
fifth Solutions to Exercises 85

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

5 REPETITION

While writing a program, it may be necessary to execute a statement or a group of

statements repeatedly. Repetition is supported in FORTRAN through two repetition

constructs, namely, the DO and the WHILE constructs. A repetition construct is also

known as a loop.

In a repetition construct, a group of statements, which are executed repeatedly, is

called the loop body. A single execution of the loop is called an iteration. Every

repetition construct must terminate after a finite number of iterations. The termination

of the loop is decided through what is known as the termination condition. A decision is

made whether to execute the loop for another iteration through the termination

condition. In the case of a DO loop, the number of iterations is known before the loop is

executed; the termination condition checks whether this number of iterations have been

executed. In the case of a WHILE loop, such a decision is made in every iteration.

Repetition constructs are very useful and extensively used in solving a significant

number of programming problems. Let us consider the following example as an

illustration of such constructs.

Example : Average Computation: Assume that we were asked to write a FORTRAN

program that reads the grades of 8 students in an exam. The program is to compute and

print the average of the grades. Without repetition, the following program may be

considered as a solution:

Solution:

 REAL X1, X2, X3, X4, X5, X6, X7, X8
 REAL SUM, AVG
 READ*, X1
 READ*, X2
 READ*, X3
 READ*, X4
 READ*, X5
 READ*, X6
 READ*, X7
 READ*, X8
 SUM = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8
 AVG = SUM / 8.0
 PRINT*, AVG
 END

The variable SUM is a real variable in which we store the summation of the grades. The

statements are considerably long for just 8 students. Imagine the size of such statements

fifth The DO Loop 86

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

when the number of students is 100. It is highly inefficient to use 100 different variable

names.

From the example above, let us try to extract the statements where repetition occurs.

The reading and assignment statements are clearly such statements. We can do the

reading and addition in these statements, individually, for each grade. The following

repetitive segment can be used instead of the long read and assignment statements :

 SUM = 0

 REPEAT THE FOLLOWING STATEMENTS 8 TIMES
 READ*, X
 SUM = SUM + X

In each iteration, one grade is read and then added to the previous grades. In the first

iteration, however, there are no previous grades. Therefore, SUM is initialized to zero,

meaning that the summation of the grades is zero, before any grade is read.

This repetitive solution is more efficient since it can be used for any number of

students. By reading the number of students N, the repetition construct above, can be

changed, to find the sum of the grades of N students, as follows :

 SUM = 0
 READ*, N
 REPEAT THE FOLLOWING STATEMENTS N TIMES
 READ*, X
 SUM = SUM + X

The repetition construct above is not written in the FORTRAN language. To implement

this construct in FORTRAN, we can use two types of loops: the DO Loop and the

WHILE loop.

5.1 The DO Loop

One very basic feature of the DO loop repetitive construct is that the number of

iterations (the number of times the loop is executed) is known (computed) before the

loop execution begins. The general form of the DO loop is:

 DO N index = initial, limit, increment
 BLOCK OF FORTRAN STATEMENTS
N CONTINUE

The CONTINUE statement indicates the end of the DO loop.

The number of times (iterations) the loop is executed is computed as follows :

Number of times a Do loop is Executed 








 

limit initial

increment
1

The detailed logic of the DO loop is as follows:

 If the increment is positive, the value of the initial must be less than or equal to

the value of the limit. If the increment is negative, the value of the initial must

be greater than or equal to the value of the limit. Otherwise, the loop will not be

executed. If the values of the initial and the limit are equal, the loop executes

only once.

 In the first iteration, the index of the loop has the value of initial .

 Once the CONTINUE statement is reached, the index is increased or decreased

by the increment and the execution of the next iteration starts. Before each

fifth The DO Loop 87

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

iteration, the index is checked to see if it has reached the limit. If the index

reaches the limit, the loop iterations stop. Otherwise, the next iteration begins.

Consider the following example as an illustration of the DO loop :

 DO 15 K = 1, 5, 2
 PRINT*, K
15 CONTINUE

The loop above is executed
5 1

2
1 3









   times. Thus, the values index K takes during

the execution of the loop are 1, 3, and 5. Note that the value of K increments by 2 in

each iteration. In the beginning, we make sure that the initial is less than the limit since

the value of the increment is positive. The execution of the loop begins and the value of

K, which is 1, is printed. The CONTINUE statement returns the control to the DO

statement and the execution of the loop takes place for the second time with the value of

K as 3. This continues for the third time with K as 5. Once this iteration is over, the

control goes back and the index K gets incremented again to 7, which is more than the

limit. The execution of the loop stops and control transfers to the statement following

the CONTINUE statement. Note that the value of K outside the loop is 7.

The following rules apply to DO loops:

 The index of a DO loop must be a variable of either INTEGER or REAL

types.

 The parameters of the loop, namely, initial, limit, and increment can be

expressions of either INTEGER or REAL types. Although it depends on the

nature of the problem being solved, it is recommended that the type of the

parameters match the type of the index.

 The value of the DO loop index cannot be modified inside the loop. Any

attempt to modify the index within the loop will cause an error.

 The increment must not be zero, otherwise an error occurs.

 If the index is an integer variable then the values of the parameters of the DO

loop will be truncated to integer values before execution starts.

 The value of the index after the execution of the loop is either the value that has

been incremented and found to exceed the limit (for a positive increment) or the

value that has been decremented and found to be less than the limit (for a

negative increment).

 It is not allowed to branch into a DO loop. Entering the DO loop has to be

through its DO statement. It is possible to branch out of a DO loop before all

the iterations are completed. This type of branching must not be used unless

necessary.

 It is possible to have a DO loop without the CONTINUE statement. The

statement number, which is given to the CONTINUE statement, can be given

to the last FORTRAN statement in the loop, except in the case when the last

statement is either an IF, GOTO, RETURN, STOP or another DO statement.

 In the DO loop construct, in the absence of the increment, the default increment

is +1 or +1.0 depending on the type of the index.

fifth The DO Loop 88

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 In the case when the increment is positive but the initial is greater than the limit,

a zero-trip DO loop occurs. That is, the loop executes zero times. The same

happens when the increment is negative and the initial is less than the limit.

Note that a zero-trip DO loop is not an error.

 The same continue statement number can be used in both a subprogram and the

main program invoking the subprogram. This is allowed because subprograms

are considered separate programs.

 The parameters of the loop are evaluated before the loop execution begins.

Once evaluated, changing their values will not affect the executing of the loop.

For an example, consider the following segment. Changing DO loop parameters

inside the loop should be avoided while writing application programs.

 REAL X, Y
 Y = 4.0
 DO 43 X = 0.0, Y, 1.5
 PRINT*, X
 Y = Y + 1.0
 PRINT*, Y
43 CONTINUE

In the above loop, the value of Y which corresponds to the limit in the DO loop,

starts with 4. Therefore, and according to the rule we defined earlier, this loop is

executed
4 0 0 0

15
1 3

. .

.









   times. The values of the parameters (initial, limit, and

increment) are set at the beginning of the loop and they never change for any iteration of

the loop. Although the value of Y changes in each iteration within the loop, the value of

the limit does not change. The following examples illustrate the ideas explained above:

5.1.1 Examples on DO loops

Example 1: Consider the following program.

 DO 124 M = 1, 100, 0.5
 PRINT*, M
124 CONTINUE
 PRINT*, M
 END

In the above program, the value of the increment is 0.5. When this value is added and

assigned to the index M, which is an integer, the fraction part gets truncated. This

means that the increment is 0 which causes an error.

Example 2: The Factorial: Write a FORTRAN program that reads an integer number

M. The program then computes and prints the factorial of M.

fifth Nested DO Loops 89

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER M, TERM, FACT
 READ*, M
 IF (M.GE.0) THEN
 FACT = 1

 TERM = M
 DO 100 M = TERM, 2, -1
 IF (TERM.GT.1) THEN
 FACT = FACT * TERM
100 CONTINUE
 PRINT*,'FACTORIAL OF ', M, ' IS ', FACT
 ELSE
 PRINT*, 'NO FACTORIAL FOR NEGATIVES'
 ENDIF
 END

To compute the factorial of 3, for example, we have to perform the following

multiplication: 3 * 2 * 1. Notice that the terms decrease by 1 and stop when the value

reaches 1. Therefore, the header of the DO loop forces the repetition to stop when

TERM, which represents the number of terms, reaches the value 1.

5.2 Nested DO Loops

DO loops can be nested, that is you may have a DO loop inside another DO loop.

However, one must start the inner loop after starting the outer loop and end the inner

loop before ending the outer loop. It is allowed to have as many levels of nesting as one

wishes. The constraint here is that inner loops must finish before outer ones and the

indexes of the nested loops must be different. The following section presents some

examples of nested DO loops.

5.2.1 Example on Nested DO loops

Example 1: Nested DO Loops: Consider the following program.

 DO 111 M = 1, 2
 DO 122 J = 1, 6 , 2
 PRINT*, M, J
122 CONTINUE
111 CONTINUE
 END

The output of the above program is:
1 1
1 3
1 5
2 1
2 3
2 5

Example 2: The above program can be rewritten using one CONTINUE statement as

follows:.

 DO 111 M = 1, 2
 DO 111 J = 1, 6 , 2
 PRINT*, M, J
111 CONTINUE
 END

fifth The WHILE Loop 90

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice that both do loops has the same label number and the same CONTINUE

statement.

Example 3: The above program can be rewritten without any CONTINUE statement as

follows:

 DO 111 M = 1, 2
 DO 111 J = 1, 6 , 2
111 PRINT*, M, J
 END

Notice that the label of the do loop will be attached to the last statement in the do loop.

5.3 The WHILE Loop

The informal representation of the WHILE loop is as follows :
 WHILE condition EXECUTE THE FOLLOWING

 block of statementS.

In this construct, the condition is checked before executing the block of statements. The

block of statements is executed only if the condition, which is a logical expression,

evaluates to a true value. At the end of each iteration, the control returns to the

beginning of the loop where the condition is checked again. Depending on the value of

the condition, the decision to continue for another iteration is made. This means that the

number of iterations the WHILE loop makes depends on the condition of the loop and

could not always be computed before the execution of the loop starts. This is the main

difference between WHILE and DO repetition constructs.

Unlike other programming languages such as PASCAL and C, standard FORTRAN

does not have an explicit WHILE statement for repetition. Instead, it is built from the

IF and the GOTO statements.

In FORTRAN, the IF-THEN construct is used to perform the test at the beginning of

the loop. Consider an IF statement, which has the following structure :

 IF (condition) THEN

 block of statements
 ENDIF

If the condition is .TRUE., the block of statements is executed once. For the next

iteration, since we need to go to the beginning of the IF statement, we require the

GOTO statement. It has the following general form :
 GOTO statement number

A GOTO statement transfers control to the statement that has the given statement

number. Using the IF and the GOTO statements, the general form of the WHILE loop

is as follows :

n IF (condition) THEN
 block of statements
 GOTO n
 ENDIF

n is a positive integer constant up to 5 digits and therefore, ranges from 1 to 99999. It is

the label of the IF statement and must be placed in columns 1 through 5.

The execution of the loop starts if the condition evaluates to a .TRUE. value. Once

the loop iterations begin, the condition must be ultimately changed to a .FALSE. value,

fifth The WHILE Loop 91

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

so that the loop stops after a finite number of iterations. Otherwise, the loop never stops

resulting in what is known as the infinite loop. In the following section, we elaborate

more on the WHILE loop.

5.3.1 Examples on WHILE Loops

Example 1: Computation of the Average: Write a FORTRAN program that reads the

grades of 100 students in a course. The program then computes and prints the average

of the grades.

Solution:

 REAL X, AVG, SUM
 INTEGER K
 K = 0
 SUM = 0.0

25 IF (K.LT.100) THEN
 READ*, X
 K = K + 1
 SUM = SUM + X
 GOTO 25
 ENDIF
 AVG = SUM / K
 PRINT*, AVG
 END

Note that the variable K starts at 0. The value of K is incremented after the reading of a

grade. The IF condition presents the loop from reading any new grades once the 100th

grade is read. Reading the 100th grade causes K to be incremented to the value of 100

as well. Therefore, when the condition is checked in the next iteration, it becomes

.FALSE. and the loop stops.

In each iteration, the value of the variable GRADE is added to the variable SUM.

After the loop, the average is computed by dividing the variable SUM by the variable K.

Example 2: The Factorial: The problem is the same as the one discussed in Example 2

of Section 5.2. In this context, however, we will solve it using a WHILE loop.

Solution:

 INTEGER M, TERM, FACT
 READ*, M
 IF (M.GE.0) THEN
 FACT = 1
 TERM = M
3 IF (TERM.GT.1) THEN
 FACT = FACT *TERM
 TERM =TERM - 1

 GOTO 3
 ENDIF
 PRINT*,'FACTORIAL OF ', M, ' IS ', FACT
 ELSE
 PRINT*, 'NO FACTORIAL FOR NEGATIVES'
 ENDIF
 END

Note the similarities between both solutions. The WHILE loop starts from M (the value

we would like to compute the factorial of) and the condition of the loop makes sure that

the loop will only stop when TERM reaches the value 1.

fifth Nested WHILE Loops 92

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 3: Classification of Boxers: Write a FORTRAN program that reads the

weights of boxers. Each weight is given on a separate line of input. The boxer is

classified according to the following criteria: if the weight is less than or equal to 65

kilograms, the boxer is light-weight; if the weight is between 65 and 85 kilograms, the

boxer is middle-weight and if the weight is more than or equal to 85, the boxer is a

heavy-weight. The program prints a proper message according to this classification for

a number of boxers by reading their weights repeatedly from the input. This repetitive

process of reading and classification stops when a weight of -1.0 is read.

Solution:

 REAL WEIGHT
 READ*, WEIGHT
11 IF (WEIGHT.NE.-1.0) THEN
 IF (WEIGHT.LT.0.OR.WEIGHT.GE.400) THEN
 PRINT*, ' WEIGHT IS OUT OF RANGE '
 ELSEIF (WEIGHT.LE.65) THEN
 PRINT*, ' LIGHT-WEIGHT '
 ELSEIF (WEIGHT.LT.85) THEN
 PRINT*, ' MIDDLE-WEIGHT '
 ELSE
 PRINT*, ' HEAVY-WEIGHT '
 ENDIF
 READ*, WEIGHT
 GOTO 11
 ENDIF
 END

Note that in this example, the condition that stops the iterations of the loop depends on

the READ statement. The execution of the loop stops when a value of -1.0 is read. This

value is called the end marker or the sentinel, since it marks the end of the input. A

sentinel must be chosen from outside the range of the possible input values.

5.4 Nested WHILE Loops

WHILE loops may be nested, that is you can put a WHILE loop inside another

WHILE loop. However, one must start the inner loop after starting the outer loop and

end the inner loop before ending the outer loop for a logically correct nesting. (The

following example is equivalent to the nested DO loop example given earlier.)

Example: Consider the following program.

 M = 1
22 IF(M .LE. 2) THEN
 J = 1
11 IF (J .LE. 6) THEN
 PRINT*, M, J
 J = J + 2
 GOTO 11
 ENDIF
 M = M + 1
 GOTO 22
 ENDIF
 END

The output of the above program is:
1 1
1 3
1 5

sixth Examples on DO and WHILE Loops 93

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2 1
2 3
2 5

There are two nested WHILE loops in the above program. The outer loop is controlled

by the variable M. The inner loop is controlled by the variable J. For each value of the

variable M, the inner loop variable J takes the values 1, 3 and 5.

5.5 Examples on DO and WHILE Loops

Example 1: Evaluation of Series: Write a FORTRAN program that evaluates the

following series to the 7th term.

i

i

N

3
1



(Summation of base 3 to the powers from 1 to N. Assume N has the value 7)

Solution:

 INTEGER SUM
 SUM = 0
 DO 11 K = 1, 7
 SUM = SUM + 3 ** K
11 CONTINUE
 PRINT*, SUM
 END

Example 2: Alternating Sequences/ Series: Alternating sequences, or series, are those

which have terms alternating their signs from positive to negative. In this example, we

find the sum of an alternating series.

 Question: Write a FORTRAN program that evaluates the following series to the 100th

term.

1 - 3 + 5 - 7 + 9 - 11 + 13 - 15 + 17 - 19 + ...

Solution:

It is obvious that the terms differ by 2 and start at the value of 1.
 INTEGER SUM, TERM,NTERM
 SUM = 0
 TERM = 1
 DO 10 NTERM = 1, 100
 SUM = SUM + (-1) ** (NTERM + 1) * TERM

 TERM = TERM + 2
10 CONTINUE
 PRINT*, SUM
 END

Notice the summation statement inside the loop. The expression (-1) ** (NTERM + 1)

is positive when NTERM equals 1, that is for the first term. Then, it becomes negative

for the second term since NTERM + 1 is 3 and so on.

Example 3: Series Summation using a WHILE loop: Question: Write a FORTRAN

program which calculates the sum of the following series :

1

2

2

3

3

4

4

5

99

100
    L

sixth Examples on DO and WHILE Loops 94

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 REAL N, SUM
 N = 1
 SUM = 0
10 IF (N.LE.99) THEN
 SUM = SUM + N / (N + 1)

 N = N + 1
 GOTO 10
 ENDIF
 PRINT*, SUM
 END

In the above program, if N is not declared as REAL, the expression N/(N+1), in the

summation inside the loop, will always compute to zero.

Example 4: Conversion of a WHILE loop to a DO loop: Convert the following WHILE

loop into a DO loop.

 REAL X, AVG, SUM
 INTEGER K
 K = 0

 SUM = 0.0
25 IF (K.LT.100) THEN
 READ*, X
 K = K + 1

 SUM = SUM + X
 GOTO 25
 ENDIF
 AVG = SUM / K
 PRINT*, AVG
 END

In the WHILE loop, K starts with the value of 0, and within the loop it is incremented

by 1 in each iteration. The termination condition is that the value of K must exceed 99.

In the equivalent program using a DO loop, K starts at 0 and stops at 99 and gets

incremented by 1 in each iteration.

Solution:

The equivalent program using a DO loop is as follows:

 REAL X, AVG, SUM

 INTEGER K
 SUM = 0.0
 DO 25 K = 0, 99, 1
 READ*, X
 SUM = SUM + X
 25 CONTINUE
 AVG = SUM / 100

 PRINT*, AVG
 END

An important point to note in this example is the way the average is computed. The

statement that computes the average divides the summation of the grades SUM by 100.

Note that the value of the K is 100 because the loop stops when the value of K exceeds

99. Keeping in mind that the increment is 1, the value of K after the loop terminates is

100. However, it is not recommended to use the value of the index outside the DO loop.

It is also important to note that any other parameters such as:

sixth Implied Loops 95

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 DO 25 K = 200, 101, -1

would also have the same effect. Note that the variable K exits the loop with the value

100 in this case as well.

It is not always possible to convert a WHILE loop into a DO loop. As an example,

consider the WHILE loop in the Classification of Boxers example. There, we cannot

accomplish the conversion because the number of times the WHILE loop gets executed

is not known. It depends on the number of data values before the end marker.

5.6 Implied Loops

Implied loops are only used in READ and PRINT statements. The implied loop is

written in the following manner :
 READ*,(list of variables, index = initial, limit, increment)
 PRINT*,(list of expressions, index = initial, limit, increment)

As in the case of explicit DO loops, the index must be either an integer or real

expression. The variables in the READ statement can be of any type including array

elements. The expressions in the PRINT statement can be of any type as well. All the

rules that apply to DO loop parameters also apply to implied loop parameters. Usage of

implied loops is given in the following examples :

Example 1: Printing values from 100 to 87: The following segment prints the integer

values from 100 down to 87 in a single line.

 PRINT*, (K, K = 100 , 87 , -1)

Output:
100 99 98 97 96 95 94 93 92 91 90 89 88 87

Notice that the increment is -1, which means that the value of K decreases from 100 to

87. In each iteration, the value of K is printed. The value of K is printed
87 100

1
1 14













   times. Since K is the index of the loop, the value printed here is the

value of the index, which varies in each iteration. Consider the following explicit DO

loop version of the implied loop :

 DO 60 K = 100, 87 , -1
 PRINT*, K
60 CONTINUE

Output:
100

 99
 98

...

...

...
 87

The two loops are equivalent except in terms of the shape of the output. In the implied

loop version, the output will be printed on one line. In the explicit DO loop version, the

output will be printed as one value on each line.

Example 2: Printing more than one value in each iteration of an implied loop: The

following segment prints a percentage sign followed by a + sign three times :

sixth Repetition Constructs in Subprograms 96

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 PRINT*, ('%' , '+' , M = 1 , 3)

This produces the following output:
%+%+%+

Notice that the parenthesis encloses both the % and the + signs, which means they both

have to be printed in every iteration the loop makes.

Example 3: Nested Implied Loops: An implied loop may be nested either in another

implied loop or in an explicit DO loop. There is no restriction on the number of levels of

nesting. The following segment shows nested implied loops.

 PRINT*, ((K, K = 1 , 5 , 2), L = 1 , 2)

Nested implied loops work in a similar manner as the nested DO loops. One very

important point to note here is the double parenthesis before the K in the implied

version. It means that the inner loop with index variable K is enclosed within the outer

one with index variable L. The L loop is executed
2 1

1
1 2









   times. The K loop forces

the value of K to be printed
5 1

2
1 3









   iterations. However, since the K loop is nested

inside the L loop, the K loop is executed 3 times in each iteration of the L loop. Thus, K

is printed 6 times. Therefore, the output of the implied version is:
1 3 5 1 3 5

5.7 Repetition Constructs in Subprograms

Subprograms in FORTRAN are considered separate programs during compilation.

Therefore, repetition constructs in subprograms are given the same treatment as in

programs. The following is an example that shows how repetition is used in

subprograms.

Example: Count of Integers in some Range that are Divisible by a given Value: Write a

function subprogram that receives three integers as input. The first and second input

integers make the range of values in which the function will conduct the search. The

function searches for the integers in that range that are divisible by the third input

integer. The function returns the count of such integers to the main program. The main

program reads five lines of input. Each line consists of three integers. After each read,

the main program calls the function, passes the three integers to it and receives the

output from it and prints that output with a proper message :

sixth Exercises 97

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER K, L, M, COUNT, J, N
 DO 10 J = 1 , 5
 READ*, K, L, M
 N = COUNT(K , L , M)
 PRINT*, 'COUNT OF INTEGERS BETWEEN',K,'AND', L
 PRINT*, 'THAT ARE DIVISIBLE BY', M, 'IS', N
 PRINT*
10 CONTINUE
 END
 INTEGER FUNCTION COUNT(K , L , M)
 INTEGER K, L, M, INCR, NUM, J
 INCR = 1

 NUM = 0
 IF (L .LT. K) INCR = -1
 DO 10 J = K, L, INCR
 IF (MOD(J , M) .EQ. 0) NUM = NUM + 1
10 CONTINUE
 COUNT = NUM
 RETURN
 END

If we use the following input:
2 34 2

-15 -30 5
70 32 7

0 20 4
-10 10 10

The typical output would be as follows:
COUNT OF INTEGERS BETWEEN 2 AND 34

THAT ARE DIVISIBLE BY 2 IS 12

COUNT OF INTEGERS BETWEEN -15 AND -30
THAT ARE DIVISIBLE BY 5 IS 4

COUNT OF INTEGERS BETWEEN 70 AND 32
THAT ARE DIVISIBLE BY 7 IS 6

COUNT OF INTEGERS BETWEEN 0 AND 20
THAT ARE DIVISIBLE BY 4 IS 6

COUNT OF INTEGERS BETWEEN -10 AND 10
THAT ARE DIVISIBLE BY 10 IS 3

Remember what we said about the subprogram being a separate entity from the main

program invoking it. Accordingly, note the following in the above example:

 It is allowed to use the same statement number in the main program and

subprograms of the same file. Notice the statement number 10 in both the main

program and the function subprogram

 It is also allowed to use the same variable name as index of DO loops in the

main program and the subprogram. Notice the variable J in the above

5.8 Exercises

1. What will be printed by the following programs?

sixth Exercises 98

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

1. LOGICAL FUNCTION PRIME(K)
 INTEGER N, K

 PRIME = .TRUE.

 DO 10 N = 2, K / 2
 IF (MOD(K , N) .EQ. 0) THEN
 PRIME = .FALSE.

 ENDIF

10 CONTINUE

 RETURN

 END

 LOGICAL PRIME

 PRINT*, PRIME(5), PRIME(8)
 END

2. INTEGER FUNCTION FACT(K)
 INTEGER K,L
 FACT = 1
 DO 10 L = 2 , K
 FACT = FACT * L
10 CONTINUE
 RETURN
 END
 INTEGER FUNCTION COMB(N , M)
 INTEGER FACT
 IF (N .GT.M) THEN
 COMB = FACT(N) / (FACT(M) * FACT(N-M))
 ELSE
 COMB = 0
 ENDIF
 RETURN
 END
 INTEGER COMB
 PRINT*, COMB(4 , 2)
 END

3. INTEGER K, M, N
 N = 0

 DO 10 K = -5 , 5

 N = N + 2

 DO 20 M = 3 , 1

 N = N + 3

20 CONTINUE

 N = N + 1

10 CONTINUE

 PRINT*, N
 END

sixth Exercises 99

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4. INTEGER ITOT, N
 READ*, N

 ITOT = 1

10 IF (N .NE. 0) THEN

 ITOT = ITOT * N

 READ*, N

 GOTO 10

 ENDIF

 READ*, N

20 IF (N .NE. 0) THEN

 ITOT = ITOT * N

 READ*, N

 GOTO 20

 ENDIF

 PRINT*,ITOT
 END

Assume the input is
2

0
3

0
4

5. INTEGER FUNCTION CALC(A,B)
 INTEGER A,B,R, K

 R = 1

 DO 10 K=1,B

 R = R*A

10 CONTINUE

 CALC = R

 RETURN

 END

 INTEGER CALC

 READ*,M,N

 PRINT*,CALC(M,N)
 END

Assume the input is
2 5

6. INTEGER KK, J, K
 KK = 0

2 IF (KK.LE.0) THEN
 READ*, J , K
 KK = J - K
 GOTO 2
 ENDIF
 PRINT*,KK,J,K
 END

Assume the input is
2 3

-1 2
3 3

sixth Exercises 100

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4 -3

2 5
4 3

7. INTEGER K, J

 K = 2
25 IF (K.GT.0) THEN
 DO 15 J = K, 3, 2
 PRINT*, K, J
15 CONTINUE
 K = K - 1
 GOTO 25
 ENDIF
 END

8. INTEGER N, C
 LOGICAL FLAG
 READ*, N
 FLAG = .TRUE.

 C = N ** 2
22 IF (FLAG) THEN
 C = (C + N) / 2
 FLAG = C.NE.N
 PRINT*, C
 GOTO 22
 ENDIF
 END

Assume the input is
4

9. INTEGER N, K
 READ*, N
 K = SQRT(REAL(N))
33 IF (K*K .LT. N) THEN
 K = K + 1
 GOTO 33
 ENDIF
 PRINT*, K*K
 END

Assume the input is
 6

10. INTEGER J, K
 DO 10 K = 1,2
 PRINT*, K
 DO 10 J = 1,3
10 PRINT*,K,J
 END

11. INTEGER X, K, M
 M = 4
 DO 100 K = M ,M+2
 X = M + 2
 IF (K.LT.6) THEN
 PRINT*,'HELLO'
 ENDIF
100 CONTINUE
 END

sixth Exercises 101

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

12. INTEGER SUM, K, J, M
 SUM = 0
 DO 1 K = 1,5,2
 DO 2 J = 7,-2,-3
 DO 3 M = 1980,1989,2
 SUM = SUM + 1
3 CONTINUE
2 CONTINUE
1 CONTINUE
 PRINT*,SUM
 END

13. LOGICAL T, F
 INTEGER BACK, FUTURE, K
 BACK = 1
 FUTURE = 100

 T = .TRUE.
 F = .FALSE.
 DO 99 K = BACK,FUTURE,5
 T = (T.AND..NOT.T) .OR. (F.OR..NOT.F)
 F = .NOT.T

 FUTURE = FUTURE*BACK*(-1)
99 CONTINUE
 IF (T) PRINT*, 'DONE'
 IF (F) PRINT*, 'UNDONE'
 END

2. Find the number of iterations of the WHILE-LOOPS in each of the following

programs:

1. INTEGER K, M, J
 K = 80
 M = 5

 J = M-M/K*K
10 IF (J.NE.0) THEN
 PRINT*, J
 J = M-M/K*K

 M = M + 1
 GOTO 10
 ENDIF
 END

2. REAL W
 INTEGER L
 W = 2.0
 L = 5 * W
100 IF (L/W.EQ.((L/4.0)*W)) THEN
 PRINT*, L
 L = L + 10
 GOTO 100
 ENDIF
 END

3. Which of the following program segments causes an infinite loop?

(I) J = 0
25 IF (J.LT.5) THEN
 J = J + 1
 GOTO 25
 ENDIF
 PRINT*, J

sixth Exercises 102

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

II. J = 0
25 IF (J.LT.5) THEN
 J = J + 1
 ENDIF
 GOTO 25
 PRINT*, J

III. X = 2.0

5 X = X + 1
 IF (X.GT.4) X = X + 1
 GOTO 5
 PRINT*, X

IV. M = 2

 K = 1
10 IF (K.LE. M) THEN
20 M = M + 1
 K = K + 2
 GOTO 20
 ENDIF
 GOTO 10

V. X = 1
4 IF (X.GE.1) GOTO 5
5 IF (X.LE.1) GOTO 4

VI. J = 1
33 IF (J.GT.5) THEN
 GOTO 22
 ENDIF
 PRINT*, J
 J = J + 1
 GOTO 33
22 STOP

 4. Convert the following WHILE loops to DO loops :

I. ID = N
10 IF (ID.LE.891234) THEN
 PRINT*, ID
 ID = ID + 10
 GOTO 10
 ENDIF

II. L = 1

 SUM =0
3 IF (L.LE.15) THEN
 J = -L
2 IF (J.LE.0) THEN
 SUM =SUM+J

 J = J + 1
 GOTO 2
 ENDIF
 L = L+3
 GOTO 3
 ENDIF
 PRINT*,SUM

5. What will be printed by the following program :

sixth Exercises 103

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 INTEGER ISUM, K, N
 ISUM = 0
 READ*, N
 DO 6 K = 1,N
 ISUM = ISUM +(-1)**(K-1)
6 CONTINUE
 PRINT*, ISUM
 END

If the input is:

a.
9

b.
8

 c.
51

d.
98

6. The following program segments may or may not have errors. Identify the errors (if

any).

1. INTEGER K, J
 DO 6 K = 1,4
 DO 7 J = K-1,K
 PRINT*, K
6 CONTINUE
7 CONTINUE
 END

2. INTEGER K, J
 K = 10
 J = 20
1 IF (J.GT. K) THEN
 K = K/2
 GOTO 1
 ENDIF
 END

7. Write a FORTRAN 77 program to calculate the following summation:

 














 1
5

1
1

200
k

k

k

k

8. Write a program that reads the values of two integers M and then prints all the odd

numbers between the two integers.(Note: M may be less than or equal to N or vice-

versa).

9. Write a program that prints all the numbers between two integers M and N which are

divisible by an integer K. The program reads the values of M, N and K.

10. Write a program that prints all the perfect squares between two integers M and N.

Your program should read the values of M and N. (Note: A perfect square is a square

of an integer, example 25 = 5  5)

11. Using nested WHILE loops, print the multiplication table of integers from 1 to 10.

Each multiplication table goes from 1 to 20. Your output should be in the form :

sixth Solutions to Exercises 104

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

1 * 1 = 1

1 * 2 = 2
:
1 * 20 = 20

:
10 * 1 = 10
10 * 2 = 20

:
10 * 20 = 200

12. Rewrite the program in the previous question using nested DO loops.

13. Complete the PRINT statement in the following program to produce the indicated

output.

 DO 1 K = 1,5
 PRINT*,
1 CONTINUE
 END

OUTPUT:
=****

*=***

=
***=*
****=

14. Complete the following program in order to get the required output.

 DO 10 K = 10,___(1)____ ,___(2)___
 PRINT*,(__(3)__, L = __(4)__, K)
10 CONTINUE
 END

The required output is :
5 6 7 8 9 10

5 6 7 8 9
5 6 7 8
5 6 7

5 6
5

5.9 Solutions to Exercises

Ans 1.

 T F

 12

 33

 6

 25

 7 4 -3

 1 0 50

 10

 7

 5

 4

sixth Solutions to Exercises 105

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 9

 1

 1 1

 1 2

 1 3

 2

 2 1

 2 2

 2 3

 HELLO

 HELLO

 60

 DONE

Ans 2.

 1. 76

 2. INFINITE LOOP

Ans 3.

II , III , IV , V

Ans 4.

I)

 DO 10 ID = N , 891234 , 10
 PRINT*, ID
10 CONTINUE

II)

 SUM = 0
 DO 3 L = 1 , 15 , 3
 DO 2 J = -L , 0 , 1
 SUM = SUM + J
2 CONTINUE
3 CONTINUE

Ans 5.

A) 1 B) 0 C) 1 D) 0

Ans 6

1) IMPROPER NESTING OF DO LOOPS

2) INFINITE LOOP

sixth Solutions to Exercises 106

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 7.

 REAL SUM

 INTEGER K

 SUM = 0
 DO 10 K = 1 , 200
 SUM = SUM + (-1) ** K * (REAL(5*K) / (K+1))
10 CONTINUE
 PRINT*, SUM
 END

Ans 8.

 INTEGER M , N , TEMP
 READ*, M , N
 IF(M .LT. N) THEN
 TEMP = N
 N = M
 M = TEMP
 ENDIF
 DO 5 L = M , N
 IF(L/2 * 2 .NE. L) PRINT*,L
5 CONTINUE
 END

Ans 9.

 INTEGER M , N , K , TEMP
 READ*, M , N , K
 IF(M .LT. N) THEN
 TEMP = N
 N = M
 M = TEMP
 ENDIF
 DO 5 L = M , N
 IF(L/K * K .EQ. L) PRINT*,L
5 CONTINUE
 END

Ans 10.

 INTEGER M , N , TEMP
 READ*, M , N
 IF(M .LT. N) THEN
 TEMP = N

 N = M
 M = TEMP
 ENDIF
 DO 5 L = M , N
 IF(INT(SQRT(REAL(L)) ** 2 .EQ. L)) PRINT*,L
5 CONTINUE
 END

sixth Solutions to Exercises 107

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 11.

 INTEGER I, J
 I = 1
10 IF(I .LE. 10) THEN
 J = 1
5 IF(J .LE. 20) THEN
 PRINT*, I, ' * ', J, ' = ', I*J
 J = J + 1
 GO TO 5
 ENDIF
 I = I + 1
 GO TO 10
 ENDIF
 END

Ans 12.

 INTEGER I, J
 DO 10 I = 1 , 10
 DO 10 J = 1 , 20
 PRINT*, I, ' * ', J, ' = ', I*J
10 CONTINUE
 END

Ans 13.

PRINT*, ('*', J = 1, K-1), '=' , ('*', M = 1 , 5-K)

Ans 14.

1) 5 2) -1 3) L 4) 5

108

