As constituents are completed and entered into the table, we compute their semantics.

- If they're complete, we have their parts.
- If we have their parts we have the semantics for the parts...
- Therefore we can compute the semantics of the newly completed constituent.

Mismatches

\square There are unfortunately some annoying mismatches between the syntax of FOPC and the syntax provided by our grammars...
\square So we'll accept that we can't always directly create valid logical forms in a strictly compositional way

Quantified Phrases

\square Consider

A restaurant serves meat.

- Assume that A restaurant looks like

$$
\exists x \operatorname{Is} a(x, \text { Restaurant })
$$

- If we do the normal lambda thing we get
$\exists e \operatorname{Serving}(e) \wedge \operatorname{Server}(e, \exists x I s a(x$, Restaurant $)) \wedge \operatorname{Served}(e$, Meat $)$

Semantic Augmentation to CFG Rules

ㅁ A restaurant serves meat.

- Subject
$\exists x$ Isa (x, Restaurant)
- Embed in the Server predicate:
> $\exists \mathrm{Isa}(e$, Serving $) \wedge \operatorname{Server}(e, \exists x \operatorname{Isa}(x$, Restaurant $) \wedge$ Served (e, Meat)

Not a valid FOPC

Semantic Augmentation to CFG Rules

\square Solve this problem by introducing the notion of a complex-term.

- A complex term: < Quantifier variable body> $\exists \mathrm{Isa}(e, \operatorname{Serving}) \wedge \operatorname{Server}(e,<\exists x \operatorname{Isa}(x$, Restaurant $>)) \wedge$ Served (e, Meat)
- Rewriting a predicate using a complex-term $P(<$ Quantifier variable body $>) \Rightarrow$ Quantifier variable body Connective P (variable)

$\operatorname{Server}(e,<\exists x \operatorname{Isa}(x$, Restaurant $>)$
$\exists x \operatorname{Isa}(x$, Restaurant $) \wedge \operatorname{Server}(e, x)$

Complex Terms

- Allow the compositional system to pass around representations like the following as objects with parts:
$<\exists x \operatorname{Is} a(x$, Restaurant $)>$
Complex-Term : <Quantifier var body>

Example

\square Our restaurant example winds up looking like

Conversion

\square So... complex terms wind up being embedded inside predicates. So pull them out and redistribute the parts in the right way...
$\mathrm{P}(<$ quantifier, var, body>)
turns into
Quantifier var body connective P (var)

Example

$\operatorname{Server}(e, \leq 7 x \operatorname{ls} a(x$, Restaurant $)>)$

$\exists x \operatorname{Is} a(x$, Restaurant $) \wedge \operatorname{Server}(e, x)$

Quantifiers and Connectives

\square If the quantifier is an existential, then the connective is an ${ }^{\wedge}$ (and)
\square If the quantifier is a universal, then the connective is an => (implies)

Multiple Complex Terms

\square Note that the conversion technique pulls the quantifiers out to the front of the logical form...
\square That leads to ambiguity if there's more than one complex term in a sentence.

Multiple Complex Terms

- Every restaurant has a menu.
\exists Isa (e, Having)
$\wedge \operatorname{Haver}(e,<\forall x$ Isa $(x$, Restaurant $)>)$
Try to simplify this
$\wedge \operatorname{Had}(e,<\exists y \operatorname{Isa}(y, M e n u)>)$
$\forall x$ Restaurant $(x) \Rightarrow$
$\exists e, y \wedge I s a(e$, Having $) \wedge \operatorname{Haver}(e, x)$ $\wedge \operatorname{Isa}(y, M e n u) \wedge \operatorname{Had}(e, y)$
$\exists y \operatorname{Isa}(y, M e n u) \wedge \forall x$ Isa $(x$, Restaurant $) \Rightarrow$
\exists e Isa (e, Having) $\wedge \operatorname{Haver}(e, x) \wedge \operatorname{Had}(e, y)$

Multiple Complex Terms

- The problem of ambiguous quantifier scoping - a single logical formula with two complex-terms give rise to two distinct and incompatible FOPC representations.

Ambiguity

\square The number of possible interpretations goes up exponentially with the number of complex terms in the sentence
\square The best we can do is to come up with weak methods to prefer one interpretation over another

Attachments for a Fragment of English Sentences

- Flight 487 serves lunch.
$S \rightarrow N P V P\{D C L(V P . s e m(N P . s e m))\}$
- Serve lunch.
$S \rightarrow V P\{I M P(V P . s e m(D u m m y Y o u))$

IMP $(\exists$ eServing $(e) \wedge$ Server $(e$, Dummy You $) \wedge$ Served (e, Lunch $)$
Imperatives can be viewed as a kind of speech ant.

- Does Flight 207 serve lunch?
$S \rightarrow A u x$ NP VP \{YNQ(VP.sem(NP.sem) $)\}$
$Y N Q(\exists$ eServing $(e) \wedge S e r v e r(e$, Flt207) $\wedge S e r v e d(e$, Lunch $)$
\square Which flights serve lunch?
$S \rightarrow$ WhWord NP VP \{WHQ(NP.sem.var, VP.sem(NP.sem)) $\}$
$W H Q(x, \exists e, x$ Isa(e, Serving) \wedge Server $(e, x) \wedge S e r v e d(e, L u n c h) \wedge I s a(x$, Flight))

Attachments for a Fragment of English Sentences

\square How can I go from Minneapolis to Long Beach?
$S \rightarrow$ WhWord Aux NP VP \{ WHQ(WhWord.sem, VP.sem(NP.sem)) \}
WHQ(How, $\exists \mathrm{e}$ Isa(e, Going)^Goer(e, User)
\wedge Origin $(e$, Minn $) \wedge \operatorname{Destination(e,~}$ LongBeach))

Attachments for a Fragment of English NPs: Compound Nominals

- The meaning representations for NPs can be either normal FOPC terms or complex-terms.
- Flight schedule
- Summer flight Schedule Nominal \rightarrow Noun ${ }^{\text {Cr }}{ }^{2} \mathrm{Cl}_{\mathrm{Cl}}$
Nominal \rightarrow Nominal Noun $\left\{\lambda_{x}\right.$ Nominal.sem $(x) \wedge$ $N N($ Noun.sem, $x)\}$
$\lambda_{x} \operatorname{Isa}(x$, Schedule $) \wedge N N(x$, Flight $)$
$\lambda_{x} \operatorname{Isa}(x$, Schedule $) \wedge N N(x$, Flight $) \wedge N N(x$, Summer

Attachments for a Fragment of English NP: Genitive NPs

- (Ex.) Atlanta's airport

口 (Ex.) Maharani's menu $N P \rightarrow$ Complex Det Nominal $\left\{<\exists x \operatorname{Nominal}_{\mathrm{c}} \operatorname{sem}(x) \wedge G N(x\right.$, ComplexDet.sem) $>\}$
ComplexDet \rightarrow NP's \{NP.sem $\}$
$<\exists x \operatorname{Isa}(x$, Airport $) \wedge G N(x$, Atlanta $)>$

Attachments for a Fragment of English Adjective Phrases

\square I don't mind a cheap restaurant.
\square This restaurant is cheap.

- For pre-nominal case, an obvious and often ifebrrect proposal is:

Nominal \rightarrow Adj Nominal
$\left\{\lambda_{x}\right.$ Nominal.sem $(x) \wedge I s a(x$, Adj.sem $\left.)\right\}$
Adj \rightarrow cheap $\{$ Cheap $\}$
$\lambda_{x} \operatorname{Isa}(x$, Restaurant $) \wedge I s a(x$, Cheap $)$ intersective semantics

- Wrong
- small elephant $\Rightarrow \lambda_{x} \operatorname{Isa}(x$, Elephant $) \wedge I s a(x$, Small $)$

Incorrect

- former friend $\Rightarrow \lambda_{x}$ Isa(x, Friend $) \wedge$ Isa(x, Former $)$ interactions
- fake gun $\Rightarrow \lambda_{x}$ Isa(x, Gun $) \wedge$ Isa(x, Fake $)$

Attachments for a Fragment of English

Adjective Phrases

- The best approach is to simply note the status of a special kind of modification relation and - Assume that some further procedure with access to additignal relevant knowledge dan replace this vague relation with an appropriate representation. Nominal \rightarrow Adj Nominal

$$
\left\{\lambda_{x} \text { Nominal.sem }(x) \wedge A M(x, \text { Adj.sem })\right\}
$$

Adj \rightarrow cheap $\{$ Cheap $\}$ $\lambda_{x} \operatorname{Isa}(x$, Restaurant $) \wedge A M(x$, Cheap $)$

Attachments for a Fragment of English VPs: Infinite VPs

- In general, the λ-expression attached to the verb is simply applied to the semantic attachments of the verb's arguments.
- However, some special cases, for exarnple, infinite VP
- (15.13) I todd \ddagger ayry to go to Maharani.
- The meaning represeatation could be:
$\exists e, f, x \operatorname{Isa}(e$, Telling $) \wedge$ Isa(f, ©Going)
\wedge Teller $(e$, Speaker $) \wedge$ Tellee $(e, \operatorname{Harry}) \wedge \operatorname{ToldThing}(e, f)$
$\wedge \operatorname{Goer}(f, \operatorname{Harry}) \wedge \operatorname{Destination}(f, x)$
- Two things to note:
- It consists of two events, and
- One of the participants, Harry, plays a role in both of the two events.

Attachments for a Fragment of English

VPs: Infinite VPs

- A way to represent the semantic attachment of the verb, tell
$\lambda x, y \lambda z \exists e \operatorname{Isa}(e, T e l l i n g) \wedge \operatorname{Teller}(e, z) \wedge \operatorname{Tell}(e$, $x) \wedge$ ToldThing (e, y)
- Providing three semantic roles:
- a persorr deng the telling,
- a recipient of thetelling, and

- the proposition being cenveyed
- Problem:
- Harry is not available when the Going event is created within the infinite verb phrase.

Attachments for a Fragment of English

VPs: Infinite VPs

- Solution:

$$
\begin{aligned}
& V P \rightarrow \text { Verb NP VPto }\{\text { Verb.sem(NP.sem, VPto.sem) }\} \\
& V P t o \rightarrow \text { to } V P \text { Verb } N P\{V P . s e m\}
\end{aligned}
$$

$\mathrm{e}_{\mathrm{e}} \mathrm{e} \wedge \wedge$ ToldThing $(e, y$. variable $\left.) \wedge y(x)\right\}$

- The λ-variable x plays the role of the Tellee of the telling and the argument to the semantics of the infinitive, which is now contained as a λ-expression in the variable y.
- The expression $y(x)$ represents a λ-reduction that inserts Harry into the Going event as the Goer.
- The notation y.variable is analogous to the notation used for complexterms variables, and gives us access to the event variable representing Going event within the infinitive's meaning representation.

Attachments for a Fragment of English Prepositional Phrases

- At an abstract level, PPs serve two functions:
- They assert binary relations between their heads and the constituents to which they attached, and
- They signal arguments to cosstituents that have an aresument structure.
- We will conseder three places in the grammar where PP serve these roles:
- Modifiers of NPs
- Modifiers of VPs, and

Attachments for a Fragment of English PP: Nominal Modifier

- (15.14) A restaurant on Pearl
$\exists x$ Isa(x, Restaurant) \wedge On $(x$, Peaf) $)$
$N P \rightarrow$ Det Nominite
Nominal \rightarrow Nominal $P P \quad\{\lambda z$
Nominal.sem(z)^PP.sem(z)\}
$P P \rightarrow P N P \quad\{P . \operatorname{sem}(N P . s e m)\}$
$P \rightarrow o n \quad\{\lambda y \lambda x O n(x, y)\}$

Attachments for a Fragment of English PP: VP Modifier

- (Ex.) ate dinner in a hurry $V P \rightarrow V P P P$
- The meaningQẹpresentation of ate dinner $\lambda x \exists$ e Isa(e, Eating) 凤Eater $(e, x) \wedge \operatorname{Eaten}(e$, Dinner $)$

- The representation of the PPCe
$\lambda_{x} \operatorname{In}(x,<\exists h \operatorname{Hurry}(h)>)$
- The correct representation of the modified VP should contain the conjunction of the two
- With the Eating event variable filling the first argument slot of the In expression.
$V P \rightarrow V P P P\{\lambda y V P . \operatorname{sem}(y) \wedge P P . s e m(V P . s e m . v a r i a b l e)\}$
- The result of application
$\lambda y \exists e \operatorname{Isa}(e$, Eating $) \wedge \operatorname{Eater}(e, y) \wedge \operatorname{Eaten}(e, \operatorname{Dinner}) \wedge \operatorname{In}(e,<\exists h$ Hurry(h)>)

Non-Compositionality

- Unfortunately, there are lots of examples where the meaning (loosely defined) can't be derived from the meanings of the parts
- Idioms الأمثال

الالاعابة Jokes
النظاهر بالجهل Irony
السخرية Sarcasm
المجاز أو الاستعارة Metaphor
الكناية Metonymy

- الطلب غير المباشر indirect requests
\square Some Examples in Arabic !!

English Idioms

\square Kick the bucket, buy the farm, bite the bullet, run the show, bury the hatchet, etc...
\square Lots of these... constructions where the meaning of the whole is either

- Totally unrelated to the meanings of the parts (kick the bucket)
- Related in some opaque way (run the show)
- Kick the bucket: To die
- buy the farm: to be killed
- bite the bullet: get serious and do what needs to be done even though you don't want to do it
- run the show: manage the project
- bury the hatchet: stop arguing or fighting

Problems with Syntactic-Driven Semantics

\square Syntactic structures often don't fit semantic structures very well

- Important semantic elements often distributed very differently in trees for sentences that mean 'the same'
I like soup. Soup is what I like.
- Parse trees contain many structural elements not clearly important to making semantic distinctions
- Syntax driven semantic representations are sometimes odd

Alternatives?

\square Semantic Grammars
\square Information Extraction Techniques

- Next time

Student Presentation - Start next time

- Tuesday, May 8
- Saleh Al-Zaid - Language Model Based Arabic Word Segmentation
- Sunday, May 13
- Al-Elaiwi Moh'd - Diacritization: A Challenge to Arabic Treebank Annotation and Parsing
- Naif Al-Abdulhay - The Challenge Of Arabic For NLP/MT
- Abdul Rahman A1 Khaldi - Statistical Transliteration for EnglishArabic Cross

Student Presentation

- Tuesday, May 15
- Turki Bakodah - Building A Modern Standard Arabic Corpus
- Hassan S. Al-Ayesh - Stemming to improve translation lexicon creation form bitexts
- Saleh Y. Al-Hudail - A Hidden Markov Model - Based POS Tagger for Arabic

Student Presentation

- Sunday May 20
- Abbas Al-Julaih - An Ambiguity-Controlled Morphological Analyzer for Modern Standard Arabic Modeling
- AbdiRahman Daoud - Online Arabic Handwriting Recognition Using HMM
- Shaker Al-Anazi - How Do Search Engines Handle Arabic Queries?
- Tuesday, May 22
- Hussain AL-Ibrahem - Arabic Tokenization, Part-of-Speech Tagging
- Ahmed Bukhamsin - Hybrid Method for Tagging Arabic Text
- Al-Ansari, Naser - Light Stemming for Arabic Information Retrieval

Student Presentation Evaluation

- Attendance
- Student evaluation is a must (including Youself)
- On time - no make up - 10\%
\square Fill after attending the presentation
- Honestly evaluate the presentation

Student Presentation Evaluation

- Improve some needed skills in real life work?
- Helps the instructor
\square Fill a grade out of 10 for each item
- Do not fill unattended presentation
- Do evaluate your presentation
- Partial grades to be deducted for unfilled evaluation

Student Presentation Evaluation

Items - Each out of 10

- Introduction
- Clarity
- Knowledge Depth
- Content
- Delivery
- Preparation
- Organization
- Language Usage
- Result \& Conclusion
- Question \& Answer
- Over all Evaluation

22-2 How To Give Good Presentation

Thank you

هالسلام عليكم ورحمة الله

