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ABSTRACT 
 
The absence of the vowelization marks from the modern Arabic text represents a major 
obstacle in machine translation and other text understanding applications. In this paper we 
present a formulation of the problem of automatic generation of the Arabic diacritic marks 
from unvoweled text using a Hidden Markov Model (HMM) approach. The model considers 
the word sequence of unvoweled Arabic text as an observation sequence, and the possible 
diacritized expressions of the words as hidden states.  The optimal sequence of diacritized 
words (or states) is then obtained efficiently using a dynamic programming algorithm. We 
present the basic algorithm and its evaluation, and discuss its limitations as well as various 
ramifications for improving its performance. 
 

1. INTRODUCTION 
 

One of the problems facing computer processing of Arabic text is the absence of the 
diacritical marks in the modern printed text. Native Arabic readers can identify the proper 
vocalization of the text, but when it comes to computer processing, the computer still needs 
to be provided with algorithms to mimic the human ability to identify the proper vocalization 
of the text. Such tool is an essential infrastructure for many applications as Text-to-Speech 
[1,2], and Automatic Translation [3,4].  

   Arabic writing system consists of 36 letter forms which represent the Arabic consonants. 
These are:  ظ , ط , ض , ص , ش , س , ز , ر , ذ , د , خ , ح , ج , ث , ت , ب , ة , ى , ء , ؤ  ,  ئ , إ , أ , آ , ا ,

و, هـ , ن , م , ل , ك , ق , ف , غ , ع    and  ي. Each Arabic letter represents a single consonant with 
some exceptions: ؤ, ئ , إ , أ     and  ء represent the glottal stop, but are written in different forms 
depending on the consonant position in the word and its adjacent phonemes. Almost all 
modern Arabic texts are written in using the consonant symbols only, i. , the letters without 
the vowel symbols or the diacritical marks. Arabic diacritical marks are the vowelization 
marks {Sukoon ْـ , Fatha  َـ , Kasra ِِـ  , Dhamma  ُـ  }, the gemination mark {Shaddah ّـ }, and 
the suffixes { tan ًـ , ten  ـ ٍ , ton  The gemination diacritic is followed by a vowel diacritic .{  ٌـ
(except Sukoon), or by a suffix diacritic. A word such as “علم” when diacritized can be: “عَلَم” 
flag,  “عِلْم” science,  “َعُلِم” it was known, “َعَلِم” he knew,  “َعَلَّم” he taught or  “ مَعُلِّ ” he was 
taught. Arabic readers infer the appropriate diacritics based on the linguistic knowledge and 
the context.  

The problem of automatic generation of the Arabic diacritic marks is known in the 
literature under various translations, e.g., automatic vocalization, vowelization, diacritization, 
accent restoration, and vowel restoration. The formal approach to the problem of restoration 
of the diacritical marks of Arabic text involves a complex integration of the Arabic 
morphological, syntactic, and semantic rules [5,6,7]. For example, Vergyri and Kirchhoff, [6] 
reported a word eror rte of 27.3% and a character error rate of 11.54%, using acoustic + 
morphological + contextual methods. A morphological rule matches the undiacritized word to 
known patterns or templates and recognizes prefixes and suffixes [8]. Syntax applies specific 
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syntactic rules to determine the final diacritical marks by applying Finite State Automata [9].  
Semantics help to resolve ambiguous cases and to filter out hypothesis [10,11].  

 
   The approach of this paper falls under the general class of statistical methods in pattern 

recognition, and has been applied successfully in speech recognition field. Our argument here 
is that Arabic natives rely mainly on the human pattern matching power to select the right 
vowelization of words based mainly on its context.  The word sequence of unvoweled Arabic 
text is considered an observation sequence from a Hidden Markov Model, where the hidden 
states are the possible diacritized expressions of the words.  The optimal sequence of 
diacritized words (or states) are then selected to maximize the probability of the state 
sequence given the observation sequence. The HMM approach was also proposed by Gal in 
[12] for vowel restoration of the diacritical marks in Arabic and Hebrew.  The text corpus 
was Qur’an, for which he reported a word accuracy of 86 % .  

The Qur’an diacritization style and symbols differ in many aspect from the modern Arabic. 
The qur’an  script contains diacritical marks which are particularly intended for recitation 
purpose. Our study is based on a corpus supplied by King Abdulaziz City of Science and 
Technology (KACST), SA, and was manually diacritized by professionals. The corpus is 
currently being expanded to  include at least 50,000 Arabic sentences. The objective of this 
study is to provide the mathematical formulation of the HMM approach, and to evaluate it on 
a modern Arabic text.  In this study we did not consider the generation of end case. Once the 
diacriticized text is generated, the generation of the end case can be performed by a separate 
post processing stage [9]. The HMM method achieves WER less than 0.5% when tested on 
sentences from the corpus, and WER of about 5.5% when tested on sentences from outside 
the corpus.  
   In Section 2 we present the formulation of the problem, while in Section 3 we outline the 
basic algorithm. In Section 4 we describe the training set and its processing, and in Section 5 
we present detailed evaluation of the results and various modification to eliminate certain 
classes of restoration errors.  
 

2. PROBLEM FORMULATION 
 
We assume we have a large training set of Arabic text with full diacritical marks, VT , and its 
corresponding unvowelized text, UT . We then generate a word vocabulary list, vN

iv 1}{=VL , 
of the unique and fully vowelized words in VT . We also generate a table, Vf ,  of the 
frequency of occurrence of each word in VL ,  such that )(kVf  is the number of occurrence of 

kv  in the training text VT .  Similarly, we construct UL  of all unvowelized vocabulary words 
in UT . Let UV LL →Γ :(.)  be the mapping from VL  to UL ; For each word UL∈ku   we 
define a subset  VL⊂kV  corresponding to all the vowelized words that are mapped to ku ,  
i.e. })(;{ kVk uvvV =Γ∈= L .  
Now, given a word sequence  (without diacritical marks) 

MtwwwwW tM ,..,2,1;;.........21 =∈= UL                                                        (1)                       
We wish to determine the most probable diacritized  word sequence: 

MdddD ..........21=                                                                                  (2) 
Where )( jLvd Vjt ==  for some   ];,1[ vNj∈ for t=1,2,..M  We also assume   )(kLuw ukt ==  for 
some   ];,1[ uNk ∈  and Mt ,...2,1for = , that is to say that all the words in (1) exist in UL . 
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The word sequence D may be chosen to maximize the posteriori probability )|( WDP , i.e. the 
best diacritized word sequence, D̂ , satisfies  

)}/(
max

arg{ˆ WDP
D

D =                                                                          (3) 

   It is normally assumed in language modeling that the sequence of words obey the 
Markovian assumption, that is at any given t, wt depends only on the previously words. In 
Bigram language modeling, each word is assumed to depend only on its previous word in a 
first order Markov chain,  i.e. The conditional probability )|( WDP  can be written as 

);|()|()......|.....( 11
2

112121 tttt

m

t
mm wwddPwdPwwwdddP −−

=
∏=                                      (4) 

    The search for the best sequence of vowelized words which maximizes  (3) considers the 
unvowelized text is generated from an HMM, where the observation sequence is the 
undiacritized word sequence W, while the possible vowelized words, jtv , , of each word wt  
represent the hidden states. The problem can then be formulated as finding the best state 
sequence given the observation W. The solution of this problem is usually approximated 
using the Viterbi Algorithm VA [13].  
   Let us define ),( itφ  to be  the probability of the most likely partial state sequence or path 
until time t, and ending at the ith state ( the ith diacritized word corresponding to wt.).  
The  algorithm proceeds in the following steps: 
 
Step 1: Initialization 

)|(),1( 1,1 wvPi i=φ                                                                                  (5) 
Step 2:  Induction 
             Let tk  be the index of the word tw  in UL , i.e. );( tt kw UL= and let )(tnv  be the 
cardinal of  the subset 

tkV , then ),( itφ can be recursively obtained as follows 

Mttnj

wwvvPjt
j

it

v

ttjtit

,..3,2 and );(,...,2,1   

  )},;|(),1({
max

),( 1,1,

==

−= −−φφ                                                             (6) 

Mttnj

wwvvPjt
j

itU

v

ttjtit

,..3,2 and );(,...,2,1  

  )}},;|(),1({
max

arg{),( 1,1,

==

−= −−φ                                                        (7) 

Step 3: Best Path   
         )}}(,...,2,1   )},({

max
arg{),( MnjjM

j
iMU vbest == φ                                                        (8) 

Step 4: Back Tracking 

M

i

ttitt

bestM

dddD

vd

MMtitUivd
ii

t

.........

2,......1,for   );,(  and  ,

21

,11

1,

1

=

=

−===
=

−                                                      (9)                         

    Several observations can help in simplifying the Viterbi recursions. First, we notice that 
the conditional probability appearing in (6) can be written as: 

)|(
)|(

)|(
)|(

);|( 
1,1

1,1,

1,1

1,1,
1,1,

−−

−−

−−

−−
−− ==

tjt

ttjtit

ttjt

ttjtit
ttjtit wvP

wwvvP
wwvP

wwvvP
wwvvP                                                (10)                         

Since each vowelized word is mapped to one unvowelized base, this implies that   
1)|( , =jtt vwP . We can then simplify further Equation (10) as follows: 
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)|(
)|(

);|( 
1

,1,
1,1,

−

−
−− =

tt

jtit
ttjtit wwP

vvP
wwvvP                                                                             (11) 

Moreover, it is clear then the denominator of (11) is not part of the maximization in (6). This 
leads to a further simplification of the recursion (6) as follows: 

Mttnj

vvPjt
j

it

v

jtit

,..3,2 and );(,...,2,1 

  },|(),1({
max

),( ,1,

==

−= −φφ                                                                     (12)               

In other words, the evaluation of the recursion, (6) and (7), can be performed using the 
conditional probability of the vowelized words only. All the probabilities needed for 
computing the Viterbi recursion can be obtained from the statistics of training sets, and stored 
for on line Viterbi calculations.  

 
3. THE TRAINING DATABASE 

 
For testing purpose we started by a fully diacritized Arabic corpus. The corpus consists of 

100 articles collected from magazines and news papers covering various subjects. The text 
was annually diacritized by Arabic language specialists. The corpus was developed by king 
Abdulaziz City of Science and technology, and is currently being expanded to include at least 
50,000 sentences.  

The total number of words in the corpus came to 102k words.  The raw training transcript 
is first processed to remove numbers and special symbols. The Arabic letter extension 
character is also removed.  All punctuation marks were replaced by one symbol. The 
transcript was manually checked to correct partially vowelized words, and a few 
inconsistencies in the diacritization styles. The net training data   consists of about 804K 
characters. The vowelized vocabulary list consists of  about 29,500 words. Tables of the 
frequencies of the vowelized and uvowelized vocabulary are also generated. A word is 
defined here to be any sequence of letters and diacritical marks delimited by the space 
character or a punctuation mark. The maximum number of voweled words for any 
undiacritized word was found to be 6. 

Although several cycles of inspection and checking has been performed on the corpus, but 
the corpus is still far from the flawless state.  
Two words 

ba mm bbbBaaaA ....  and  ... 2121 ==   are considered identical in the regular sense if 

1),( =BAR , where ),( BAR  is defined as follows: 

⎩
⎨
⎧ ===

=
otherwise     0

,...,2,1for    and    if   1
),( aiiba mibamm

BAR   

One problem with the above definition of word similarity is that the Sukoon diacritical mark 
does not consistently appear explicitly in the text. A metric is designed so that two words are 
still considered identical even if one of them is missing one or more Sukoon. Define the 
mapping VV LL →:(.)S  which strips words from Sukoon diacritical marks. Let 0)( AAS = , 
and 0)( BBS = .  Then two words A and B are said to be R0  identical,  R0(A,B)=1, if   
R(A0,B0)=1. When generating VL , all words in VT  which are  R0  identical are represented by 
a single word in the vocabulary VL . The vocabulary word is selected or generated to be the 
one with all its Sukoon cases removed for efficient memory utilization. Finally, each word in 
the table VL  is mapped to its undiacritized base UL . A database is generated which contains 
the undiacritized word bases, lists of the corresponding diacritized words, and the  counts of 
each diacritized word. A Matlab program is built to automate building of this database.  This 
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database is called “uvwowled words database”. UVWDB.  Next, a database is generated for 
each unique sequence of two words in the list file  VT  together with its number of 
occurrences. In this case, two two-word sequences are considered identical if their 
corresponding words are R0  identical. The database generated is called  Bigram Database 
BIGDB. The BIGDB is constructed in such a way that for every voweled word in VL it lists 
all its bigrams and their corresponding frequencies.  

Another problem in creating the training databases is that there are many articles, and 
common short words are not fully diacritized. The missing of diacritical marks represents a 
serious problem. At the minimum it unnecessarily increases the size of the vocabulary, and 
creates ambiguity as it would not be clear if the missing diacritics is simple Sukoon or not. 
The problem is partially alleviated by creating a lexicon of exception cases of common words 
and articles which usually appear partially or totally undiacritized.   
 

4. EXPERIMENTAL RESULTS 
 

The method was first tested using randomly selected sentences from the training corpus. 
The word error rate came to less than  0.5%. In fact most of the errors were due to errors in 
the corpus itself, e.g.  extraneous diacritics or missing diacritics. Next the algorithm was 
evaluated using a testing text from outside the training corpus. The algorithm in its current 
form can only generate diacritic marks if  all the unvoweled  words exist in its UVWDB. 
Accordingly, in the testing text, sentences containing unlisted words are excluded from the 
test. However, we are currently investigating two approaches to solve his problem. In the first 
approach we synthesize a word-level diacritization based on letter/diacritics statistics using 
again an HMM technique. In the second approach, the unknown unvowelized word is 
matched to a one of a given set of morphological patterns.  Since many word sequences in the 
test set  did not occur in the training corpus, we employed a simple bigram smoothing method 
together with deleted interpolation  smoothing [13]. The parameters of the deleted 
interpolation smoothing were determined experimentally. 

The word error rate came to about 5.5%. Analysis of the errors reveals the following 
classes of errors.   The first class of errors turned out to be due to inconsistent representation 
of diacritical marks  in the training data bases, missing diacritical marks, or extraneous 
diacritical marks. The majority of the repeated errors are caused mainly by a few articles and 
short words. The ambiguity in determining the proper form of these short words could 
hopefully be resolved by using higher order grams, and restricting some articles to a single 
diacritized form. The rest of the cases are more difficult to resolve and may require higher 
order grams  or post processing stage of the resulting diacritized text using knowledge-based 
morph-syntax word correction.  

 The algorithm presented in this paper assumes as well that the input word sequence is 
totally undiacritized. However, in reality, the input text may contain partial diacritization. The 
algorithm needs to be modified to take into consideration the presence of partial diacritization 
to improve the efficiency of the algorithm and enhance its performance. Finally, the 
algorithm generates diacritized text with undetermined end case. The formal approach to 
resolve these end cases is to implement a syntax analyzer [9]. The syntax processing can be 
inserted as a post processing stage after the Viterbi algorithm. 

 
5. CONCLUSION 

 
The paper presents an HMM based method to solve the problem of generating the diacritical 
marks of the Arabic text. The basic form of the algorithm achieves a word error rate of about 
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5.5%. The use of higher order grams for frequent words with multiple voweled versions 
could lead to a substantial improvement in the performance. The algorithm needs as well a 
preprocessing stage to synthesize voweled forms for the unlisted words, and a post processing 
stage to generate the end cases. 
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