4 TOP DOWN DESIGN

Many problems consist of a number of tasks. One good technig en solving such problems is to identify the tasks, decompose each task into sub-taks ond sorve these sub-tasks by smaller and simpler solutions. Ultimately, the main taks and the sub-tasks are converted to program code. In this chapter, we intro wce tho top down design technique based on problem decomposition and the neans to ipplement such a technique.

4.1 Basic Concepts of Top Down Design

Top down design is a technique that reduces the complexity of large problems. The technique is based on the divide-and-cond strategy, wherein the problem tasks are divided into sub-tasks repetitively. The divis of ghe tasks when the sub-tasks are relatively easy to program. The terms checkiverefinement or step-wise refinement also refer to the top-down design technique.

In FORTRAN, each sub-task an be implemented by a separate module. FORTRAN uses two types of program module su p, putines and functions. These modules are also called subprograms. A typ cal MORTB N program consists of a main program with several subprograms. Each ubprogram represents a sub-task in the top down design solution.

The top down design pracess has many advantages:

1. The sulb rograns can be independently implemented and tested.
2. Su prograndeveloped by others can be used. For example, a huge library of FQRTR N subprograms known as IMSL (International Mathematical and Statistied Library) is available. The IMSL library has efficient, well tested sub rograms for common problems in matrix manipulation, algebraic quations, statistical computations, .. etc.
3. The size of the program is reduced, since identical code segments in the main program are replaced by a single subprogram.

4.2 Subprogram Terminology

There are several new terms with which we should be familiar with while using subprograms. The program file usually consists of a program called the main program and all the associated subprograms. These subprograms may appear before or after the main program. A subprogram is called or invoked by another subprogram or the main
program. The calling program passes information to the subprogram through arguments or parameters. The subprogram returns information to the calling program. In the case of a function, the information which is a single value, is returned as the value of the function name. In the case of a subroutine, the information is returned through some or all the arguments. The arguments that appear in the description of the subprogram are called dummy arguments and those that appear in the calling statement are called actual arguments. Every subprogram consists of a header followed by a body. The subprogram body has a statement called the RETURN statement to return execution control to the calling program. There may be more than one RETURN statements in a subprogram. A subprogram ends with an END statement.

4.3 Function Subprograms

A function subprogram is the description of a function consisting several stements. The subprogram computes a single value and stores that value in the nction name. A function subprogram consists of a function header and a function bou

4.3.1 Function Header

The function header is the first statement of the function
where
type is the type for the function name (RENL, INTEGER ..);
fname is the name of the function; a list of arguments is the optional n of a momy arguments.
If the type of the function is sperified, the function type is assumed as either INTEGER or REAL, as the case of variables. The rules that apply in naming a variable also apply to function ranses if here are no arguments to a function, then the empty parentheses () apper with furetion name.

4.3.2 Function Body

The function bod is swar to a FORTRAN program. It consists of declaration statements, if a in the bedinning, followed by executable statements. Each function body must end wh h END statement. The RETURN statement must appear in the function b dy at leas once. This statement is used to transfer control from the function bac to the call ng program. The function name should be assigned a value in the function body. A typical layout of a function is as follows:

```
TYPE FUNCTION FNAME (A LIST OF DUMMY ARGUMENTS)
DECLARATION OF DUMMY ARGUMENTS AND VARIABLES TO BE USED IN THE
FUNCTION
    EXECUTABLE STATEMENTS
    ..
FNAME = EXPRESSION
..
RETURN
END
```


4.3.3 Examples on function subprograms

Example 1: Write a real function VOLUME that computes the volume of a sphere $\left(4 / 3 \pi r^{3}\right)$ given its radius.

Solution:

REAL FUNCTION VOLUME (RADIUS)
REAL RADIUS, PI
$P I=3.14159$
VOLUME $=4.0 / 3.0 * P I * R A D I U S ~ * * 3$
RETURN
END
Example 2: Write a logical function ORDER that checks whether thy difterent integer numbers are ordered in increasing or decreasing order.

Solution:

LOGICAL FUNCTION ORDER (X, Y, Z)
INTEGER X, Y, Z
LOGICAL INC, DEC
DEC $=\mathrm{X}$.GT. Y .AND. Y .GT. Z
INC $=\mathrm{X}$.LT. Y .AND. Y .LT. Z
ORDER = INC .OR. DEC
RETURN
END
Example 3: Write a function subprogram saluate the function $f(x)$ defined below.

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}+4 \mathrm{x}+2 & \text { if } \\
\mathrm{f}(\mathrm{x})=0 & \text { if } \\
\mathrm{f}(\mathrm{x})=3 \mathrm{x}+1 & \text { if }
\end{array}
$$

Solution:

```
    FUNCTION F(X)
    REAL F, X
    IF (X .LT. 5) THEN
        F = 2 * X ** 2 + 4 * X + 2
    ELSEIF (X .EQ. 5) THEN
        F=0
    ELSE
        F=3* X + 1
    ENDIF
    RETURN
    END
```


4.3.4 Eanction Call

Let us consider a program consisting of a main program and a function subprogram. The execution of the program begins with the main program. For each call to a function, control is transferred to the function. After the function is executed, the RETURN statement ensures that control is transferred back to the calling program. The execution of the main program then resumes at the location the function is called.
Example: In the following two tables, correct and incorrect function calls to the functions defined in Examples 1, 2 and 3 are given. We assume that in the calling
program the function names VOLUME, F are declared as REAL, and ORDER as LOGICAL. We also assume $A=5.0, B=21.0$, where A and B are real numbers:

Examples of correct function calls:	
Function Call	Function Value
$\operatorname{ORDER}(3,2,4)$.FALSE.
$\operatorname{ORDER}(3,4 * 3,99)$. TRUE.
F(A)	0.0
F(3 + F $(2.0))$	64.0
VOLUME (B)	38808.0
F(A + B)	79.0

Examples of incorrect function calls:

Incorrect Function Call	Error Message
ORDER(3.0, 2, 4)	Argument 1 referenced as real but defined bo integer
F(3.2,3.4)	More than one argument to function
VOLUME(5)	Argument 1 referenced as integ ar bu do tine be real

4.3.5 Function Rules

The following rules must be observed in writing preq amswith function subprograms:

- Actual and dummy arguments must match or type, order and number. The names of these arguments may or not be the same.
- Actual arguments may be exprenstants or variable names. Dummy arguments must be variable name and should never be expressions or constants.
- The type of the funcon rame nust be the same in both the calling program and the function descript
- The result from the function suoprogram, to be returned to the calling program, should be stored n the function name.
- A return staterren transfers control back to the calling program. Every function should be ve least one return statement.
- The funcuon ay be placed either before or after the main program.

A unction is called or invoked as part of an expression.
A FORRAN function cannot call itself.
4.3. Complete Examples on function subprograms

Example 1: The sum of three integer numbers: Write an integer function SUM to sum three integer numbers. Also write a main program to test the function SUM.

Solution:

```
C MAIN PROGRAM
    INTEGER X, Y, Z, SUM
    READ*, X, Y, Z
    PRINT*, SUM (X, Y, Z)
    END
C FUNCTION SUBPROGRAM
    INTEGER FUNCTION SUM(A, B, C)
    INTEGER A, B, C
    SUM = A + B + C
    RETURN
    END
```

The execution starts with the reading of variables X, Y and Z in the mareman The execution of the expression $\operatorname{SUM}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ transfers control to the farion SUM. The value of the actual arguments X, Y and Z is passed to the dummy ar uments A, B and C respectively. In the function SUM, execution begins with the firs exec atable statement which computes the value of SUM. The return statement eturns eontrel to the main program. The print statement in the main program prints vare of SUM(X,Y, Z) and the execution ends. Assume that the input to the above a ogrem is ansollows:

Example 2: Reverse a Two Digit Number A wo digit integer number is to be reversed. A two digit number ranges between 10 anas Write a function that first checks if the number is a two digit number and then number with the digits reversed. The function should return an error code - if the rgument is not a two digit number. Write a main program to test the functig

Solution:

The main program invokes function SNUM after reading a number. If the value returned from the function is 1 , an error message is printed. Otherwise, the number and its reversed value are p inted. Notice the use of two RETURN statements in the


```
INTEGER FUNCTION RVSNUM(NUMBER)
INTEGER NUMBER, RDIGIT, LDIGIT
IF (NUMBER .LT. 10 .OR. NUMBER .GT.99) THEN
            RVSNUM = -1
            RETURN
        ENDIF
    LDIGIT = NUMBER / 10
    RDIGIT = NUMBER - LDIGIT / 10 * 10
    RVSNUM = RDIGIT * 10 + LDIGIT
RETURN
END
C MAIN PROGRAM
INTEGER NUMBER, RVSNUM, RNUM
READ*, NUMBER
RNUM = RVSNUM (NUMBER)
IF (RNUM .EQ. -1) THEN
        PRINT*, 'INPUT ERROR : ', NUMBER
ELSE
    PRINT*, 'ORIGINAL NUMBER IS ', NUMBER
    PRINT*, 'REVERSED NUMBER IS ', RNUM
ENDIF
END
```

If the input to this program is
then the output is:

```
ORIGINAL NUMBER IS 78
REVERSED NUMBER IS }8
```

If the input to this program is
123
then the output is:

INPUT ERROR : 123

Note that the actual arguments can e pressions. If the function is invoked with the statement PRINT*, RVSN(M(4)6), he value 42 is printed.

4.4 Special Gases of Functions

There are special cases of nnctions that do not require subprogram description. These cases may be clas ifie into two groups:

These are predefined functions that are available from the FORTRAN language. Certain functions, such as the trigonometric functions, are frequently encountered in programming. Instead of developing them repeatedly in each program, the language provides these functions. For example, $\operatorname{MOD}(\mathrm{M}, \mathrm{N})$ is an intrinsic function that requires two integer arguments M and N . The result of the function MOD is an integer value representing the remainder when M is divided by N . A list of commonly used intrinsic functions is given below.

Function	Function Value	Comment
SQRT(X)	Square Root of X	X is a real argument
$\operatorname{ABS}(\mathrm{X})$	Absolute Value of X	
SIN(X)	Sine of angle X	Angle is in radians
$\operatorname{COS}(\mathrm{X})$	Cosine of angle X	Angle is in radians
TAN(X)	Tangent of angle X	Angle is in radians
$\operatorname{EXP}(\mathrm{X})$	e raised to the power X	
LOG(X)	Natural Logarithm of X	X is real
LOG10(X)	Logarithm of X to base 10	X is real
INT(X)	Integer value of X	Converts a real to an
REAL(K)	Real value of K	Converts an integer to
MOD(M, N)	Remainder of M/N	Modulo function

4.4.2 Statement Functions

In engineering and science applications, we frequently written in a single statement. For example, $f(x)=+2$ a simple function. In such cases, FORTRAN allows us to write a statement fur tion stead of writing a function subprogram. A statement function is defined in te beginning of a program after declaration statements. As a non-executable statement, it should appear before any executable statement. The general form of statement is as follows:
fname (a list of arguments) = expression where
fname is the name of thenctin;
a list of arguments is the optynal list of dummy arguments; and
expression compyes tunction value.
The type of the statemer fuction may be declared in the declaration statements. If the type of the function is no declored, it is implicitly defined.

4.4.2.1 Exam re of stement functions:

Example 1: Wru a s atement function to compute the area of a triangle, given its two sides and rangle.

```
REAL AREA
AREA(SIDE1,SIDE2,ANGLE) = 0.5 * SIDE1 * SIDE2 * SIN (ANGLE)
```

Exarple 2 Write a statement function to compute the total number of seconds, given the time in hours, minutes and seconds.

Solution:

```
REAL TOTSEC
TOTSEC(HOUR,MINUTE,SECOND) = 3600 * HOUR +60 * MINUTE + SECOND
```

Example 3: Write a statement function to compute the function $f(x, y)=3 x^{2}+5 x y$
Solution:

```
REAL F
F(X, Y) = 3 * X ** 2 + 5 * X * Y
```

Example 4: Write a logical statement function to check if three different integer numbers are in increasing or decreasing order.

Solution:

```
LOGICAL ORDER
ORDER(X,Y,Z) = X.GT.Y .AND. Y .GT. Z .OR. X.LT.Y .AND. Y.LT.Z
```

Example 5: Temperature Conversion: Convert temperatures from one unit into another using statement functions. Write a main program to test the functions based on a code. If the code is 1 , convert from centigrade to Fahrenheit. If code is 2, conext from Fahrenheit to centigrade. Otherwise, print an error message.

Solution:

```
    REAL FTEMP, CTEMP, TEMP, VALUE
    INTEGER CODE
C FUNCTION FTEMP CONVERTS FROM CENTIGRADE TO FAHRENHEIT
    FTEMP(TEMP) = TEMP * 9 / 5 + 32
C FUNCTION CTEMP CONVERTS FROM FAHRENHEIT TO CENTIGRADE
    CTEMP(TEMP) = (TEMP - 32) * 5 / 9
    READ*, CODE, VALUE
    IF (CODE .EQ. 1) THEN
    PRINT*, VALUE , ' C = ' , FTEMP(VALUE), ' F'
    ELSEIF (CODE .EQ. 2) THEN
    PRINT*, VALUE , ' F = ' , CTEMP(VALUE), ' C'
    ELSE
    PRINT*, 'INPUT ERROR'
    ENDIF
    END
```

The statement functions FTEMP an CKMP convert the argument value to Fahrenheit and centigrade respectively. The state functions are placed immediately after the declaration statements. The vabes ODE and VALUE are read. Based on the value of CODE, the appropriate statement f ction is invoked and the converted value is printed.

4.5 Subroutinesubprograms

A function prod ces a single result. In many instances, we would like a subprogram to produce mgren result. Subroutines are designed to produce zero, one or many result A bron ine onsists of a subroutine header and a body.
ubroutines uffer from functions in the following ways:
A subroutine may return a single value, many values, or no value.

- To return results, the subroutine uses the argument list; thus, the subroutine argument list consists of input arguments and output arguments.
- Since the results are returned through arguments, a subroutine name is used for documentation purposes only and does not specify a value.
- The general form of the subroutine header is as follows:

```
SUBROUTINE SNAME (a list of dummy arguments)
```

where

SNAME is the name of the subroutine; and a list of dummy arguments is optional.

- A subroutine is called or invoked by an executable statement, the CALL statement. The general form of the statement is as follows:

CALL SNAME (a list of actual arguments)

A subroutine is similar to a function in several ways. The subroutine actual and dummy arguments must match in type, number and order. At least one RETURN statement must be present to ensure transfer of control from a subroutine to the calling program.

Consider a program that consists of a subroutine and a main progre in each CALL statement in the main program, control is transferred to the subroume. After the subroutine is executed, the RETURN statement ensures that contr is thsmed back to the calling program, to the statement immediately following th CA statement.

4.5.1 Examples on Subroutine Subprograme:
 Example 1: Write a subroutine that exchanges the valud of its thered arguments. Solution:

```
SUBROUTINE EXCHNG(NUM1, NUM2)
REAL NUM1, NUM2, TEMP
TEMP = NUM1
NUM1 = NUM2
NUM2 = TEMP
RETURN
END
```

The subroutine EXCHNG can be invoked using the CALL statement. An example illustrating a call to the subroutin EX NHG is given below:

Assume the variables X, Y are dec and as real in the calling program and have the values 3.0 and 8.0 respectivery. CeCAL statement

CALL EXCHNG(X, Y)

after execution will excha ge the value of X and Y . During the execution of the CALL statement, the vare actu 1 argument X is passed to the dummy argument NUM1 and the value of actua arg men Y is passed to the dummy argument NUM2. At this point, the execut on cont is transferred to the subroutine EXCHNG. The subroutine exchruges be va ues of variables NUM1 and NUM2. When the RETURN statement of the subroutine ${ }^{2}$ executed, the control returns to the calling program and the new values of raiables NUM1 and NUM2 are passed back to the actual arguments X and Y respectwery. Therefore, the new value of variable X would be 8.0 and the value of variable Y would be 3.0.
Example 2: Write a subroutine that takes three different integer arguments X, Y and Z and returns the maximum and the minimum.

Solution:

```
SUBROUTINE MINMAX(X, Y, Z, MAX, MIN)
INTEGER X, Y, Z, MAX, MIN
MIN = X
MAX = X
IF (Y .GT. MAX) MAX = Y
IF (Y .LT. MIN) MIN = Y
IF (Z .GT. MAX) MAX = Z
IF (Z .LT. MIN) MIN = Z
RETURN
END
```

Examples illustrating calls to the subroutine MINMAX is given below:
Example 3: Assume the variables A, B, C are declared as integer the cling program and have the values 4, 6, 8 respectively. Also assume that M4 H ad MIN are integer variables. After the following CALL statement

CALL MINMAX (A, B, C, MAX, MIN)
is executed, the value of MAX will be 8 (the maximum of riable, A, B, C) and the value of MIN will be 4 (the minimum of variables A, B.). Mate tha the names of the actual arguments may be similar or different from the carresponding dummy arguments but the type must be the same.
Example 4: If the following CALL statement
CALL MINMAX (C+4, -1, A+B, MAX, MIN)
is executed, the value of MAX will be 12 and the value of MIN will be -1, since the first three actual arguments in the CALL statment are evaluated to $12,-1$ and 10 respectively. Note here that the actuar guments can be expressions.
Example 5: Sum and Average: With a wbroutine to sum three integers and compute their average. The subrouting sho uld nurn the sum and average of the three numbers.
Write a main program to test subrenty e.
Solution:

```
C MAIN PROGRAM
    INTEGER X, Y, Z, TOTAL
    REAL AVERAG
    READ*, X, Y, Z
    CALL SUBSUM (X, Y, Z, TOTAL, AVERAG)
    PRINT*, 'TOTAL IS ', TOTAL
    PRINT*, 'AVERAGE IS ' , AVERAG
    END
C SUBROUTINE SUBPROGRAM
    SUBROUTINE SUBSUM(A, B, C, TOTAL, AVG)
    INTEGER A, B, C, TOTAL
    REAL AVG
    TOTAL = A + B + C
    AVG = TOTAL / 3.0
    RETURN
    END
```

The subroutine SUBSUM has three dummy arguments $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and returns two results, the value of the fourth argument TOTAL and the fifth argument AVERAG. The CALL statement in the main program invokes the subroutine.

Arguments X, Y, Z, TOTAL and AVERAG in the main program are the actual arguments. Note that, before the subroutine is called, arguments X, Y and Z have values and arguments TOTAL and AVERAG do not have a value. Arguments A, B, C, TOTAL and AVERAG in the subprogram are the dummy arguments. X, Y and Z are input arguments, TOTAL and AVERAG are output arguments.

The execution starts with the reading of variables X, Y and Z in the main program. The execution of the CALL statement transfers control to the subroutine SUBSUM. The value of the actual arguments X, Y and Z is passed to the dummy arguments A, B and C respectively. Since TOTAL and AVERAG in the main program are not initialized, no value is passed to the corresponding arguments in the subprogite In the subroutine SUBSUM, execution begins with the first executable steme t hich computes the value of argument TOTAL. The next statement comprtes the average of the three arguments. The return statement returns control to the mai prog am.

The values of arguments A, B, C, TOTAL and AVERAG in the subroutine are passed back to the arguments $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, TOTAL and AVERAG in the main program respectively. The print statement in the main program prints valle of TOTAL and AVERAG, and the execution ends.

If the input to this program is
20, 60, 40
then the output is:

```
TOTAL IS 120
AVERAGE IS 40.0000000
```

Example 6: Integer and Real Part of rums. The integer and decimal parts of a real number are to be separated. For amp if the number is 3.14, the integer part is 3 and the decimal part is 0.14 . VI a broutine SEPNUM to separate the real and integer parts.
Solution:

```
C SUBROUTINE SUBPROGRAM
    SUBROUTINE SEPNUM(NUMBER, IPART, RPART)
    REAL NUMBER, RPART
        INTEGER IPART
        IPART = INT (NUMBER)
        RPART = NUMBER - IPART
        RETURN
        END
C MAIN PROGRAM
    REAL NUMBER, PART2
    INTEGER PART1
    READ*, NUMBER
    CALL SEPNUM(NUMBER, PART1, PART2)
    PRINT*, ' INTEGER PART OF ', NUMBER, ' IS ', PART1
    PRINT*, ' DECIMAL PART OF ', NUMBER, ' IS ', PART2
    END
```

The subroutine has three dummy arguments: argument NUMBER represents the real number to be separated, argument IPART is the integer part of NUMBER and argument RPART represents the real part of the number.

If the input to this program is
then the output is:

```
INTEGER PART OF 57.2310000 IS 57
DECIMAL PART OF 57.2310000 IS 0.2310000
```

If the subroutine SEPNUM is invoked with the statement

```
CALL SEPNUM(3.14, PART1, PART2)
```

then the value of PART1 is 3 and value of PART2 is 0.14 .

4.6 Common Errors in Subprograms

There are several common errors that occur in the use of subprograms. We illustrate such errors through an example. The following program computes the new sary given the current salary and the number of years of service. If the number on tean is wore than five, the salary is to be incremented by 8%, otherwise, the in rengen s 4%. The program uses a function INCSAL to compute the new salary. There ase deveraverrors in the program.

When the program is executed, the following error messeges appea

- Error \#1: INCSAL is an unreferenced symbol. funationshould return a single result stored in the function name. But in fuiction NCSAL, the function name INCSAL is not assigned any value.
- Error \#2: Function INCSAL referenced an ant iner but defined to be real. The type of the function name in the main prosam is, by default, integer but its type in the function definition is re

```
C FUNCTION SUBPROGRAM
    REAL FUNCTION INCSAL(SALARY, YEARS)
    REAL SALARY, NSAL
    INTEGER YEARS
    IF (YEARS .GT. 5) THEN
        NSAL = SALARY * 8 / 100 + SALARY
    ELSE
        NSAL = SALARY * 4 / 100 + SALARY
    ENDIF
    END
C MAIN PROGRAM
    REAL SALARY, YEARS
    READ*, SALARY, YEARS
    PRINT*, INCSAL(SALARY, YEARS)
    END
```

Er ox \#3 Argument number 2 in call to INCSAL - real argument was passed but jiteger argument expected. The type of argument number 2 in the calling statement does not match with its type in function subprogram. Mismatch of arguments is a common error in calls to both subroutines and functions.

- Error \#4: RETURN statement is missing. The RETURN statement is missing in function INCSAL. This error may not be reported by many compilers.

4.7 Exercises

1. (a) Which of the following statement(s) is (are) FALSE?
2. A function may contain more than one RETURN statement.
3. A subroutine may return one value, many values, or no value.
4. A subroutine cannot call itself in FORTRAN.
5. The statement function is a non-executable statement.
6. A function may return more than one value.
7. A program may contain more than one subprogram.
8. A subroutine cannot call another subroutine.
9. The order and type of arguments in a subroutine call and the corresponding subroutine statement must be the same.
10. Use of subroutines increases the complexity of programming.
10.A function transfers results back to the calling program in the argument
11. What is printed by the following programs?
```
1. INTEGER A, B, X, Y, Z, F
A = 2
B = 3
X = F(4, A)
Y = B * 3
Z = F(Y, X)
PRINT*, X, Y, B, Z
END
INTEGER FUNCTION F(X,Y)
INTEGER X, Y, Z
Z = 2*Y
F = X+Z
RETURN
END
2. INTEGER OP
REAL X, Y, CALC
READ*, X, OP, Y
PRINT*, CALC(X, OP, Y)
READ*, X, OP, Y
PRINT*, CALC(X, OP, Y)
END
REAL FUNCTION CALC(ARG1,OP,ARG2)
INTEGER OP
REAL ARG1, ARG2
IF (OP .EQ. 1) THEN
    CALC = ARG1 + ARG2
    ELSEIF (OP .EQ. 2) THEN
    CALC = ARG1 - ARG2
ELSE
    CALC = 0
    ENDIF
    RETURN
    END
```


Assume the input is

```
1.0,5,7.0
5.0,2,4.0
```

```
3. LOGICAL DIV
    INTEGER N, J
    READ*, N, J
    IF (DIV (N, J)) THEN
        PRINT*,'YES'
    ELSE
    PRINT*,'NO'
    ENDIF
    END
    LOGICAL FUNCTION DIV(N, J)
    INTEGER N, J
    DIV = N - N / J * J .EQ. O
    RETURN
    END
```

Assume the input is
184

```
4. INTEGER K , EVL
    K = 1
    PRINT*, EVL (K), K
    END
    INTEGER FUNCTION EVL (M)
    INTEGER M, K
    K = 2
    EVL = M * K
    RETURN
    END
```

5. INTEGER A, B
REAL FUN
READ*, A, B
$\mathrm{A}=\operatorname{FUN}(\mathrm{A}, \mathrm{B})$
$B=\operatorname{FUN}(B, A)$
PRINT*, FUN (A, B)
END
REAL FUNCTION FUN (X, Y)
INTEGER X, Y
FUN $=X$ ** $2+2$ * Y
RETURN
END

Assume the inpu

Assume the input is

```
4 3
    LOGICAL F
    INTEGER X, Y, Z
    F(X, Y, Z) = X .GT. Y .AND. X .GT. Z
    READ*, X, Y, Z
    IF (F(X, Y, Z)) PRINT*, X
    IF (F(Y, X, Z)) PRINT*, Y
    IF (F(Z, X, Y)) PRINT*, Z
    END
```

Assume the input is

```
10 30 5
8. INTEGER A,B,P,Q, G
    G(A,B) = A*A + B
    READ*, P, Q
    A = 1
    B = 2
    PRINT*, G(P,Q), G(Q,P), G(P+2, Q+2)*G(B,A)
    END
```

Assume the input is

2	
9.	LOGICAL FUNC
	INTEGER K, L
	$\operatorname{FUNC}(\mathrm{K}, \mathrm{L})=\mathrm{K} . \mathrm{GE} . \mathrm{L}$
	READ*, K, L
	IF (FUNC (K, L)) THEN
	PRINT*, K
	ELSE
	PRINT*, L
	ENDIF
	END

Assume the input is

80 90	
10.	INTEGER K, L
	$\mathrm{K}=-9$
	$\mathrm{~L}=10$
	PRINT*, MOD (ABS (K) , L)
	END

```
11. REAL A, B, DIST, X, Y
    DIST (X,Y) = SQRT (X ** 2 + Y ** 2)
    READ*, A, B
    PRINT*, DIST(A - 3.0, DIST(A, B) - 6.0)
    END
```

12. INTEGER FUNCTION FUN (J, K, M)
REAL SUM
SUM $=\mathrm{J}+\mathrm{K}+\mathrm{M}$
FUN $=$ SUM $/ 3.0$
RETURN
END
INTEGER FUN,FUS, J, K
FUS (J, K) = J * K / 2
PRINT*, $\operatorname{FUS}(\operatorname{FUN}(2,3,4), \operatorname{FUN}(5,6,7))$
PRINT*, $\operatorname{FUN}(F U S(2,3), \operatorname{FUS}(4,5), \operatorname{FUS}(6,7))$
END

Assume the input is

```
6.0 8.0
    F(A , B) = A + B
    G(X)= X ** 2
    READ*, Y
    PRINT*, G(Y), G(F(Y, Y + 2))
    END
```

Assume the input is

```
3.0
14. LOGICAL COMP
REAL X, Y, Z, A, B, C
COMP (A, B, C) = A. GE. B .AND. A .GE. C
READ*, X, Y, Z
IF (COMP (X, Y, Z)) PRINT*, X
IF (COMP(Y, X, Z)) PRINT*, Y
IF (COMP(Z, X, Y)) PRINT*, Z
END
```

Assume the input is

35.0	90.065 .0	
15.	INTEGER $\mathrm{A}, \mathrm{B}, \mathrm{C}$	-
	$\mathrm{A}=1$	
	$\mathrm{B}=2$	
	$\mathrm{C}=3$	
	PRINT*, A, ${ }^{\text {, }}$, C	
	CALL CHANGE (A, B)	
	PRINT*, $\mathrm{A}, \mathrm{B}, \mathrm{C}$	
	END	
	SUBROUTINE CHANGE (A, B)	
	INTEGER A, B, C	
	$\mathrm{C}=\mathrm{B}$	
	$\mathrm{B}=\mathrm{A}+\mathrm{B}$	
	$\mathrm{A}=\mathrm{C}$	
	RETURN	
	END	
		\sim -
	INTEGER TOT	
	$\mathrm{A}=5.5$	
	$B=4.5$	
	CALL ADD ($\mathrm{A}, \mathrm{B}, \mathrm{TOT}$)	
	PRINT*, TOT	
	END	
	SUBROUTINE ADD (X,Y,SUM)	
	INTEGER SUM	
	REAL X, Y	
	IF (X.LT.Y) THEN	
	SUM $=\mathrm{X}+\mathrm{Y}$	
	ELSE	
	SUM $=\mathrm{X}-\mathrm{Y}$	
	ENDIF	
	RETURN	
	END	
-	-	
17.	INTEGER JJ	
	JJ $=1$	
	CALL TRY1 (JJ, 3)	
	CALL TRY1 (JJ, 4)	
	CALL TRY1 (JJ, 5)	
	PRINT*, JJ	
	END	
	SUBROUTINE TRY1 (X,Y)	
	INTEGER $\mathrm{X}, \mathrm{Y}, \mathrm{TRY2}$, N	
	TRY2 (N) $=\mathrm{N}-3$	
	$\mathrm{X}=\mathrm{TRY} 2(\mathrm{Y})+2 * \mathrm{X}$	
	RETURN	
	END	

```
18. INTEGER X, Y, H
    H = 2
    CALL K(X,Y)
    PRINT*, H, Y, X
    END
    SUBROUTINE K(H,Y)
    INTEGER H,Y
    REAL X
    READ*, H, Y
    H = H / (Y+H)
    Y = H+3
    X = Y+2/3
    PRINT*, H, Y, X
    RETURN
    END
```

Assume the input is
532
19. REAL X,Y
$X=3.0$
$Y=1.0$
CALL $F(X, Y)$
PRINT*, X, Y
END
SUBROUTINE F (A, B)
REAL A, B
CALL G (B, A)
$B=A+B$
$A=A-B$
RETURN
END
SUBROUTINE G(C,D)
REAL C, D
$C=C+D$
$D=C-D$
RETURN
END

```
20. INTEGER JJ
    JJ = 1
    CALL TEST1
    PRINT*, JJ
    END
    SUBROUTINE TEST1
    INTEGER JJ
    JJ = 2
    CALL TEST2
    RETURN
    END
    SUBROUTINE TEST2
    INTEGER JJ
    JJ = 3
    RETURN
    END
```

```
21. REAL A, C
    A = 5
    CALL SUBPRO(A,C)
    PRINT*, A, C
    END
    SUBROUTINE SUBPRO(A,B)
    REAL A, B, C, X
    C(X) = X*2-2
    B = C (A)
    RETURN
    END
22. SUBROUTINE CHANGE (W,X,Y,Z)
    INTEGER W,X,Y,Z
    W = X
    X = Y
    Y = Z
    z = W
    RETURN
    END
    INTEGER A,B
    READ*, A, B
    CALL CHANGE (A * 2, B * 3, A, B)
    PRINT*, A * 2, B * 3
    END
Assume the input is
```



```
24. LOGICAL FLAG
    REAL X, Y
    FLAG = .TRUE.
    READ*, X, Y
    CALL LOGIC (X, Y, FLAG)
    PRINT*, X, Y, FLAG
    END
    SUBROUTINE LOGIC (FLAG, X, Y)
    LOGICAL Y
    REAL X, Y
    IF (.NOT. Y) THEN
        FLAG = X**2+FLAG**2
        Y = .NOT. Y
    ELSE
    FLAG = (FLAG + X)
    ENDIF
    RETURN
    END
```

Assume the input is

```
4 5
READ*, A,B
CALL FIRST (A,B,C)
PRINT*, A,B,C
END
SUBROUTINE FIRST (X,Y,Z)
REAL X, Y, Z
X = X + Y
Y = Y - X
CALL SECOND(X,Y,Z)
RETURN
END
SUBROUTINE SECOND (N,M,L)
REAL N,M,L
L = THIRD (N,M)
RETURN
END
REAL FUNCTION THIRD(J,K)
REAL J,K
THIRD = J - K
RETURN
END
```

Assume the input is

Assume the input is

```
28. SUBROUTINE MIDTERM (A, B)
    INTEGER A, B, C
    IF (A . LT. B) THEN
        \(C=A\)
        \(A=B\)
        \(B=C\)
    ENDIF
    RETURN
    END
    INTEGER A, B, C
    READ* , A, B, C
    PRINT*, \(A, B, C\)
    CALI MIDTERM (B, A)
    PRINT*, A, B, C
    END
Assume the input is
```

```
17 23 31
```

17 23 31
29. INTEGER B, C
29. INTEGER B, C
REAL A
REAL A
READ*, A, C
READ*, A, C
CALL BEST (A, REAL (C), B)
CALL BEST (A, REAL (C), B)
PRINT*, A, B, C
PRINT*, A, B, C
CALL BEST (A, B + 2.0 , C)
CALL BEST (A, B + 2.0 , C)
PRINT*, A, B, C
PRINT*, A, B, C
END
END
SUBROUTINE BEST (ONE, TWO, THREE)
SUBROUTINE BEST (ONE, TWO, THREE)
REAL ONE, TWO
REAL ONE, TWO
INTEGER THREE
INTEGER THREE
THREE = ONE + TWO
THREE = ONE + TWO
RETURN
RETURN
END
END
Assume the input is
9.5, 4
30. REAL X, Y, A, B
$F(A, B)=A / B * 2$
CALL MYSUB (F (4.0, 1.0), X, Y)
PRINT*, $\mathrm{X}, \mathrm{Y}, \mathrm{F}(\mathrm{X}, \mathrm{X})$
END
SUBROUTINE MYSUB (X, Y, Z)
REAL X, Y, Z
IF (X .LT. O.0) THEN
$Z=X$
ELSEIF (X .EQ. O.O) THEN
$Z=X+2.0$
ELSE
$Z=X / 2.0$
ENDIF
$\mathrm{Y}=\mathrm{Z} * \mathrm{X}$
RETURN
END

```
```

31. INTEGER NUM1, NUM2
READ*, NUM1, NUM2
CALL EXCHNG (NUM1, NUM2)
PRINT*, NUM1, NUM2
END
SUBROUTINE EXCHNG (NUM1, NUM2)
INTEGER NUM1, NUM2, TEMP
LOGICAL COND
IF (.NOT. COND(NUM1, NUM2)) THEN
TEMP = NUM1
NUM1 = NUM2
NUM2 = TEMP
ENDIF
RETURN
END
LOGICAL FUNCTION COND(X, Y)
INTEGER X, Y
COND =X .GE. O .AND. Y .GT. X
RETURN
END
```

Assume the input is
3, -2
3. Which of the following functions may be used to find he maximum of two integer numbers K and M ?
```

A. INTEGER FUNCTION MAXA (K, M)
INTEGER K, M
MAXA $=\mathrm{K}$
IF (K.GT.M) MAXA $=K$
RETURN
END

```
```

B. INTEGER FUNCTION MAXC(K,M)
INTEGER K, M
IF (M.GE.K) THEN
MAXC = M
ELSE
MAXC = K
ENDIF
RETURN
END

```
C. INTEGER FUNCTION MAXB (K, M)
    INTEGER K, M
    MAXB \(=\mathrm{K}\)
    IF (M.GT.K) MAXB \(=M\)
    RETURN
    END
4. Write a logical function subprogram FACTOR that takes two arguments and checks if the first argument is a factor of the second argument. Write a main program to test the function.
5. Write a function subprogram to reverse a three digit number. For example, if the number is 243 , the function returns 342 . Write a main program to test the function.
6. Write a function subprogram called AREA to compute the area of a circle. The argument to the function is the diameter of the circle. Write a main program to test the function.
7. Write a logical function subprogram that checks whether all its three arguments are non-zero. Write a main program to test the function.
8. Write the functions in problems \(4,5,6\), and 7 as statement functions.
9. Consider the following statement function IXX \((\mathrm{J}, \mathrm{K})=\mathrm{J}-\mathrm{J} / \mathrm{K} * \mathrm{~K}\). Which one of the following intrinsic (built-in) functions is the same as the function IXX?
i) MOD
ii) MAX
iii) MIN
iv) SQRT
10. Rewrite the following function as a STATEMENT FUNCTION.
```

A. REAL FUNCTION AREA(CIRCUM)
REAL CIRCUM, RADIUS, PI
PI = 3.14159
RADIUS = CIRCUM/(2.0*PI)
AREA = RADIUS **2*PI
RETURN
END

```
\begin{tabular}{|ll|}
\hline B. & REAL FUNCTION X ( \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})\) \\
\(\mathrm{Y}=\mathrm{A} * * 2-\mathrm{B} * * 2\) \\
\(\mathrm{Z}=\mathrm{C} * * 3+1 / \mathrm{D} * * 2\) \\
\(\mathrm{X}=\mathrm{Y} / \mathrm{Z}\) \\
RETURN \\
END
\end{tabular}
\(\begin{array}{ll}\text { C. } \quad \text { REAL FUNCTION AREA (R) } \\ & \text { AREA }=2 * 3.14 * R * * 2\end{array}\)
AREA \(=\)
RETURN
END
11. Write a function subprogitn \(\operatorname{COS}\) / at computes the cost of postage according to the following: SR 0.50 or waight less than an ounce, SR 0.10 for each additional ounce, plus a SR 50 xt charge if the customer wants fast delivery. The arguments to the function are the weight of the package and a logical variable FAST indicating fast delivery, Write an ain program to test the function.
12. Write an function ubprogram that takes the three sides of a triangle and returns the type of trianc. For a right triangle, then the function returns an integer value 1 ; isosc les riangle, the value returned is 2 ; for an equilateral triangle, the functionselerns a value 3 ; otherwise, a value 0 is returned.
13. Which the following functions return the maximum of the integers \(K, L\) and \(M\) ?
```

I. INTEGER FUNCTION F1(K,L,M)
INTEGER K, L, M
F = K
IF (F .LT. L) F = L
IF (F .LT. M) F = M
F1 = F
RETURN
END

```
```

II. INTEGER FUNCTION F2(K,L,M)
INTEGER K, L, M
IF (K .GE. L .AND. K .GE. M) THEN
F2 = K
ELSEIF (L .GE. M) THEN
F2 = L
ELSE
F2 = M
ENDIF
RETURN
END

```
```

III. INTEGER FUNCTION F3(K,L,M)
LOGICAL F4
INTEGER K, L, M
F4(K,L,M) = K .GE. L .AND. K .GE. M
IF (F4(K,L,M)) F3 = K
IF (F4(L,K,M)) F3 = L
IF (F4 (M, L, K)) F3 = M
RETURN
END

```
14. Given the following program which has some error

```

INTEGER FUNCTION TEST (A, B)
X = (A + B) ** 2
Y = B * 2
RETURN
END
REAL TEST
PRINT*, TEST(1, 2, 3)
END

```

Which of the following statements cornect?
I. Function name TEST is of typantes in function description but is a real in the calling program.
II. Function name TEST ne assigne a value in the function description.
III. Argument types do in match.
IV. The number of act al arguments is more than the number of dummy arguments.
15. Rewrite the foltavings broutine as a function subprogram.
```

SUBROUTINE DIVIDE (M, N, FACTOR)
LOGICAL FACTOR
INTEGER M, N
IF (N / M * M .EQ. N) THEN
FACTOR = .TRUE.
ELSE
FACTOR = .FALSE.
ENDIF
RETURN
END

```
16. Rewrite the following function subprogram as a subroutine. (Hint: The statement function is part of the function subprogram).
```

REAL FUNCTION SO (A, B, C)
REAL A, B, C, FUN
FUN (A, B, C) = A / B + C
SO = FUN (A, B, C) / FUN (C, B, A)
RETURN
END

```
17. Write a subroutine that takes three arguments \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and returns the arguments in increasing order. Write a main program to test the subroutine.
18. Write a subroutine that takes a numeric grade of a student and prints the letter grade based on the following policy:
\begin{tabular}{|l|l|}
\hline numeric grade & letter grade \\
\hline above 90 & A \\
\hline above 80 & B \\
\hline above 70 & C \\
\hline above 60 & D \\
\hline below 61 & F \\
\hline
\end{tabular}
19. Write a subroutine that computes and retu ns tho diameter, area, and the circumference of a circle given its radius.
20. Write the functions in problems \(4,5,6\), and 7 as suroutines.
21. Write a subroutine subprogram that tak the three sides of a triangle and prints one of the following types of the trianglenigh riongle, isosceles triangle, or equilateral triangle.

\subsection*{4.8 Solutions to Exe cises}

Ans 1.

Ans 2.



44
30
\(7 \quad 11 \quad 215\)
90
9
5.0000000


Ans 4.
```

LOGICAL FUNCTION FACTOR(AR1, AR2)
INTEGER AR1, AR2
IF (AR2 / AR1 * AR1 .EQ. AR2) THEN
FACTOR = .TRUE.
ELSE
FACTOR = .FALSE.
ENDIF
RETURN
END
C MAIN PROGRAM
LOGICAL FACTOR
INTEGER AR1, AR2
READ*, AR1, AR2
PRINT*, FACTOR(AR1, AR2)
END

```

Ans 5.
INTEGER N , REV
READ*, N
IF (N . GE. 100 .AND. N .LT. 1000) THEN
PRINT*, REV (N)
ELSE
PRINT*, 'OUT OF RANGE'
ENDIF
END
INTEGER FUNCTION REV (N)
INTEGER N, K, J, M
\(\mathrm{K}=\mathrm{N} / 100\)
\(\mathrm{N}=\mathrm{N}-\mathrm{K} * 100\)
\(\mathrm{J}=\mathrm{N} / 10\)
\(\mathrm{M}=\mathrm{N}-\mathrm{J} * 100\)
\(\mathrm{REV}=\mathrm{M} * 100+J * 10+\mathrm{K}\)
RETURN
END
Ans 6.
REAL FUNCTION AREA (D)
REAL D, R
\(\mathrm{R}=\mathrm{D} / 2\)
AREA \(=R * * 2 * 3.14\)
RETURN
END
REAL D
READ*, D
PRINT*, AREA (D)
END

Ans 7.
```

 LOGICAL FUNCTION TEST(A, B, C)
 REAL A, B, C
 TEST = A .NE.0 .AND. B .NE. O .AND. C .NE. O
 RETURN
 END
 C MAIN PROGRAM
LOGICAL TEST
REAL A, B, C
READ*, A, B, C
IF (TEST(A, B, C)) THEN
PRINT*, 'ALL NUMBERS ARE NON-ZERO'
ELSE
PRINT*, 'NOT ALL NUMBERS ARE NON-ZERO'
ENDIF
END
Ans 8.
INTEGER AR1, AR2, REV
LOGICAL FACTOR
REAL AREA
FACTOR (AR1, AR2) = AR2 / AR1 * AR1 .EQ.AR2
$\operatorname{REV}(\mathrm{N})=(\mathrm{N}-\mathrm{N} / 10$ * 10) * 100 +

* (N - N / 100 * 100) / 10 * 10 + N / 100
AREA $(D)=(D / 2) * * 2 * 3.14$
TEST (A, B, C) = A.NE. 0 .AND. B.NE. 0 .AND. C.NE. 0

```

Ans 9.
i
Ans 10.
```

A. REAL AREA
AREA(CIRCUM) = 3.14159 * (CIRCUM/ (2.0 * 3.14159)) ** 2

B.	REAL X
	$X(A, B, C, D)=(A * * 2-B * * 2) /(C * * 3+1 / D * * 2)$

C. | REAL AREA |
| :--- |
| AREA (R) |$=2 * 3.14 * \mathrm{R} * * 2$

Ans 11.
REAL FUNCTION COST (WEIGHT, FAST)
LOGICAL FAST
IF (WEIGHT .LT. 1) THEN
COST = 0.5
ELSE
COST = 0.5 + (WEIGHT - 1) * 0.10
ENDIF
IF (FAST) COST = COST + 50
RETURN
END
LOGICAL FAST
READ* , WEIGHT, FAST
PRINT*, COST(WEIGHT, FAST)
END

```

Ans 12.
```

 INTEGER FUNCTION TTYPE(A, B, C)
 REAL A, B, C
 C ASSUMING C IS THE LARGEST SIDE
IF(SQRT (C) .EQ. SQRT(A + B)) THEN
TTYPE = 1
ELSEIF(A .EQ. B .AND. A .EQ. C) THEN
TTYPE = 3
ELSEIF(A .EQ. B .OR. B .EQ. C .OR. C .EQ. A) THEN
TTYPE = 2
ELSE
TTYPE = 0
ENDIF
RETURN
END

```

Ans 13.
I, II and III.
Ans 14.
I, II, III and IV.
Ans 15.
LOGICAL FUNCTION FACTOR (M, N)
INTEGER M, N
IF (N / M * M .EQ. N) THEN
FACTOR = .TRUE.
ELSE
FACTOR = .FALSE.
ENDIF
RETURN
END
Ans 16.
SUBROUTINE ANS (A, B, C, SO)
REAL A, B, C, SO, FUN
FUN (A, B, C) = A / B + C
SO = FUN (A, B, C) / FUN (C, B, A)
RETURN
END


Ans 17.
```

SUBROUTINE ORDER (A, B, C)
INTEGER A, B, C, T
IF (A .GT. B) THEN
$T=A$
$A=B$
$B=T$
ENDIF
IF (A .GT. C) THEN
$T=A$
$A=C$
$C=T$
ENDIF
IF (B .GT. C) THEN
$T=B$
$B=C$
$\mathrm{C}=\mathrm{T}$
ENDIF
RETURN
END
INTEGER A, B, C
READ* , A, B, C
CALL ORDER (A, B, C)
PRINT*, A, B, C
END

```

Ans 18.
SUBROUTINE LGRADE (MARK)
REAL MARK
IF (MARK . GE. 0 .AND. MARK .LE. 100) THEN
        IF (MARK . GT. 90) THEN
            PRINT*, 'A'
        ELSEIF (MARK .GT. 80) THEN
            PRINT*, 'B'
        ELSEIF (MARK .GT. 70) THEN
            PRINT*, 'C'
        ELSEIF (MARK .GT. 60) THEN
            PRINT*, 'D'
        ELSE
            PRINT*, 'F'
        ENDIF
ELSE
    PRINT*, 'MARK OUT OF RANGE'
ENDIF
RETURN
END

Ans 19.
```

SUBROUTINE CIRCLE (R, D, A, C)
REAL R, D, A, C
$\mathrm{D}=\mathrm{R} / 2$
$A=22.0 / 7.0 * R * * 2$
$\mathrm{C}=2$ * $22.0 / 7.0$ * R
RETURN
END

```

Ans 20.
of problem 4
```

SUBROUTINE FACTOR (AR1, AR2, FLAG)
INTEGER AR1, AR2
LOGICAL FLAG
FLAG = AR2 / AR1 * AR1 .EQ. AR2
RETURN
END

```
of problem 5.
```

SUBROUTINE FIND (N, REV)
INTEGER N, REV
M = N / 100
N = N - M * 100
J = N / 10
K = N - J * 10
REV = K * 100 + J * 10 + M
RETURN
END

```
of problem 6 .
```

SUBROUTINE CIRCLE (D, AREA)

```
\(\mathrm{R}=\mathrm{D} / 2\)
AREA \(=22.0 / 7.0 * R * * 2\)
RETURN
END
of problem 7.
SUBROUTINE
LOGICAL TEST
TEST = A . NE. 0 .AND. B .NE. 0 .AND. C .NE. 0
RETURN
END

Ans 21.
SUBROUTINE TTYPE (A, B, C)
REAL A, B, C
C ASSUMING C IS THE LARGEST SIDE
IF (SQRT (C) .EQ. SQRT (A + B)) THEN
PRINT* , 'RIGHT TRIANGLE'
ELSEIF (A.EQ. B .AND. A.EQ. C) THEN
PRINT*, 'EQUILATERAL TRIANGLE'
ELSEIF (A.EQ.B .OR. B.EQ.C .OR. C.EQ.A) THEN
PRINT* , 'ISOSCELES TRIANGLE'
ELSE
PRINT* , 'NONE OF THE OTHER TYPES'
ENDIF
RETURN
END
```

