Lexicalized and Probabilistic Parsing - Part 2

ICS 482 Natural Language Processing
Lecture 15: Lexicalized and Probabilistic Parsing - Part 2

Husni Al-Muhtaseb

بسم الله الرحمن الرحيم
 ICS 482 Natural Language Processing

Lecture 15: Lexicalized and Probabilistic Parsing - Part 2

Husni Al-Muhtaseb

Acknowledgment

These slides were adapted from presentations of the Authors of the book
SPEECH and LANGUAGE PROCESSING:
An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition
and some modifications from presentations found in the WEB by several scholars including the following

NLP Credits and Acknowledgment

If your name is missing please contact me muhtaseb
At
Kfupm.
Edu.
sa

NLP Credits and Acknowledgment

Husni Al-Muhtaseb
James Martin
Jim Martin
Dan Jurafsky
Sandiway Fong
Song young in
Paula Matuszek
Mary-Angela Papalaskari
Dick Crouch
Tracy Kin
L. Venkata Subramaniam
Martin Volk
Bruce R. Maxim
Jan Hajič
Srinath Srinivasa
Simeon Ntafos
Paolo Pirjanian
Ricardo Vilalta
Tom Lenaerts

Heshaam Feili
Björn Gambäck
Christian Korthals
Thomas G. Dietterich
Devika Subramanian
Duminda Wijesekera
Lee McCluskey
David J. Kriegman
Kathleen McKeown
Michael J. Ciaraldi
David Finkel
Min-Yen Kan
Andreas Geyer-Schulz
Franz J. Kurfess
Tim Finin
Nadjet Bouayad
Kathy McCoy
Hans Uszkoreit
Azadeh Maghsoodi

Khurshid Ahmad
Staffan Larsson
Robert Wilensky
Feiyu Xu
Jakub Piskorski
Rohini Srihari
Mark Sanderson
Andrew Elks
Marc Davis
Ray Larson
Jimmy Lin
Marti Hearst
Andrew McCallum
Nick Kushmerick
Mark Craven
Chia-Hui Chang
Diana Maynard James Allan

Martha Palmer julia hirschberg Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-Grubbs
Thomas K Harris
John Hutchins
Alexandros
Potamianos
Mike Rosner
Latifa Al-Sulaiti
Giorgio Satta
Jerry R. Hobbs
Christopher Manning
Hinrich Schütze
Alexander Gelbukh
Gina-Anne Levow
Guitao Gao
Qing Ma
Zeynep Altan

Previous Lectures

- Introduction and Phases of an NLP system
\square NLP Applications - Chatting with Alice
- Finite State Automata \& Regular Expressions \& languages
- Morphology: Inflectional \& Derivational
- Parsing and Finite State Transducers
- Stemming \& Porter Stemmer
- Statistical NLP - Language Modeling
- N Grams
- Smoothing and NGram: Add-one \& Witten-Bell
- Parts of Speech - Arabic Parts of Speech
- Syntax: Context Free Grammar (CFG) \& Parsing
\square Parsing: Earley's Algorithm
- Probabilistic Parsing

Today's Lecture

- Lexicalized and Probabilistic Parsing
- Administration: Previous Assignments
- Probabilistic CYK (Cocke-Younger-Kasami)
- Dependency Grammar

Assignments

- WebCt visit

$? ? ?$

Browse For Folder

الفيروز آبادي يستعملونه منبطة فأعجزتهم أشكى، جذر قصدت خضخض كثيء．حس صقن ذهب سؤك؟ إظل غثث ثط طف！ضظغ ئع．＂Test this＂word＂please＂تجربة＂تجريب（اختبار）أولي．

｜vy｜	ــع．				
｜val	Test	－	التعداد	الكلمة	
1771	this	－	ケとv9を		1
1771	ضظغ	－	｜vV｜	يستعلونه	r
｜vv1	غث¢	－	｜vV1	أشكى،	r
｜vV｜	ث	－	｜vV1	سؤك	ε
｜ve｜	طف！	－	｜vy）	الفيروزآبادي	\bigcirc
｜vV｜	（اختبار）	－	｜vV1	إظل	7
｜vV｜	أولي．	－	Ivy）	تجريب	v
｜VV｜		－	｜vV1	اختبار	\wedge
｜VV｜	تجريب	－	｜vys	حس	9
｜VV1	＂word＂	．	｜vys	طف	1.
1771	please！．	－	｜val	this	11
1771	تجربة＂＂	－	1771	please	11
｜vV1	أشكى،	－	1771	please	12
｜vV｜	جذر	－	1771	أولي	1%
｜vV｜	قصدت	－	｜ves	ثط	1%
｜vV｜	فأعجزتهم	－	｜val	غثث	10
｜vV｜	الفيروز آبادي	－	｜vy）	تجربة	17
｜vV｜	يستعملونه	－	｜v91	word	17
｜vV｜	منبطحة	－	1771	ضظغ	11
｜VV｜	ذهب	－	Ivys	خضخ	19
｜VV｜	سؤك؟	－	｜vys	قصدت	r．
｜vV｜	إظل	－	｜vV1	Test	21
｜VV｜	صقن	－	1771		rr
｜VV｜	خضخ	－	1vy）		rr
｜VV｜	كثيء．		｜va｜		
｜VV｜	حس	－	｜vy）	فأعجزتهم	ro
		－	｜va｜	منبطحة	ry
		－	｜va｜	جذر	rv

الفيروز آبادي	IVV1
يستعملونه	｜vV｜
منبطحة	｜vV1
فأعجزنهم	｜vV｜
أشكى،	｜vy）
جذر	｜vV1
قصدت	｜vV1
خضخ	｜vV｜
كشيء	｜vV｜
إظل	IVV1
حس	｜vV1
صقن	｜vV1
ذهب	｜vV1
سؤك	｜vV1
10	｜vV1
غثث	｜vV1
ثط	｜vV｜
طف	｜vV｜
ضظغ	｜v91
this	1771
Test	1771
تجربة＂＂	1891
＂word＂	1771
please	1771
تجريب	IVV1
اختبار	｜vV1
أولي	｜vV1
	｜VVI

What should we do?

\square Suggestions

Probabilistic CFGs

- The probabilistic model
- Assigning probabilities to parse trees
\square Getting the probabilities for the model
- Parsing with probabilities
- Slight modification to dynamic programming approach
- Task is to find the max probability tree for an input

Getting the Probabilities

ㅁ From an annotated database (a treebank)
\square Learned from a corpus

Assumptions

\square We're assuming that there is a grammar to be used to parse with.
\square We're assuming the existence of a large robust dictionary with parts of speech
\square We're assuming the ability to parse (i.e. a parser)

- Given all that... we can parse probabilistically

Typical Approach

- Bottom-up dynamic programming approach
- Assign probabilities to constituents as they are completed and placed in the table
- Use the max probability for each constituent going up

Max probability

- Say we're talking about a final part of a parse
- $\mathrm{S}_{0} \rightarrow \mathrm{NP}_{\mathrm{i}} \mathrm{VP}_{\mathrm{j}}$

The probability of the S is...
$\mathrm{P}(\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}) * \mathrm{P}(\mathrm{NP}) * \mathrm{P}(\mathrm{VP})$

The green stuff is already known. We're doing bottom-up parsing

Max

- The $\mathrm{P}(\mathrm{NP})$ is known.
\square What if there are multiple NPs for the span of text in question (0 to i)?
- Take the max (Why?)
\square Does not mean that other kinds of constituents for the same span are ignored (i.e. they might be in the solution)

Probabilistic Parsing

- Probabilistic CYK (Cocke-Younger-Kasami) algorithm for parsing PCFG
- Bottom-up dynamic programming algorithm
- Assume PCFG is in Chomsky Normal Form (production is either $\mathrm{A} \rightarrow \mathrm{BC}$ or $\mathrm{A} \rightarrow a$)

Chomsky Normal Form (CNF)

All rules have form:
$A \rightarrow B C$
and
$A \rightarrow a$ I

Non-Terminal Non-Termina

Examples:

$$
\begin{array}{lc}
S \rightarrow A S & S \rightarrow A S \\
S \rightarrow a & S \rightarrow A A S \\
A \rightarrow S A & A \rightarrow S A \\
A \rightarrow b & A \rightarrow a a \\
\text { Chomsky } & \text { Not Chomsky } \\
\text { Normal Form } & \text { Normal Form }
\end{array}
$$

Observations

- Chomsky normal forms are good for parsing and proving theorems
- It is possible to find the Chomsky normal form of any context-free grammar

Probabilistic CYK Parsing of PCFGs

- CYK Algorithm: bottom-up parser
- Input:
- A Chomsky normal form PCFG, $\mathrm{G}=(\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S}, \mathrm{D})$ Assume that the N non-terminals have indices $1,2, \ldots$, $|\mathrm{N}|$, and the start symbol S has index 1
- n words w_{l}, \ldots, w_{n}
- Data Structure:
- A dynamic programming array $\pi[i, j, a]$ holds the maximum probability for a constituent with non-terminal index a spanning words i..j.
- Output:
- The maximum probability parse $\pi[1, n, 1]$

Base Case

\square CYK fills out $\pi[i, j, a]$ by induction

- Base case
- Input strings with length $=1$ (individual words w_{i})
- In CNF, the probability of a given non-terminal A expanding to a single word w_{i} must come only from the rule $\mathrm{A} \rightarrow w_{i} i . \mathrm{e}$., $\mathrm{P}\left(\mathrm{A} \rightarrow w_{i}\right)$

Probabilistic CYK Algorithm [Corrected]

Function CYK(words, grammar)
return the most probable parse and its probability
For $\mathrm{i} \leftarrow 1$ to num_words
for $a \leftarrow 1$ to num_nonterminals
If $\left(A \rightarrow W_{i}\right)$ is in grammar then $\pi[i, i, a] \leftarrow P\left(A \rightarrow W_{i}\right)$
For span $\leftarrow 2$ to num_words
For begin $\leftarrow 1$ to num_words - span +1
end \leftarrow begin + span -1
For $m \leftarrow$ begin to end-1
For $a \leftarrow 1$ to num_nonterminals
For $b \leftarrow 1$ to num_nonterminals
For $c \leftarrow 1$ to num_nonterminals prob $\leftarrow \pi[$ begin, $m, b] \times \pi[m+1$, end, $c] \times P(A \rightarrow B C)$ If (prob $>\pi[$ begin, end, a]) then $\pi[$ begin, end, a] = prob back[begin, end, a] $=\{m, b, c\}$
Return build_tree(back[1, num_words, 1]), $\pi[1$, num_words, 1]

The CУK Membership Algorithm

Input:

- Grammar G in Chomsky Normal Form
- String w

Output:
find if $w \in L(G)$

The Algorithm

Input example:

- Grammar G:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow B B \\
& A \rightarrow a \\
& B \rightarrow A B \\
& B \rightarrow b
\end{aligned}
$$

- String : w aabbb

$a a b b b$

All substrings of length 1	a	a	b	b	b
All substrings of length 2	$a a$	$a b$	$b b$	$b b$	
All substrings of length 3	$a a b$	$a b b$	$b b b$		
All substrings of length 4	$a a b b$	$a b b b$			

All substrings of length $5 a a b b b$

$$
\begin{array}{lllll}
\hline S \rightarrow A B & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} \\
A \rightarrow B B & \mathrm{~A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} \\
\cline { 2 - 5 } A \rightarrow a & \mathrm{aa} & \mathrm{ab} & \mathrm{bb} & \mathrm{bb} \\
B \rightarrow A B & & & & \\
B \rightarrow b & \mathrm{aab} & \mathrm{abb} & \mathrm{bbb} & \\
& & \mathrm{aabb} & \mathrm{abbb} & \\
& & & & \\
& \text { aabbb } & & &
\end{array}
$$

$S \rightarrow A B$

$\overline{A \rightarrow B B}$

a	a	b	b	b
A	A	B	B	B
$a a$	$a b$	$b b$	$b b$	
	S, B	A	A	
$a a b$	$a b b$	$b b b$		

$B \rightarrow b$
aabb abbb
aabbb

$S \rightarrow A B$	a	a	b	b	b
	A	A	B	B	B
$A \rightarrow B B$	aa	$a b$	bb	bb	
$\begin{aligned} & A \rightarrow a \\ & B \rightarrow A B \end{aligned}$		S, B	A	A	
	$a \mathrm{ab}$	$a b b$	bbb		
	S,B	A	S, B		
$B \rightarrow b$	$a \mathrm{abb}$	$a b b b$			
	A	S, B			
	$a a b b b$ $\text { (S), } B$	There	ore: a	$b b b$	$\in L(G)$

CYK Algorithm for Parsing CFG

IDEA: For each substring of a given input x, find all variables which can derive the substring. Once these have been found, telling which variables generate x becomes a simple matter of looking at the grammar, since it's in Chomsky normal form

CYK Example

ㅁ $\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\square \mathrm{VP} \rightarrow \mathrm{VNP}$
$\square \mathrm{NP} \rightarrow \mathrm{NP}$ PP

- VP \rightarrow VP PP
- $\mathrm{PP} \rightarrow \mathrm{PNP}$
\square NP \rightarrow Ahmad \mid Ali \mid Hail
- $\mathrm{V} \rightarrow$ called
- $\mathrm{P} \rightarrow$ from

Example: Ahmad called Ali from Hail

CYK Example

${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

${ }_{0}$ Ahmad $_{1}$ called ${ }_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at	$1:$	$2:$	$3:$	$4:$	$5:$
start at					

$\mathrm{S} \rightarrow \mathrm{NP}$ VP $\quad \mathrm{VP} \rightarrow \mathrm{VNP} \quad \mathrm{NP} \rightarrow \mathrm{NP}$ PP $\quad \mathrm{VP} \rightarrow \mathrm{VP}$ PP $\quad \mathrm{PP} \rightarrow \mathrm{PNP}$
$\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\mathrm{P} \rightarrow$ from

${ }_{0}$ Ahmad $_{1}$ called ${ }_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

	1 :	2 :	3:	4:	5:
0 :	$\underset{(\text { (Ahmad) }}{\mathbf{N P}}$	${ }_{\text {Almadealald }}$	${ }_{\text {Almadealld Ai }}$	Almaxatald An f fom	Atmadealld Al fiom tail
1:		$\underset{\text { (Called) }}{\mathbf{V}}$	caldedii	calld AAf fom	calld A A f fom tail
2 :			$\begin{gathered} \mathbf{N P} \\ \text { (Ali) } \end{gathered}$	Alf fom	Anfifom tail
3:				$\begin{gathered} \mathbf{P} \\ (\text { From }) \end{gathered}$	Foom hail
4:					$\begin{gathered} \mathbf{N P} \\ \text { (Hail) } \end{gathered}$
$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} \quad \mathrm{VP} \rightarrow \mathrm{VNP} \mathrm{NP} \rightarrow \mathrm{NP}$ PP $\quad \mathrm{VP} \rightarrow \mathrm{VP}$ $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called ${ }_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3 :	4:	5:
0 :	$\begin{gathered} \mathbf{N P} \\ \text { (Ahmad) } \end{gathered}$	$\underset{\text { Atmandaladed }}{\mathbf{X}}$	Ahmad called Ai	Ahmad called Ai from	Ahmad called Alif foom Hail
1:		$\underset{(\text { Called) }}{\mathbf{V}}$	called Ai	called Ali foom	called Ali foom Hail
2 :			$\begin{aligned} & \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	Ali from	Ali fom Hail
3:				$\underset{\text { (From) }}{\mathbf{P}}$	From Hail
4:					$\begin{gathered} \mathbf{N P} \\ \text { (Hail) } \end{gathered}$
$\mathrm{S} \rightarrow \mathrm{NP}$ VP $\quad \mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{NP} \rightarrow \mathrm{NP}$ PP $\quad \mathrm{VP} \rightarrow \mathrm{VP}$ $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called ${ }_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

	1 :	2 :	3:	4:	5:
0 :	$\begin{gathered} \mathbf{N P} \\ (\text { Ahmad) } \end{gathered}$		${ }_{\text {Almadealald Ai }}$	${ }_{\text {Almadelalde Afi fom }}$	Atmadealled Af fom tiai
1:		$\underset{\text { (Called) }}{\mathbf{V}}$	$\left.\right\|_{\text {calld } A I i}$	${ }_{\text {calded A A firm }}$	calld Afif fom tial
2:			$\begin{aligned} & { }^{\downarrow} \mathbf{N P} \\ & (\text { Ali }) \end{aligned}$	Alf fom	Aif fom tail
3:				$\begin{gathered} \mathbf{P} \\ (\text { (From) }) \\ \hline \end{gathered}$	From tail
4:					$\underset{\text { (Hail) }}{\mathbf{N P}}$

${ }_{0}$ Ahmad $_{1}$ called ${ }_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3 :	4:	5:
0 :	$\begin{gathered} \mathbf{N P} \\ (\text { Ahmad) } \end{gathered}$	$\underset{\text { Altanadelled }}{\mathbf{X}}$	Almad called Ali	Ahmad called Alif fom	Almad called Alif fom Hail
1:		$\underset{\text { (Called) }}{\mathbf{V}}$		called Alif fom	called Ali fom Hail
2:			${ }^{\downarrow}$ NP (Ali)	$\underset{\text { Ali fom }}{\mathbf{X}}$	Ali fom Hail
3:				$\underset{\text { (From) }}{\mathbf{P}}$	From Hail
4:					$\begin{aligned} & \text { NP } \\ & \text { (Hail) } \end{aligned}$
$\mathrm{S} \rightarrow \mathrm{NP}$ VP $\quad \mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP} \quad \mathrm{NP} \rightarrow \mathrm{NP}$ PP $\quad \mathrm{VP} \rightarrow$ $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called ${ }_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3:	4:	5:
0 :	$\begin{gathered} \mathbf{N P} \\ (\text { Ahmad) } \end{gathered}$	$\underset{\text { Ammandaladed }}{\mathbf{X}}$	Ammad called Ali	Almad called Ali fom	Atmad alced Alif fom Hail
1:		$\stackrel{\mathbf{V}}{\text { (Called) }}$		called Alif fom	called Ali foom Hail
2 :			${ }^{\downarrow}$ NP (Ali)	$\underset{\text { Ali from }}{\mathbf{X}}$	Alifom Hail
3:				$\underset{\text { (From) }}{\mathbf{P}}$	
4:					$\begin{aligned} & \mathbf{N P} \\ & \text { (Hail) } \end{aligned}$
S \rightarrow NP VP VP \rightarrow V NP NP \rightarrow NP PP VP \rightarrow $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called ${ }_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

	1 :	2 :	3:	4:	5:
0 :	$\underset{(\text { Ahmad })}{\mathbf{N P}}$		$\underset{\text { Anmpd called Ali }}{\mathbf{S}}$	Ahmad called Alif fom	Atmad alced Alif fom Hail
1 :		$\underset{(\text { Called) }}{\mathbf{V}}$	VP $\text { called } \mathrm{Al}$	called Ali foom	called Ali fom Hail
2 :			$\begin{aligned} & \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	\mathbf{X}	Ali fom Hail
3 3:				$\begin{gathered} \mathbf{P} \\ (\text { From }) \end{gathered}$	$\mathbf{P P}$ From Hail
4:					$\begin{aligned} & \mathbf{N P} \\ & \text { (Hail) } \end{aligned}$
$\mathrm{S} \rightarrow \mathrm{NP}$ VP $\quad \mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{NP} \rightarrow \mathrm{NP}$ PP \quad VP \rightarrow $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3:	4:	5:
0 :	$\underset{(\text { Ahmad })}{\mathbf{N P}}$	X	$\underset{\text { Ammed called Ai }}{\mathbf{S}}$	Atmad alced Alif fom	Ahmad called Ali fom Hail
1:		$\stackrel{\mathbf{V}}{(\text { Called) }}$	VP	X called Ali from	called Ali foom Hail
2:			$\begin{aligned} & \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	$\underset{\text { Ali from }}{\mathbf{X}}$	Ali fom Hail
3:				$\underset{(\text { From })}{\mathbf{P}}$	$\mathbf{P P}$
4:					$\begin{gathered} \text { NP } \\ \text { (Hail) } \end{gathered}$
$\mathrm{S} \rightarrow \mathrm{NP}$ VP $\quad \mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{NP} \rightarrow \mathrm{NP}$ PP $\quad \mathrm{VP} \rightarrow$ $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3:	4:	5:
0 :	$\underset{(\text { Ahmad })}{\mathbf{N P}}$	X	$\underset{\text { Ampldalled Ai }}{\mathbf{S}}$	Almad called Ali fom	Almmad called Ali fom Hail
1:		V (Called)	VP	$\underset{\text { called Ali foom }}{\mathbf{X}}$	called Alif foom Hail
2:			$\begin{aligned} & \hline \mathbf{N P} \\ & \text { (Ali) } \\ & \hline \end{aligned}$	$\overline{\mathrm{Al}} \overline{\mathrm{X}}$	$\underbrace{\text { Nail }}_{\text {Afom }}$
3:				$\underset{(\text { From })}{\mathbf{P}}$	PP
4:					$\begin{gathered} \mathbf{N P} \\ \text { (Hail) } \end{gathered}$
$\mathrm{S} \rightarrow \mathrm{NP}$ VP $\quad \mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{NP} \rightarrow \mathrm{NP}$ PP $\quad \mathrm{VP} \rightarrow$ $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at $1:$ $2:$ $3:$ $4:$ $5:$ start at
$0:$

${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	$1:$	2 :	3:	4:	5:
0 :	$\begin{gathered} \mathbf{N P} \\ (\text { Ahmad }) \end{gathered}$	X	S Ahmad called Ali	X Ahmad called Ali from	Almad called Ali fom Hail
1:		$\underset{\text { (Called) }}{\mathbf{V}}$	$\underset{\text { called Ali }}{\text { VP }}$	$\underset{\text { calld Alif foo }}{\mathrm{X}}$	Valled Alif fom Hail
2:			$\begin{aligned} & \hline \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	$\underset{\text { Ali from }}{\mathbf{X}}$	$\underset{\text { Ali from Hail }}{\mathbf{N P}}$
3 :				$\begin{gathered} \mathbf{P} \\ (\text { From }) \end{gathered}$	$\underset{\text { Foon tail }}{\mathbf{P P}}$
4:					$\begin{gathered} \mathbf{N P} \\ \text { (Hail) } \end{gathered}$
S \rightarrow NP VP \quad VP \rightarrow VNP NP \rightarrow NP PP \quad VP \rightarrow $\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

${ }_{\text {start at }}^{\text {ent }}$	${ }^{1}$	${ }^{2}$	${ }^{3}$	4 :	$5:$
0:	$\underset{\text { AP }}{\substack{\text { Almat }}}$	x	S	${ }^{\text {a }}$	man
1:		$\underset{\text { (Callede) }}{\mathbf{v}}$	$\underset{\substack{\text { vemem }}}{\text { ve }}$	${ }_{\text {a }}^{\text {a }}$	${ }_{\sim}^{\mathbf{V P}_{1}}$
2:			$\underset{\text { Nefiil }}{\text { N }}$	${ }_{\text {Nutimer }}$	
3:				$\underset{(\underset{y}{(\text { Fron) }}}{\mathbf{p}}$	PP
4:					$\begin{gathered} \text { NP } \\ (\text { Hail) } \end{gathered}$

${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3:	4:	5:
0 :	$\begin{gathered} \mathbf{N P} \\ (\text { Ahmad) } \end{gathered}$	X	S	X Ahmad called Ali from	Almmad called Ali foom Hail
1:		$\underset{\text { (Called) }}{\stackrel{\rightharpoonup}{\mathbf{V}}}$	$\overline{\mathrm{VP}}$		$\begin{gathered} \hline \mathbf{V P}_{\mathbf{2}} \\ \mathbf{V P}_{\mathbf{1}} \\ \text { called Ali foon Hail } \end{gathered}$
2 :			$\begin{aligned} & \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	\mathbf{X}	$\underset{\text { Ali foom Hail }}{\mathbf{N P}}$
3:				$\underset{(\text { From })}{\mathbf{P}}$	$\mathbf{P P}$
$\begin{aligned} & 4: \\ & S \rightarrow N P V P \end{aligned}$	$\mathrm{VP} \rightarrow$	NP NP	NP PP VP	VP PP PP	$\begin{array}{cc} \hline & \mathbf{N P} \\ \text { NP } & \text { (Hail) } \\ \hline \end{array}$

$\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from
19 March 2008
${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3 :	4:	5:
0 :	$\underset{(\mathrm{Ahmad})}{\mathbf{N P}}{ }^{〔}$	X	S	X Ahmad called Ali from	${ }_{\text {Almadelalled Ali from Hail }}^{\mathbf{S}}$
1:		$\underset{\text { (Called) }}{\mathbf{V}}$	VP	$\underset{\text { called Ali foom }}{\mathbf{X}}$	$\begin{aligned} & \mathbf{V P}_{\mathbf{2}} \\ & { }^{\mathrm{v}} \mathbf{V P}_{1} \\ & \text { called Al fiom Hail } \end{aligned}$
2:			$\begin{aligned} & \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	$\underset{\text { Ali foom }}{\mathbf{X}}$	NP
3:				$\underset{\text { (From) }}{\mathbf{P}}$	PP
$\begin{aligned} & 4: \\ & S \rightarrow \mathrm{NP} \text { VP } \end{aligned}$	$\mathrm{VP} \rightarrow$	NP NP	NP PP V	VP PP PP	$\begin{array}{cc} & \mathbf{N P} \\ \text { JP } & \text { (Hail) } \\ \hline \end{array}$

19 March 2008
${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3:	4:	5:
0 :	$\underset{(\mathrm{Ahmad})}{\mathbf{N P}}{ }^{\leftarrow}$	X	$\underset{\text { Alimadealled Ai }}{\mathbf{S}}$	X Ahmad called Ali from	${ }_{\text {Almadealled Ali }} \mathbf{S}_{\mathbf{1}}$
1:		$\underset{\text { (Called) }}{\mathbf{V}}$	VP	$\underset{\text { called Ali foom }}{\mathbf{X}}$	$\begin{gathered} \mathbf{V P}_{\mathbf{2}} \\ { }^{\text {called Ali foom Hail }} \\ \mathbf{V P}_{\mathbf{1}} \end{gathered}$
2:			$\begin{aligned} & \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	\mathbf{X}	$\underset{\text { Ali foom Hail }}{\mathbf{N P}}$
3:				$\underset{\text { (From) }}{\mathbf{P}}$	$\mathbf{P P}$
$\begin{aligned} & 4: \\ & S \rightarrow N P \text { VP } \end{aligned}$	$\mathrm{VP} \rightarrow$	NP NP	NP PP VP	VP PP PP	$\begin{gathered} \mathbf{N P} \\ \mathrm{JP} \\ \hline \end{gathered}$

19 March 2008
${ }_{0}$ Ahmad $_{1}$ called $_{2}$ Ali $_{3}$ from ${ }_{4}$ Hail $_{5}$

end at start at	1 :	2 :	3:	4:	5:
0 :	$\mathbf{N P}^{\longleftarrow}$ (Ahmad)	X	$\underset{A}{A \text { Amadedelled } A i l}$	$\underset{\text { Almadealled Ai f foom }}{\text { X }}$	$\underset{\text { Almad called Ali f fom Hail }}{\mathbf{S}_{\mathbf{1}}} \mathbf{S}_{\mathbf{2}}$
1:		$\stackrel{\mathbf{V}}{(\text { Called) }}$	VP	$\underset{\text { called Ali foom }}{\mathbf{X}}$	$\mathbf{V P}_{\mathbf{2}}{ }^{\downarrow}$
2 :			$\begin{aligned} & \hline \mathbf{N P} \\ & \text { (Ali) } \end{aligned}$	$\underset{\text { Ali from }}{\mathbf{X}}$	$\underset{\text { Ali f fom Hail }}{\mathbf{N P}}$
3:				$\underset{\text { (From) }}{\mathbf{P}}$	PP
$\begin{array}{\|l\|} \hline 4: \\ S \rightarrow \text { NP VP } \end{array}$	$\mathrm{VP} \rightarrow \mathrm{V}$	$\mathrm{NP} \rightarrow$	$\mathrm{VP} \rightarrow \mathrm{VP}$	PP PP \rightarrow P NP	$\begin{gathered} \text { NP } \\ \text { (Hail) } \end{gathered}$
$\mathrm{NP} \rightarrow$ Ahmad \mid Ali \mid Hail $\quad \mathrm{V} \rightarrow$ called $\quad \mathrm{P} \rightarrow$ from 19 March 2008					

Same Example: We might see it in different format

				NP
$\mathrm{S} \rightarrow \mathrm{NP}$ VP $\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$ $\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP}$ $\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$				
$\mathrm{PP} \rightarrow$ P NP				
NP \rightarrow Ahmad \mid Ali \mid				
Hail				
$\mathrm{V} \rightarrow$ called				
$\mathrm{P} \rightarrow$ from				

Example

S_{1}	VP_{1}	NP	PP	NP
S_{2}	VP_{2}			
X	X	X	P	Hail
S	VP	NP	from	
X	V	Ali		
NP	called			
Ahmad				

Problems with PCFGs

- The probability model we're using is just based on the rules in the derivation...
- Doesn't take into account where in the derivation a rule is used
- Doesn't use the words in any real way
- In PCFGs we make a number of independence assumptions.
- Context: Humans make wide use of context
- Context of who we are talking to, where we are, prior context of the conversation.
- Prior discourse context
\square We need to incorporate these sources of information to build better parsers than PCFGs.

Problems with PCFG

- Lack of sensitivity to words
- Attachment ambiguity
- Coordination ambiguity
- [[dogs in houses] and cats]]
- dogs in [[houses] and [cats]]

Problems with PCFG

Same set of rules used and hence the same probability without considering individual words

Structural context

- Assumption
- Probabilities are context-free

Ex: $\mathrm{P}(\mathrm{NP})$ is independent of where the NP is in the tree

$$
\begin{array}{|lcc}
\text { Expansion } & \text { \% as Subj } & \% \text { as Obj } \\
\mathrm{NP} \rightarrow \text { PRP } & 13.7 \% & 2.1 \% \\
\mathrm{NP} \rightarrow \text { DT NN } & 5.6 \% & 4.6 \% \\
\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP} & 5.6 \% & 14.1 \%
\end{array}
$$

- Pronouns, proper names and definite NPs : Subj
- NPs containing post-head modifiers and subcategorizes nouns : Obj
- Need better probabilistic parser!

Lexicalization

- Frequency of common Sub-categorization frames

Local tree	come	take	think	want
$\mathrm{VP} \rightarrow \mathrm{V}$	9.5%	2.6%	4.6%	5.7%
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	1.1%	32.1%	0.2%	13.9%
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{PP}$	34.5%	3.1%	7.1%	0.3%

Solution

- Add lexical dependencies to the scheme...
- Infiltrate the influence of particular words into the probabilities in the derivation
- I.e. Condition on the actual words in the right way
- All the words? No, only the right ones.
- Structural Context: Certain types have locational preferences in the parse tree.

Heads

\square To do that we're going to make use of the notion of the head of a phrase

- The head of an NP is its noun
- The head of a VP is its verb
- The head of a PP is its preposition
(its really more complicated than that)

Probabilistic Lexicalized CFGs

\square Head child (underlined):

- $\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\square \mathrm{VP} \rightarrow \underline{\mathrm{VBD}} \mathrm{NP}$
- VP \rightarrow VBD NP PP
- $\mathrm{PP} \rightarrow \underline{\mathrm{P}} \mathrm{NP}$
\square NP $\rightarrow \underline{N N S}$
\square NP \rightarrow DT NN
- NP \rightarrow NP PP

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	$+, \%, \&$
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3 sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	\#	Pound sign	\#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	"	Right quote	(' or '')
PP	Personal pronoun	I, you, he	(Left parenthesis	$([,(,, 2,<)$
PP\$	Possessive pronoun	your; one's)	Right parenthesis	(],), \}, >)
RB	Adverb	quickly, never	,	Comma	
RBR	Adverb, comparative	faster		Sentence-final punc	(. ! ?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	$(: ; \ldots-)$
RP	Particle	up, off			

Example (right): Attribute grammar

Example (wrong): Attribute grammar

Attribute grammar

Probabilities?

- We used to have
- VP \rightarrow V NP PP $p(r \mid \mathrm{VP})$
- That's the count of this rule VP \rightarrow V NP PP divided by the number of VPs in a treebank
- Now we have
- $\mathrm{VP}($ dumped $) \rightarrow \mathrm{V}$ (dumped) NP (sacks) PP (in)
- $p\left(r \mid \mathrm{VP}^{\wedge}\right.$ dumped is the verb ${ }^{\wedge}$ sacks is the head of the $\mathrm{NP}{ }^{\wedge}$ in is the head of the PP$)$
- Not likely to have significant counts in any treebank

Sub-categorization

\square Condition particular VP rules on their head... so $r: \mathrm{VP} \rightarrow \mathrm{V}$ NP PP $p(r \mid \mathrm{VP})$
Becomes

$$
p(r \mid \mathrm{VP} \wedge \text { dumped })
$$

What's the count?
How many times was this rule used with dump, divided by the number of VPs that dump appears in total

Preferences

\square The issue here is the attachment of the PP. So the affinities we care about are the ones between dumped and into vs. sacks and into.
\square So count the places where dumped is the head of a constituent that has a PP daughter with into as its head and normalize
\square Vs. the situation where sacks is a constituent with into as the head of a PP daughter.

So We Can Solve the Dumped Sacks Problem

From the Brown corpus:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{VP} \rightarrow \mathrm{VBD} \mathrm{NP} \operatorname{PP} \mid \mathrm{VP}, \text { dumped })=.67 \\
& \mathrm{p}(\mathrm{VP} \rightarrow \mathrm{VBD} \mathrm{NP} \mid \mathrm{VP}, \text { dumped })=0 \\
& \mathrm{p}(\text { into } \mid \mathrm{PP}, \text { dumped })=.22 \\
& \mathrm{p}(\text { into } \mid \mathrm{PP}, \text { sacks })=0
\end{aligned}
$$

So, the contribution of this part of the parse to the total scores for the two candidates is:
[dumped into]
$.67 \times .22=.147$
[sacks into]
$0 \times 0 \quad=0$

Preferences (2)

- Consider the VPs
- Ate spaghetti with gusto s
- Ate spaghetti with marinara -
- The affinity of gusto for eat is much larger than its affinity for spaghetti
- On the other hand, the affinity of marinara for spaghetti is much higher than its affinity for ate

Preferences (2)

- Note the relationship here is more distant and doesn't involve a headword since gusto and marinara aren't the heads of the PPs.

Ate spaghetti with gusto

Ate spaghetti with marinara

Dependency Grammars

- Based purely on lexical dependency
(binary relations between words)
- Constituents and phrase-structure rules have no fundamental role

Key
Main: beginning of sentence Subj: syntactic subject
Dat: indirect object
Obj: direct object
Attr: pre-modifying nominal
Pnct: punctuation mark

Dependency Grammar Example

Depen dency	Description
subj	syntactic subject
obj	direct object
dat	indirect object
tmp	temporal adverbials
loc	location adverbials (possessives, etc.)
attr	nominal post-modifiers (prepositional phrases, etc.)
mod	Complement of a preposition
pcomp	Predicate nominal
comp	

Grammars Dependency

Dependency	Description
subj	syntactic subject
obj	direct object
dat	indirect object
tmp	temporal adverbials
loc	location adverbials
attr	Pre-modifying nominal (possessives, etc.)
mod	nominal post-modifiers (prepositional phrases, etc.)
pcomp	Complement of a preposition
comp	Predicate nominal

Thank you

هالسلام عليكم ورحمة اله

