fifth Solutions to Exercises 85

5 REPETITION

While writing a program, it may be necessary to execute a stat
statements repeatedly. Repetition is supported in FORTRAN

known as a loop.

In a repetition construct, a group of statements, w,
called the loop body. A single execution of the
repetition construct must ferminate after a finite nuifiber
of the loop is decided through what is known as t 1
made whether to execute the loop for another Wgration through the termination
condition. In the case of a DO loop, the n 1 of itera¥ions is known before the loop is
executed; the termination condition checks ther this number of iterations have been
executed. In the case of a WHILE 1 a Wision is made in every iteration.

called an iteration. Every
iterations. The termination

Repetition constructs are very nd €xtensively used in solving a significant
number of programming probl etWs consider the following example as an

illustration of such constructs.
Example : Average Com a%As e that we were asked to write a FORTRAN
program that reads the ga®g of § students in an exam. The program is to compute and
print the average ofathdaora®s. Without repetition, the following program may be

considered as a s O
Solution:

REAL X1, X2, X3, X4, X5, X6, X7, X8
REAL SUM, AVG

READ*, X1
READ*, X2
READ*, X3
READ*, X4
READ*, X5
READ*, X6
READ*, X7
READ*, X8

SUM = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8
AVG = SUM / 8.0

PRINT*, AVG

END

The variable SUM is a real variable in which we store the summation of the grades. The
statements are considerably long for just 8 students. Imagine the size of such statements

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The DO Loop 86

when the number of students is 100. It is highly inefficient to use 100 different variable
names.

From the example above, let us try to extract the statements where repetition occurs.
The reading and assignment statements are clearly such statements. We can do the
reading and addition in these statements, individually, for each grade. The following
repetitive segment can be used instead of the long read and assignment statements :

SUM = 0

REPEAT THE FOLLOWING STATEMENTS 8 TIMES
READ*, X
SUM = SUM + X

In each iteration, one grade is read and then added to the previous gra
iteration, however, there are no previous grades. Therefore, SUM is init
meaning that the summation of the grades is zero, before any grade ' "

finy number of
bove, can be

This repetitive solution is more efficient since it can be udgd
students. By reading the number of students N, the repetitign co
changed, to find the sum of the grades of N students, as f%&

SUM = 0

READ*, N

REPEAT THE FOLLOWING STATEMENTS N TIMES
READ*, X

SUM = SUM + X

The repetition construct above is not written ip the &TRAN language. To implement
this construct in FORTRAN, we can use@fo types of loops: the DO Loop and the
One very basic feature of@he

WHILE loop.

5.1 The DO Loop

iterations (the number of ti C I
loop execution begins. Th&gener®yfo

p repetitive construct is that the number of
s executed) is known (computed) before the
of the DO loop is:

DO N index = initial, limit, increment
BLOCK OF FORTRAN STATEMENTS
N CONTINUE
The CONTINY en&ndicates the end of the DO loop.

The numb i terations) the loop is executed is computed as follows :
mber es a Do loop is Executed = {MW i1
increment

ed logic of the DO loop is as follows:

e If the increment is positive, the value of the initial must be less than or equal to
the value of the limit. If the increment is negative, the value of the initial must
be greater than or equal to the value of the /imit. Otherwise, the loop will not be
executed. If the values of the initial and the limit are equal, the loop executes
only once.

e In the first iteration, the index of the loop has the value of initial .

e Once the CONTINUE statement is reached, the index is increased or decreased
by the increment and the execution of the next iteration starts. Before each

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The DO Loop 87

iteration, the index is checked to see if it has reached the [limit. If the index
reaches the /imit, the loop iterations stop. Otherwise, the next iteration begins.

Consider the following example as an illustration of the DO loop :

DO 15 K = 1, 5, 2
PRINT*, K
15 CONTINUE

The loop above is executed { 3 1~l+1_ 3 times. Thus, the values index K takes during

the execution of the loop are 1, 3, and 5. Note that the value of K incremegts by 2 in
each iteration. In the beglnnlng, we make sure that the initial is less than the YWt since

the value of the increment is positive. The execution of the loop begins e of
K, which is 1, is printed. The CONTINUE statement returns the g (0]
statement and the execution of the loop takes place for the second value of
K as 3. This continues for the third time with K as 5. Once t on is over, the
control goes back and the index K gets incremented again tg 7, w ore than the

limit. The execution of the loop stops and control trans ement following
the CONTINUE statement. Note that the value of K oug€ide

The following rules apply to DO loops:

o The index of a DO loop must be a valigbk of cit®er INTEGER or REAL

types.
e The parameters of the loop, n , initia® limit, and increment can be
expressions of either INTEGER EAL types. Although it depends on the
nature of the problem bei recommended that the type of the

parameters match the type of t
e The value of the DO Ig

7

cannot be modified inside the loop. Any

attempt to modify ¥4 g the loop will cause an error.

e The increment m ot Wg zergghtherwise an error occurs.

o If the index is a1 er variable then the values of the parameters of the DO
loop will be integer values before execution starts.

x after the execution of the loop is either the value that has
found to exceed the limit (for a positive increment) or the
been decremented and found to be less than the limit (for a
ent).

gh its DO statement. It is possible to branch out of a DO loop before all
iterations are completed. This type of branching must not be used unless
necessary.

e [t is possible to have a DO loop without the CONTINUE statement. The
statement number, which is given to the CONTINUE statement, can be given
to the last FORTRAN statement in the loop, except in the case when the last
statement is either an IF, GOTO, RETURN, STOP or another DO statement.

e In the DO loop construct, in the absence of the increment, the default increment
is +1 or +1.0 depending on the type of the index.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The DO Loop 88

e In the case when the increment is positive but the initial is greater than the limit,
a zero-trip DO loop occurs. That is, the loop executes zero times. The same
happens when the increment is negative and the initial is less than the /imit.
Note that a zero-trip DO loop is not an error.

e The same continue statement number can be used in both a subprogram and the
main program invoking the subprogram. This is allowed because subprograms
are considered separate programs.

e The parameters of the loop are evaluated before the loop execution begins.
Once evaluated, changing their values will not affect the executing
For an example, consider the following segment. Changing DO loop
inside the loop should be avoided while writing application prog

REAL X, Y

Y = 4.0

DO 43 X = 0.0, Y, 1.5
PRINT*, X
Y=Y+ 1.0
PRINT*, Y

43 CONTINUE

In the above loop, the value of Y which corres
starts with 4. Therefore, and according to the
40-00

n the limit in the DO loop,
we ned earlier, this loop is

parameters (initial, limit, and

1

executed { }1:3 times. The values of

increment) are set at the beginning of the 109 and they never change for any iteration of
the loop. Although the value of Y clianggsi pteration within the loop, the value of
the limit does not change. The followM@ exdgples illustrate the ideas explained above:

5.1.1 Examples on DO

Example 1: Consider the follogi m.
DO 124 M = 1, 100, 0.5
PRINT*, M
124 CONTINUE
PRINT*, M
END

In the above p8
assigned g
mea

e progham then computes and prints the factorial of M.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Nested DO Loops 89

Solution:
INTEGER M, TERM, FACT
READ*, M
IF (M.GE.0) THEN
FACT = 1
TERM = M
DO 100 M = TERM, 2, -1
IF (TERM.GT.l) THEN
FACT = FACT * TERM
100 CONTINUE
PRINT*, 'FACTORIAL OF ', M, ' IS ', FACT
ELSE
PRINT*, 'NO FACTORIAL FOR NEGATIVES'
ENDIF
END

To compute the factorial of 3, for example, we have to pe
multiplication: 3 * 2 * 1. Notice that the terms decrease by 1

reaches 1. Therefore, the header of the DO loop forces the re
TERM, which represents the number of terms, reaches the 1.

5.2 Nested DO Loops

DO loops can be nested, that is you may havega
However, one must start the inner loop after star
loop before ending the outer loop. It is allowed to ha

to stop when

O lodfyinside another DO loop.
ter loop and end the inner

s many levels of nesting as one

wishes. The constraint here is that inner s must finish before outer ones and the
indexes of the nested loops must be differ e following section presents some
examples of nested DO loops.

5.2.1 Example on Nest ops

Example 1: Nested DO Loog e following program.

DO 111 M =1, 2
DO 122 J =1, 6 , 2
PRINT*, M, J
122 CONTINUE
111 CONTINUE
END

\d .
_The output ﬁh&o} program 1s:

NNMNNNRRR
gwWwrRrUOWR

Example 2: The above program can be rewritten using one CONTINUE statement as

follows:.
DO 111 M =1, 2
DO 111 J =1, 6 , 2
PRINT*, M, J
111 CONTINUE

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The WHILE Loop 90

Notice that both do loops has the same label number and the same CONTINUE
Statement.

Example 3: The above program can be rewritten without any CONTINUE statement as

follows:
DO 111 M =1, 2
po 111 =1, 6 , 2
111 PRINT*, M, J
END

Notice that the label of the do loop will be attached to the last statement in the do loop.

5.3 The WHILE Loop

The informal representation of the WHILE loop is as follows :

WHILE condition EXECUTE THE FOLLOWING
block of statementS.

In this construct, the condition is checked before executing tements. The
block of statements is executed only if the condition, yghi gical expression,
evaluates to a frue value. At the end of each iter ol returns to the
beginning of the loop where the condition is checked ag®@ Depending on the value of
the condition, the decision to continue for anotheg itcfiati ade. This means that the
number of iterations the WHILE loop makes dep condition of the loop and
could not always be computed before the execution ®gthe loop starts. This is the main

difference between WHILE and DO repetRugfi constructs.

Unlike other programming languggesggacht SCAL and C, standard FORTRAN
does not have an explicit WHILE s eMyfor repetition. Instead, it is built from the
IF and the GOTO statements.

In FORTRAN, the IF-TREN t 1s used to perform the test at the beginning of
the loop. Consider an IF sta‘m, has the following structure :

IF (condition) THEN
block of statements
ENDIF

If the condition g ﬂg‘the block of statements is executed once. For the next
iteration, since @ bd to¥go to the beginning of the IF statement, we require the
GOTO staigmgnt N\ J#¥s the following general form :

GOTO statement number |

A §OTO Ment transfers control to the statement that has the given statement
nuiNger. Ushg the IF and the GOTO statements, the general form of the WHILE loop
is as S:

n IF (condition) THEN
block of statements
GOTO n
ENDIF

n is a positive integer constant up to 5 digits and therefore, ranges from 1 to 99999. It is
the label of the IF statement and must be placed in columns 1 through 5.

The execution of the loop starts if the condition evaluates to a .TRUE. value. Once
the loop iterations begin, the condition must be ultimately changed to a .FALSE. value,

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The WHILE Loop 91

so that the loop stops after a finite number of iterations. Otherwise, the loop never stops
resulting in what is known as the infinite loop. In the following section, we elaborate
more on the WHILE loop.

5.3.1 Examples on WHILE Loops

Example 1: Computation of the Average: Write a FORTRAN program that reads the
grades of 100 students in a course. The program then computes and prints the average
of the grades.

Solution: o

REAL X, AVG, SUM
INTEGER K
K =0
SUM = 0.0
25 IF (K.LT.100) THEN
READ*, X
K=K+ 1
SUM = SUM + X
GOTO 25
ENDIF
AVG = SUM / K
PRINT*, AVG
END

Note that the variable K starts at 0. The value of ented after the reading of a
grade. The IF condition presents the loop from readiMg any new grades once the 100th
grade is read. Reading the 100th grade cal K to be incremented to the value of 100
as well. Therefore, when the condjtio cked in the next iteration, it becomes
.FALSE. and the loop stops.

ividing the variable SUM by the variable K.

Example 2: The Factorial: s the same as the one discussed in Example 2

of Section 5.2. In this cont eWrNMHMwmm@ﬂWHEEbW
Solution:
INTEGER M, TERM, FACT
READ*, M
IF (M.GE.0) THEN
FACT = 1
TERM = M
3 IF (TERM.GT.1) THEN
FACT = FACT *TERM
TERM =TERM - 1
GOTO 3
ENDIF
PRINT*, 'FACTORIAL OF ', M, ' IS ', FACT
ELSE
PRINT*, 'NO FACTORIAL FOR NEGATIVES'
ENDIF
END

Note the similarities between both solutions. The WHILE loop starts from M (the value
we would like to compute the factorial of) and the condition of the loop makes sure that
the loop will only stop when TERM reaches the value 1.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Nested WHILE Loops 92

Example 3: Classification of Boxers: Write a FORTRAN program that reads the
weights of boxers. Each weight is given on a separate line of input. The boxer is
classified according to the following criteria: if the weight is less than or equal to 65
kilograms, the boxer is light-weight, if the weight is between 65 and 85 kilograms, the
boxer is middle-weight and if the weight is more than or equal to 85, the boxer is a
heavy-weight. The program prints a proper message according to this classification for
a number of boxers by reading their weights repeatedly from the input. This repetitive
process of reading and classification stops when a weight of -1.0 is read.

Solution: Q

REAL WEIGHT
READ*, WEIGHT

11 IF (WEIGHT.NE.-1.0) THEN
IF (WEIGHT.LT.0.OR.WEIGHT.GE.400) THEN
PRINT*, ' WEIGHT IS OUT OF RANGE '
ELSEIF (WEIGHT.LE.65) THEN
PRINT*, ' LIGHT-WEIGHT '
ELSEIF (WEIGHT.LT.85) THEN
PRINT*, ' MIDDLE-WEIGHT '
ELSE
PRINT*, ' HEAVY-WEIGHT '
ENDIF
READ*, WEIGHT
GOTO 11
ENDIF
END

the READ statement. The executiorgf 0 ps when a value of -1.0 is read. This
value is called the end marker or thc\§gentirRyl, since it marks the end of the input. A
sentinel must be chosen from outyg ¢ My ge of the possible input values.

*
5.4 Nested WHIL X

WHILE loops may begn®&ed, tNat is you can put a WHILE loop inside another
WHILE loop. However,fpne Wust start the inner loop after starting the outer loop and
end the inner loog b nding the outer loop for a logically correct nesting. (The
nt to the nested DO loop example given earlier.)

Note that in this example, the condition th&sfhe iterations of the loop depends on
n

following program.

M =1
22 IF(M .LE. 2) THEN
J =1
11 IF (J .LE. 6) THEN
PRINT*, M, J
J=J+ 2
GOTO 11
ENDIF
M=M+ 1
GOTO 22
ENDIF
END
The output of the above program is:
1 1
1 3
1 5

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Examples on DO and WHILE Loops 93

2 1
2 3
2 5

There are two nested WHILE loops in the above program. The outer loop is controlled
by the variable M. The inner loop is controlled by the variable J. For each value of the
variable M, the inner loop variable J takes the values 1, 3 and 5.

5.5 Examples on DO and WHILE Loops

Example 1: Evaluation of Series: Write a FORTRAN program that evaluates the
following series to the 7th term.

N .
2.3
i=1
(Summation of base 3 to the powers from I to N. Assume N h tth 7)
Solution: a \

INTEGER SUM
SUM = 0
DO 11 K = 1, 7
SUM = SUM + 3 ** K
11 CONTINUE
PRINT*, SUM

END
Example 2: Alternating Sequences/ Serie ternatii% sequences, or series, are those
which have terms alternating their signs _fr osjtive to negative. In this example, we

find the sum of an alternating series:

Question: Write a FORTRAN proggamWNat eValuates the following series to the 100th
term.
*
1-3+5-7+9-11+13, Q+

Solution:
It is obvious that the rmWgiffer by 2 and start at the value of 1.

INTEGER SUM, TERM, NTERM

SUM = 0

TERM = 1

DO 10 NTERM = 1, 100
SUM = SUM + (-1) ** (NTERM + 1) * TERM
TERM = TERM + 2

10 CONTINUE
PRINT*, SUM
END

NotiMummation statement inside the loop. The expression (-1) ** (NTERM + 1)
is positive when NTERM equals 1, that is for the first term. Then, it becomes negative
for the second term since NTERM + 1 is 3 and so on.
Example 3: Series Summation using a WHILE loop: Question: Write a FORTRAN
program which calculates the sum of the following series :

1 2 3 4 99

—+—+—+—+L +—
2 3 4 5 100

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Examples on DO and WHILE Loops 94

Solution:
REAL N, SUM
N =1
SUM = 0
10 IF (N.LE.99) THEN
SUM = SUM + N / (N + 1)
N =N+ 1
GOTO 10
ENDIF
PRINT*, SUM
END
In the above program, if N is not declared as REAL, the expression N/(in the

summation inside the loop, will always compute to zero.

Example 4: Conversion of a WHILE loop to a DO loop: Convert thegmioWgg LE
loop into a DO loop.

REAL X, AVG, SUM

INTEGER K

K =20

SUM = 0.0

25 IF (K.LT.100) THEN

READ*, X
K=K+ 1
SUM = SUM + X
GOTO 25

ENDIF

AVG = SUM / K

PRINT*, AVG

END

In the WHILE loop, K starts with t
by 1 in each iteration. The termingigg dition is that the value of K must exceed 99.

In the equivalent program @in @‘

incremented by 1 in each iter K
Solution: Q

The equivalent prografg u a DO loop is as follows:

REAL X, AVG, SUM

INTEGER K

SUM = 0.0

DO 25 K = 0, 99, 1
READ*, X
SUM = SUM + X

25 CONTINUE

AVG = SUM / 100

PRINT*, AVG

END

An important point to note in this example is the way the average is computed. The
statement that computes the average divides the summation of the grades SUM by 100.
Note that the value of the K is 100 because the loop stops when the value of K exceeds
99. Keeping in mind that the increment is 1, the value of K after the loop terminates is
100. However, it is not recommended to use the value of the index outside the DO loop.

It is also important to note that any other parameters such as:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Implied Loops 95

| DO 25 K = 200, 101, -1

would also have the same effect. Note that the variable K exits the loop with the value
100 in this case as well.

It is not always possible to convert a WHILE loop into a DO loop. As an example,
consider the WHILE loop in the Classification of Boxers example. There, we cannot
accomplish the conversion because the number of times the WHILE loop gets executed
is not known. It depends on the number of data values before the end marker.

5.6 Implied Loops

Implied loops are only used in READ and PRINT statements. The jpli op is
written in the following manner :

READ*, (list of variables, index = initial, limit, increment)
PRINT*, (list of expressions, index = initial, limit, increment)

As in the case of explicit DO loops, the index must be eit
expression. The variables in the READ statement can b e hcluding array
elements. The expressions in the PRINT statement ca of as well. All the
rules that apply to DO loop parameters also apply togniRligl loop parameters. Usage of
implied loops is given in the following examples :

integer or real

Example 1: Printing values from 100 to 87: Th o segment prints the integer
values from 100 down to 87 in a single line.

| PRINT*, (K, K = 100 , 87 , -1)

Output NP

|lOO 99 98 97 96 95 94 93 92 91 90 89 88 87

?

A
s that the value of K decreases from 100 to
is printed. The value of K is printed

Notice that the increment is -1, w8
87. In each iteration, theg val @

{87—1100—‘+1= 14 times. S&N

value of the index, whi ks in each iteration. Consider the following explicit DO
loop version of the iMuglicQ loop :

gdex of the loop, the value printed here is the

\
DO 60 K = 100, 87 , -1
PRINT*, K
60 CONTINUE

‘Outp: ‘ ‘ ‘

100
99
98

87

The two loops are equivalent except in terms of the shape of the output. In the implied
loop version, the output will be printed on one line. In the explicit DO loop version, the
output will be printed as one value on each line.

Example 2: Printing more than one value in each iteration of an implied loop: The
following segment prints a percentage sign followed by a + sign three times :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Repetition Constructs in Subprograms 96

| PRINT*, ('$' , '+' , M =1, 3) |

This produces the following output:
S+5+5+ |

Notice that the parenthesis encloses both the % and the + signs, which means they both
have to be printed in every iteration the loop makes.

Example 3: Nested Implied Loops: An implied loop may be nested either in another
implied loop or in an explicit DO loop. There is no restriction on the number of levels of
nesting. The following segment shows nested implied loops.

| PRINT*, ((K, K=1, 5, 2), L =1, 2)

Nested implied loops work in a similar manner as the nested DO 1
important point to note here is the double parenthesis before the

the value of K to be printed (%w +1=3 iterations. Ho

inside the L loop, the K loop is executed 3 times in e
is printed 6 times. Therefore, the output of the imglicfl versiORyis:

[1 3 5 1 3 5 |

5.7 Repetition Constructs @p\ograms

Subprograms in FORTRAN are S rate programs during compilation.

Therefore, repetition constructs in SHgpro s are given the same treatment as in
programs. The following is a e that shows how repetition is used in
subprograms. *

Example: Count of Integer. ayge that are Divisible by a given Value: Write a

function subprogram thqtRceiveWthr®e integers as input. The first and second input
integers make the rangRof Wglues in which the function will conduct the search. The
function searches fc (ntegers in that range that are divisible by the third input
integer. The fun eturig the count of such integers to the main program. The main
program reads s of Ynput. Each line consists of three integers. After each read,

the main pfOONg Is the function, passes the three integers to it and receives the
out, 0 @ | pri®ts that output with a proper message :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 97

Solution:

INTEGER K, L, M, COUNT, J, N

DO 10 J =1, 5
READ*, K, L, M
N = COUNT(K , L , M)
PRINT*, 'COUNT OF INTEGERS BETWEEN',K, 'AND', L
PRINT*, 'THAT ARE DIVISIBLE BY', M, 'IS', N
PRINT*

10 CONTINUE

END

INTEGER FUNCTION COUNT (K , L , M)

INTEGER K, L, M, INCR, NUM, J

INCR =1
NUM = 0
IF (L .LT. K) INCR = -1

DO 10 J = K, L, INCR
IF (MOD(J , M) .EQ. 0) NUM = NUM + 1

10 CONTINUE
COUNT = NUM
RETURN
END
If we use the following input: GV
2 34 2
-15-30 5
70 32 7
0 20 4
-10 10 10
: v
The typical output would be as follows: Y
COUNT OF INTEGERS BETWEEN 2 AND 34
THAT ARE DIVISIBLE BY 2 IS 12
COUNT OF INTEGERS BETWEEN -15 AND -30
THAT ARE DIVISIBLE BY 5 IS 4
COUNT OF INTEGERS BETWEEN 70 AND 32
THAT ARE DIVISIBLE BY 7 IS 6
COUNT OF INTEGERS BETWEEN 0 AND 20
THAT ARE DIVISIBLE BY 4 IS 6
COUNT OF INTEGERS BETWEEN -10 AND 10
THAT ARE DIVISIBLE BY 10 IS 3
Re e (e Wid about the subprogram being a separate entity from the main

ram invow#S it. Accordingly, note the following in the above example:

pr
allowed to use the same statement number in the main program and
programs of the same file. Notice the statement number 10 in both the main
program and the function subprogram

e [t is also allowed to use the same variable name as index of DO loops in the
main program and the subprogram. Notice the variable J in the above

5.8 Exercises
1. What will be printed by the following programs?

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 98
1. LOGICAL FUNCTION PRIME (K)
INTEGER N, K
PRIME = .TRUE.
DO 10 N =2, K/ 2
IF (MOD(K , N) .EQ. 0) THEN
PRIME = .FALSE.
ENDIF
10 CONTINUE
RETURN
END
LOGICAL PRIME
PRINT*, PRIME (5), PRIME (8)
END
V = O N
2. INTEGER FUNCTION FACT (K)
INTEGER K, L
FACT = 1
DO 10 L. = 2 , K
FACT = FACT * L
10 CONTINUE
RETURN
END
INTEGER FUNCTION COMB (N , M)
INTEGER FACT
IF (N .GT.M) THEN
COMB = FACT(N) / (FACT (M) * FACT (N-M))
ELSE
COMB = 0
ENDIF
RETURN
END
INTEGER COMB
PRINT*, COMB (4 , 2)
END
3. INTEGER K, M, N
N =0
DO 10 K = -5, 5
N =N + 2
DO 20 M =3, 1
N =N + 3
20 CONTINUE
N =N+ 1
10 CONTINUE
PRINT*, N
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises

99

4. INTEGER ITOT, N
READ*, N
ITOT =1

10 IF (N .NE. 0) THEN
ITOT = ITOT * N
READ*, N
GOTO 10
ENDIF
READ*, N
20 IF (N .NE. 0) THEN
ITOT = ITOT * N
READ*, N
GOTO 20
ENDIF

PRINT*, ITOT
END

Assume the input is / \ ’

g O wo N

INTEGER FUNCTION CALC (A, B)
INTEGER A,B,R, K

R =1
DO 10 K=1,B
R = R*A

10 CONTINUE

CALC = R

RETURN

END

INTEGER CALC

READ*, M, N

PRINT*, CALC (M, N)

END

Assume té?lns 'g

2 5

6. INTEGER KK, J, K
KK = 0

2 IF (KK.LE.O) THEN
READ*, J , K
KK = J - K

GOTO 2

ENDIF
PRINT*, KK, J, K
END

Assume the input is

2 3

-1 2

3 3

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 100

BN
w o

7. INTEGER K, J
K = 2
25 IF (K.GT.0) THEN
DO 15 J = K, 3, 2
PRINT*, K, J
15 CONTINUE
K=K-1
GOTO 25
ENDIF
END

8. INTEGER N, C
LOGICAL FLAG
READ*, N
FLAG = .TRUE.

C =N *x* 2

22 IF (FLAG) THEN

cC=(C+N) /2
FLAG = C.NE.N
PRINT*, C
GOTO 22

ENDIF

END

Assume the input is v \

|4

9. INTEGER N, K
READ*, N
K = SORT (REAL (N))
33 IF (K*K .LT. N) THEN
K=K+ 1
GOTO 33
ENDIF
PRINT*, K*K
END

Assume the inpuﬁ
| 6

e

10. INTEGER J, K
DO 10 K = 1,2
PRINT*, K
DO 10 J = 1,3
10 PRINT*, K, J
END

11. INTEGER X, K, M
M= 4
DO 100 K = M ,M+2
X =M+ 2
IF (K.LT.6) THEN
PRINT*, 'HELLO'
ENDIF
100 CONTINUE
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 101

12. INTEGER SUM, K, J, M

SUM = 0

DO 1 K =1,5,2

DO 2 J =17,-2,-3
DO 3 M = 1980,1989,2
SUM = SUM + 1

3 CONTINUE
2 CONTINUE
1 CONTINUE

PRINT*, SUM

END

13. LOGICAL T, F
INTEGER BACK, FUTURE, K

BACK = 1

FUTURE = 100

T = .TRUE.

F = .FALSE.

DO 99 K = BACK,FUTURE, 5
T = (T.AND..NOT.T) .OR. (F.OR..NOT.F)
F = .NOT.T

FUTURE = FUTURE*BACK* (-1)
99 CONTINUE
IF (T) PRINT*, 'DONE'
IF (F) PRINT*, 'UNDONE'
END

2. Find the number of iterations of the WHIL@ in each of the following
programs: o2

1. INTEGER K, M, J
K = 80
M =5
J = M-M/K*K
10 IF (J.NE.O) THEN
PRINT*, J
J = M-M/K*K
M=M+ 1
GOTO 10
ENDIF
END

N,

2. REAL W
INTEGER L
W=2.0
L=5%*TW
100 IF (L/W.EQ.((L/4.0)*W)) THEN
PRINT*, L
L =1+ 10
GOTO 100
ENDIF
END

3. Which of the following program segments causes an infinite loop?

(1) J =0
25 IF (J.LT.5) THEN
J=J+ 1
GOTO 25
ENDIF
PRINT*, J

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises

102

II. J=0
25 IF (J.LT.5) THEN
J=J+1
ENDIF
GOTO 25
PRINT*, J
III. X = 2.0
5 X =X + 1
IF (X.GT.4) X =X + 1
GOTO 5
PRINT*, X
V. M =2
K =1
10 IF (K.LE. M) THEN
20 M=M+ 1
K=K+ 2
GOTO 20
ENDIF
GOTO 10
m
v X =1
4 IF (X.GE.l1) GOTO 5
5 IF (X.LE.1) GOTO 4
| "
Vi. J =1
33 IF (J.GT.5) THEN
GOTO 22
ENDIF
PRINT*, J
J=J+1
GOTO 33
22 STOP
4. Convert the following WﬁM DO loops :
I. ID = N
10 IF (ID.LE.891234) THEN
PRINT*, ID
ID = ID + 10
GOTO 10
ENDIF
€« 2V
II. L =1
SUM =0
3 IF (L.LE.15) THEN
g = o
2 IF (J.LE.O) THEN
SUM =SUM+J
J=J+1
GOTO 2
ENDIF
L = L+3
GOTO 3
ENDIF
PRINT*, SUM

5. What will be printed by the following program :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises

103

INTEGER ISUM, K, N
ISUM = 0
READ*, N
DO 6 K = 1,N
ISUM = ISUM +(-1)** (K-1)
6 CONTINUE
PRINT*, ISUM
END
If the input is:
a.
E
b.
|8
c.
[51 |
d. . \N\
|98 |
6. The following program segments may or may not E M‘[ify the errors (if
any). ‘
1. INTEGER K, J
DO 6 K = 1,4
DO 7 J = K-1,K
PRINT*, K
6 CONTINUE
7 CONTINUE
END
2. INTEGER K, J
K =10
J = 20
1 IF (J.GT. K) THEN
K = K/2
GOTO 1
ENDIF
END

7. Write a FORT; mgram to calculate the fo

200 E(_l)k ks_flj

2.

k=1
8. Write a p
ber
ve

etween the two integers.(Note: M may

llowing summation:

m that reads the values of two integers M and then prints all the odd

be less than or equal to N or vice-

9. Write a program that prints all the numbers between two integers M and N which are
divisible by an integer K. The program reads the values of M, N and K.

10. Write a program that prints all the perfect squares between two integers M and N.

Your program should read the values of M and N.

of an integer, example 25 =5 x 5)

(Note: A perfect square is a square

11. Using nested WHILE loops, print the multiplication table of integers from 1 to 10.

Each multiplication table goes from 1 to 20. Your

output should be in the form :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises 104

1 *1 =1

1%2=2

1 % 20 = 20

10 * 1 = 10
- 20

10 * 2

10 * 20 = 200

12. Rewrite the program in the previous question using nested DO loops.

13. Complete the PRINT statement in the following program to produce thg indicated
output. k

DO 1 K = 1,5
PRINT*,
1 CONTINUE
END

OUTPUT: AN

ES
* =k k%
*Ak=%k%
*k k=%
* ok Kk k=

14. Complete the following program in order to gwd output.

DO 10 K = 10, (1) ; (2)
PRINT*, ((3) , L = (4) , K)
10 CONTINUE
END

N4
The required output is : “

5 6 7 8 9 10
5 6 7 8 9
5) 7 8
5 6 7
5 6
5
5.9 Solution xercises
Ans 1.
T
2
33
25
7 4 3
10 50
10
7
5
4

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises

105

11
12
13

21
22
23

HELLO
HELLO

60
DONE

Ans 2.
1.76
2. INFINITE LOOP

Ans 3.
Im,imr,1v, v

Ans 4.
I) o A‘

\BQQ\

DO 10 ID = N , 891234 , 10
PRINT*, ID

10 CONTINUE
» RO
SUM = 0
po3L=1, 15, 3
po2J=-L, 0, 1
SUM = SUM + J
2 CONTINUE
3 CONTINUE
v
Ans 5.
@)0 C)1 D)0
Anfl6

IMPROPER NESTING OF DO LOOPS
2) INFINITE LOOP

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises

106

Ans 7.

REAL SUM

INTEGER K

SUM = 0

DO 10 K =1 , 200

SUM =
10 CONTINUE

SUM + (-1) ** K * (REAL(5*K) / (K+1))

PRINT*, SUM

END
Ans 8.
INTEGER M , N , TEMP
READ*, M , N
IF(M .LT. N) THEN
TEMP = N
N = M
M = TEMP
ENDIF
DO5L =M, N
IF(L/2 * 2 .NE. L) PRINT*,L
5 CONTINUE
END
Ans 9. . I \
INTEGER M , N , K , TEMP
READ*, M , N , K
IF(M .LT. N) THEN
TEMP = N
N = M
M = TEMP
ENDIF
DO5L =M, N
IF(L/K * K .EQ. L) PRINT*,L
5 CONTINUE
END
Ans 10. ‘:!g:j1‘~> “'
INTEGER M , N , TEMP
READ*, M , N
IF(M .LT. N) THEN
TEMP = N
N =M
M = TEMP
ENDIF
DO5L =M, N
IF(INT(SQRT (REAL (L)) ** 2 .EQ. L)) PRINT*,L
5 CONTINUE

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises 107

Ans 11.
INTEGER I, J
I =1
10 IF(I .LE. 10) THEN

Ans 12. 'iI; E;

INTEGER I, J
DO 10 T =1, 10
DO 10 J =1 , 20

PRINT*, I, ' *x ', J, ' = ', I*xJ
10 CONTINUE
END
Ans 13. ‘ ii:
|PRINT*, ('*', J =1, K-1), '=' , ('*', M =1, 5-K)
Ans 14. “‘N,
1)5 2)-1 3)L 4)5

\\(\
R
(JO

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

