3 SELECTION CONSTRUCTS

Selection constructs are used to select between blocks of statements depending on certain conditions. Each condition is a logical expression (sation 2.4.3). In FORTRAN, the IF statement is used to represent selection construcs. This chapter introduces four types of IF constructs: IF-ELSE, IF, IF-EX SEIF, and the simple IF constructs.

3.1 IF-ELSE Construct

3.1.1 Definition

The general form of the IF-ELSE construct is as folows:

```
IF (condition) THEN
    BLOCK1
ELSE
    BLOCK2
ENDIF
```

where condition is a logica exp essig that evaluates either to .TRUE. or .FALSE.. BLOCK1 and BLOCK2 cons onene or more FORTRAN statements. If a block contains more than one sta ment, ach statement must be in a separate line. Statements of BLOCK1 and BLOCK ma be any FORTRAN statements including IF statements, assignment statements in ut/output statements, repetition statements, transfer (GOTO) statements and has the value. TRU.. In ne above construct, BLOCK1 will be executed if condition If the value of condition is .FALSE., BLOCK2 will be executed. In either ca e, enly re block is executed. After executing one of the two blocks, control trangers to the finst statement after the ENDIF.
he keypords IF and THEN should appear in the same line along with the condition. The condition should be between parentheses. The keyword ELSE should appear in a separate line and the construct must end with the keyword ENDIF in a separate line. BLOCK1 and BLOCK2 begin, in a new line, after the column in which $\boldsymbol{I F}, \boldsymbol{E L S E}$ and $\boldsymbol{E N D I F}$ appear. This is known as indentation. Indentation is not a must but it increases program readability.

3.1.2 Examples on the IF-ELSE Construct

The following examples illustrate the IF-ELSE construct.
Example 1: Write a FORTRAN program that reads two integer numbers and prints the maximum.

Solution:

```
INTEGER NUM1, NUM2
READ*, NUM1, NUM2
PRINT*, 'INPUT: ', NUM1, NUM2
IF (NUM1 .GT. NUM2) THEN
    PRINT*, 'MAXIMUM IS ', NUM1
ELSE
    PRINT*, 'MAXIMUM IS ', NUM2
ENDIF
END
```

Example 2: What will be the output of the previous program if the input line is as follows:
$347 \quad-670$

Solution:
The output will be as follows:


```
INPUT: 347 -670
```

MAXIMUM IS 347

Example 3: Write a FORTRAN program that reads an jegen mumb r and finds out if the number is even or odd. The program should print a soper message.

Solution:

```
INTEGER K
READ*, K
PRINT*, 'INPUT: ', K
IF(K / 2 * 2 .EQ. K) THEN
    PRINT*, 'EVEN'
ELSE
    PRINT*, 'ODD'
    ENDIF
    END
```

Example 4: What will be the outp of previous program if the input is as follows:
79 : The output wit bas follows:

INPUT: 79
ODD

3.2 IF Constryct

3.2.1 Defintion.

We sometimes-require a block of statements to be executed, if a condition is .TRUE.. Othe wise, the condition is .FALSE., no statements must be executed. In this case we use the construct. The IF construct has the following general form:

```
IF (condition) THEN
    BLOCK
ENDIF
```

where condition is a logical expression that evaluates to either .TRUE. or .FALSE.. $B L O C K$ consists of one or more FORTRAN statements. A statement in the BLOCK may be any FORTRAN statement including the IF statement. BLOCK will be executed if the condition evaluates to .TRUE. . The control then transfers to the first statement after the ENDIF. If the condition evaluates to .FALSE., control transfers to the first
statement after ENDIF, without executing any statement inside the IF construct. The keywords IF and THEN should appear in the same line along with the condition. The condition must be between parentheses. As was the case in the previous IF construct, indentation is not a must but it increases readability.

3.2.2 Examples on the IF Construct

The following examples illustrate the IF construct.
Example 1: Write a FORTRAN program that reads a grade. If the grade is not zero, the program must add 2 points to the grade. Then, the new grade should be printed.
Solution:

```
REAL GRADE
READ*, GRADE
PRINT*, 'ORIGINAL GRADE IS', GRADE
IF (GRADE .GT. O) THEN
    GRADE = GRADE + 2.0
    PRINT*, 'SCALED GRADE IS ', GRADE
ENDIF
END
```

Example 2: What will be the output of the previons गram if the input line is as follows:

$$
7.5
$$

Solution: The output is as follows:

```
ORIGINAL GRADE IS 7.5000000
```

SCALED GRADE IS 9.5000000

Example 3: What will be the output he rogrem of the previous example if the input line is as follows:

$$
0.0
$$

Solution: The output is as follews

```
ORIGINAL GRADE IS 0.0000000
```

Example 4: Write a FQRT AN program that reads a student ID and his GPA. If the GPA is greater than ar eq al to 3.0, the program should print the message 'HONOR'.
Solution:

```
REAL GPA
INTEGER ID
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.0) THEN
    PRINT*, 'HONOR'
ENDIF
END
```

Example 5: What will be the output of the previous program if the input line is as follows:

$$
918962 \quad 2.90
$$

Solution: The output is as follows: (Note: Since the condition in the IF statement is not satisfied, the message HONOR is not printed.)

[^0]
3.3 IF-ELSEIF Construct

3.3.1 Definition

Assume you are given a numeric grade. A letter grade is to be printed based on the standard criteria i.e. if the grade is greater than or equal to 90 , letter A is to be printed; if the grade is greater than or equal to 80 , letter B is to be printed and so on. In such a case, we must use several IF statements. Instead FORTRAN provides a construct that can select a single block of statements from several blocks based on different conditions. This construct is the IF-ELSEIF construct and it is used when a single block is to be executed from a choice of several blocks. The general fo of this construct is as follows:

```
IF (condition-1) THEN
    BLOCK1
ELSEIF (condition-2) THEN
    BLOCK2
ELSEIF (condition-3) THEN
    BLOCK3
ELSEIF (condition-n) THEN
    BLOCKn
ELSE
    BLOCKn+1
ENDIF
```

where condition- i for $\mathrm{i}=1,2,3, \ldots, \mathrm{n}$ is logical expression that evaluates to either .TRUE. or .FALSE.. BLOCKi consists of one more FORTRAN statements. The statements in each BLOCK are FON TRAN statements including any type of IF constructs. In the IF-ELSEIF constru BLOCK1 will be executed if condition-1 evaluates to .TRUE.. The control hen mansfers to the first statement after the ENDIF. If condition-1 evaluates to .FALSE., con hin on-2 is examined. If condition-2 evaluates to .TRUE., BLOCK2 will besecued and control transfers to the first statement after the ENDIF. Otherwise, conditum 3 is examined and if it evaluates to .TRUE., BLOCK3 will be executed and con ol trensfers to the first statement after the ENDIF. The same action is applied the st of the ELSEIF clauses until a condition evaluates to .TRUE.. If all ondinions qaluate to .FALSE., the ELSE part, i.e. $B L O C K n+1$, is executed and contol asses to the first statement after the ENDIF. The ELSE part is optional. I all condions are .FALSE and there is no ELSE part, control passes to the firs statemo a er the ENDIF, without executing any of the blocks. In summary, the block corresponding to first condition that evaluates to .TRUE. is the only block that is execured case, no condition evaluates to .TRUE., the block corresponding to the ELSE part, if present, is executed. Indentation is not a must but it increases readability.

3.3.2 Examples on the IF-ELSEIF Construct

The following examples illustrate the IF-ELSEIF construct
Example 1: Write a FORTRAN program that reads a student ID and his GPA out of 4.0. The program should print a message according to the following:
Condition \quad Message

GPA ≥ 3.5	EXCELLENT
$3.5>$ GPA ≥ 3.0	VERY GOOD
$3.0>$ GPA ≥ 2.5	GOOD
$2.5>$ GPA ≥ 2.0	FAIR
GPA <2.0	POOR

Solution:

```
REAL GPA
INTEGER ID
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
    STATE = 'EXCELLENT'
ELSEIF (GPA .GE. 3.0) THEN
    STATE = 'VERY GOOD'
ELSEIF (GPA . GE. 2.5) THEN
    STATE = 'GOOD'
ELSEIF (GPA .GE. 2.0) THEN
    STATE = 'FAIR'
ELSE
    STATE = 'POOR'
ENDIF
PRINT*, ID,' ', STATE
END
```


Another Solution:

```
REAL GPA
INTEGER ID
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .LT. 2.0) THEN
    STATE = 'POOR
ELSEIF (GPA .LT. 2.5) THEN
    STATE = 'FAIR'
ELSEIF (GPA .LT. 3.0) THEN
    STATE = 'GOOD'
ELSEIF (GPA .LT. 3.5) THEN
    STATE = 'VERY GOOD'
ELSE
    STATE = 'EXCELLENT'
ENDIF
PRINT*, ID,' ', STATE
END
```

Example 2 The following table has two columns, the first column gives the sample input to previous program and the second column shows the expected output.

Solution:

Sample Input	Expected Output
$927322 \quad 2.3$	INPUT: 927322 2.3000000 927322 FAIR
9228223.4	INPUT: $922822 \quad 3.4000000$ 922822 VERY GOOD
8480001.8	INPUT: $848000 \quad 1.8000000$ 848000 POOR

8999993.7	INPUT: 8999993.7000000 899999 EXCELLENT
9128772.0	$\begin{array}{\|l} \hline \text { INPUT: } 9128772.0000000 \\ 912877 \text { FAIR } \end{array}$
$943245-2.0$	INPUT: $943245-2.0000000$ 943245 POOR
$942221 \quad 7.0$	INPUT: 9422217.0000000 942221 EXCELLENT

Example 3: Use IF-ELSE constructs to write a FORTRAN program that reads a student ID and his GPA out of 4.0. The program should print a message aceording to the following:

Solution:

Condition	Message
GPA ≥ 3.5	EXCELLENT
$3.5>$ GPA ≥ 3.0	VERY GOOD
$3.0>$ GPA ≥ 2.5	GOOD
$2.5>$ GPA ≥ 2.0	FAIR
GPA <2.0	POOR

```
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
    STATE = 'EXCELLENT'
ELSE
    IF (GPA .GE. 3.0) THEN
        STATE = 'VERY GOOD'
    ELSE
        IF (GPA .GE. 2.5) THEN
            STATE = 'GOOD'
        ELSE
            IF (GPA .GE. 2.0) THEN
                STATE = 'FAIR'
            ELSE
                        STATE = 'POOR'
            ENDIF
        ENDIF
    ENDIF
ENDIF
PRINT*, ID,' ', STATE
END
```

Example 4: Rewrite the above program using IF constructs.

Solution:

```
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
    STATE = 'EXCELLENT'
ENDIF
IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) THEN
    STATE = 'VERY GOOD'
ENDIF
IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) THEN
    STATE = 'GOOD'
ENDIF
IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) THEN
    STATE = 'FAIR'
ENDIF
IF (GPA .LT. 2.0) THEN
    STATE = 'POOR'
ENDIF
PRINT*, ID,' ', STATE
END
```

Example 5: Write a FORTRAN program that read three integer numbers and finds and prints the maximum. Use IF-ELSEIF construct.

Solution:

```
INTEGER X1, X2, X3, MAXIM
READ*, X1, X2, X3
IF (X1 .GE. X2 .AND. X1 .GE. X3) THEN
    MAXIM = X1
    ELSEIF (X2 .GE. X3) THEN
    MAXIM = X2
    ELSE
    MAXIM = X3
    ENDIF
    PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
    PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS = ',MAXIM
    END
```


3.4 Simple IA Construct

3.4.1 Definitror

Soretimes single FORTRAN statement must be executed if a condition is .TRUE.. In cases, we may use a simple form of the IF construct which is written in a single line. has he following general form:

IF (condition) STATEMENT
where condition evaluates to .TRUE. or .FALSE. and STATEMENT is a simple FORTRAN statement such as an assignment statement, a READ statement, a PRINT statement, a GOTO statement, or a STOP statement. If condition evaluates to .TRUE., STATEMENT is executed and the control passes to the next statement. If condition is .FALSE., STATEMENT is not executed and the control transfers to the next statement.

3.4.2 Examples on the Simple IF Construct

The following examples illustrate the simple IF construct.
Example 1: Use simple IF constructs to write a FORTRAN program that reads a student ID and his GPA out of 4.0. The program should print a message according to the following:

Condition	Message
GPA ≥ 3.5	EXCELLENT
$3.5>$ GPA ≥ 3.0	VERY GOOD
$3.0>$ GPA ≥ 2.5	GOOD
$2.5>$ GPA ≥ 2.0	FAIR
GPA <2.0	POOR


```
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) STATE = 'EXCELLENT'
IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) STATE = 'VERY GOOD'
IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) STATE = 'GOOD'
IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) STATE = 'FAIR'
IF (GPA .LT. 2.0) STATE = 'POOR'
PRINT*, ID,' ', STATE
END
```

Example 2: Write a FORTAN rogym that reads three integer numbers and finds and prints the maximum. Usesmpran gintructs.

Solution:

```
INTEGER X1, X2, X3, MAXIM
READ*, X1, X2, X3
PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
MAXIM = X1
IF (X2 .GT. MAXIM) MAXIM = X2
IF (X3 .GT. MAXIM) MAXIM = X3
PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS IS ', MAXIM
END
```


Anather So Mution:

```
INTEGER X1, X2, X3
READ*, X1, X2, X3
PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
IF (X1 .GE. X2 .AND. X1 .GE. X3) PRINT*, 'MAXIMUM IS ', X1
IF (X2 .GE. X1 .AND. X2 .GE. X3) PRINT*, 'MAXIMUM IS ', X2
IF (X3 .GE. X1 .AND. X3 .GE. X2) PRINT*, 'MAXIMUM IS ', X3
END
```


3.5 Exercises

1. What will be printed by the following programs? If an error message is generated, which statement causes the error?
```
1. (NNTEGER N, M 
2. LOGICAL A, B
INTEGER EX1, EX2, EX3
READ*, EX1, EX2, EX3
A = EX1.LE.EX2.OR.EX2.LE.EX3
B = EX2+2.GT.EX3*2
IF (B) THEN
    A = .NOT. A
ELSE
    B = .NOT. B
ENDIF
PRINT*, A, B
END
Assume the input for the program s:
```

```
40 35 20
```

40 35 20
3. REAL A, B, C
3. REAL A, B, C
A = -3
A = -3
B = -4.0
B = -4.0
IF (.NOT. A.LT.B) THEN
IF (.NOT. A.LT.B) THEN
C = A - B
C = A - B
ELSE
ELSE
C = A * B
C = A * B
ENDIF
ENDIF
PRINT*, C
PRINT*, C
END
END
4. REAL A,B
4. REAL A,B
INTEGER I
INTEGER I
READ*, A, I, B
READ*, A, I, B
IF (A.LT.3.0) THEN
IF (A.LT.3.0) THEN
PRINT*, A+I
PRINT*, A+I
IF (B.LT.2.5) THEN
IF (B.LT.2.5) THEN
PRINT*, B**I
PRINT*, B**I
ENDIF
ENDIF
ELSE
ELSE
PRINT*, A*B*I
PRINT*, A*B*I
ENDIF
ENDIF
END

```
    END
```

Assume the input for the program is:

2.522 .5

```
5. INTEGER A, B, C
    READ*, A, B, C
    IF (A.GT.B) THEN
        IF (B.LT.C) THEN
            PRINT*, B
        ELSE
            PRINT*, C
        ENDIF
    ELSE
    PRINT*, A
    ENDIF
    PRINT*, A, B, C
    END
```

Assume the input for the program is:

```
-2 -4 -3
```

```
6. LOGICAL A,B
    INTEGER K1, K2
    K1 = 10
    K2 = 12
    A = K1.LT.K2
    B = .TRUE.
    IF (A) B = .FALSE.
    PRINT*, A, B
    END
```

7. EEAL A, B
INTEGER K, L
READ*, A, B, L, K
IF (A.GT. B) THEN
IF (A. LT. L/2) THEN
PRINT*, 'THURSDAY'
ELSE
PRINT*, 'SUNDAY'
ENDIF
ELSE
IF (K/4.GE.B-2) THEN
PRINT*, 'MONDAY'
ELSE
PRINT*, 'TUESDAY'
ENDIF
ENDIF
END
Assme the for the program is:
$3.03 .0 \quad 4 \quad 6$
8. INTEGER RANKX, RANKY
REAL X, Y
READ*, X, Y
IF (X.GT.Y) THEN
RANKX $=1$
RANKY $=2$
ELSE
RANKX $=2$
RANKY = 1
ENDIF
PRINT*, RANKX, RANKY
END

Assume the input for the program is:

```
4.0 4.0
9. INTEGER SALARY, BONUS, TOTAL
INTEGER AGE, EXP
READ*, IDNO, AGE, EXP, SALARY
IF (AGE.GE.40 .OR. EXP.GT.10) THEN
    BONUS = SALARY/8 + 450.0
ELSE
    BONUS = SALARY/10 + 350.0
ENDIF
TOTAL = SALARY + BONUS
PRINT*, IDNO, BONUS, TOTAL
END
```

Assume the input for the program is:

834567381240000

2. Write a FORTRAN program that reads the value of a real number (ELTA) . If the value of (DELTA) is negative, then the program prints the mes age (NUMBER IS OUT OF RANGE) . Otherwise, the program compute the suare root of (DELTA) and prints the result.
3. Write a complete FORTRAN program that read the ariables A, B and C, then computes the value of X where:

The program should take care of the problen of dividing by zero or getting a negative number under the square oot. The program should print the appropriate messages accordingly (i.e. "DVDDING BY ZERO", or, "NEGATIVE NUMBER UNDER SQUARE ROQT"). f bo h errors occur, the program should print both messages. If no error occurs tho prosi m should print the value of X .
4. Consider the following ucture where A is a real variable :

```
IF (A.LE.10) THEN
    IF (A.LT.5) THEN
            PRINT*, 'AAA'
        ELSEIF (A.LT.4) THEN
            PRINT*, 'BBB'
        ELSEIF (A.GT.6) THEN
            PRINT*, 'CCC'
        ELSE
            PRINT*, 'DDD'
        ENDIF
ENDIF
```

The condition that causes AAA to be printed is $(\mathrm{A}<5)$.

1. What is the condition that will cause BBB to be printed?
2. What is the condition that will cause CCC to be printed?
3. What is the condition that will cause DDD to be printed?
4. Assume that V1 and V2 are LOGICAL variables and STATEMENT1, STATEMENT2 and STATEMENT3 are any valid FORTRAN statements. Given the following IF-structure:
```
IF (V1) THEN
    STATEMENT1
ELSEIF (.NOT. V2) THEN
    STATEMENT2
ELSE
    STATEMENT3
ENDIF
```

choose the equivalent structure(s) from the following:

```
I. IF (.NOT. V1) THEN
    IF (.NOT. V2) THEN
        STATEMENT2
    ELSE
        STATEMENT3
    ENDIF
ELSE
    STATEMENT1
    ENDIF
```

```
II. IF (.NOT.V2) THEN
    STATEMENT2
```

 ELSEIF (V1) THEN
 STATEMENT1
 ELSE
 STATEMENT3
 ENDIF
    ```
III. IF (V1) THEN
    STATEMENT1
    ELSE
        IF (.NOT. V2) THEN
        STATEMENT2
        ELSE
        STATEMENT3
        ENDIF
    ENDIF
```

6. Consider the following ERTMAN 77 program segment:

IF (A.GT.B.OR. A.EQ.B) PRINT*, A
Which one(s) of the ${ }^{\text {d }}$ on ing segments is(are) equivalent to the above?

```
I. IF (A.GE.B) THEN
    PRINT*, A
    ENDIF
II. IF (A.GT.B .AND. A.EQ.B) THEN
    PRINT*, A
    ENDIF
III. IF (.NOT. (A.LT.B) ) THEN
    PRINT*, A
    ENDIF
```

7. What values of X cause the value of A to be changed in the following statement?
```
IF (X.LT.3.0 .AND. 7.0.LT.X) A = A + 1
```

8. Write a complete FORTRAN program that reads a real number into a real variable NUM. If NUM is non-zero prints the value of its reciprocal (1/NUM) . Otherwise, prints the message "RECIPROCAL NOT DEFINED".
9. Give the FORTRAN statements that perform the steps indicated below :
10. If y is not positive, and $3.5>x>1.5$ then print the value of y.
11. If time is greater than 15.0 , increment time by 1.0 .
12. If dist is less than 50.0 and time is greater than 10.0 , increment time by 2.0 . Otherwise, increment time by 2.5 .
13. Interchange the value of a and b (i.e. a gets the value of b and b gets the old value of a, if both a and b are positive.
14. If grade is greater than or equal to 4.0 then increment a by 1.0 . If grade is greater than or equal to 3.0 but less than 4.0 then increment b by 1.0 . Sgrade is greater than or equal to 2.0 but less than 3.0 then increment c by 1.0 , oterwise increment d by 1.0.
15. Assume COND1, COND2, COND3, and COND4 are OR)RAN logical expressions. Consider the following program segment.
```
IF (COND1) THEN
    IF (COND2) THEN
            PRINT*,'RIYADH'
        ELSE
            IF (COND3) THEN
                    PRINT*, 'JEDDAH'
            ELSE
                    PRINT*, 'KHOBAR'
            ENDIF
        ENDIF
ELSEIF (COND4) THEN
    PRINT*, 'TAIF'
ELSE
    PRINT*, 'DHAHRAN'
        ENDIF
```

If the output of the above segmen is
KHOBAR
What are the logical values f COND1,COND2, COND3 and COND4?
11. Write a program tha rea an integer number N and prints YES if the following expression is satrefica.
$0<\mathrm{N}<100$ and $\mathrm{N}>50$
12. Write a FORR program which reads an integer number between 10 and 99 and
he numbereversed. For example, if the number read is 87 , then the program output nust be 78.
13. Conside the following IF statements carefully. Each of Blocks A, B, C, D, E, F, G, sents a block of FORTRAN statements.

```
I. IF (CONDITION) THEN
    A
    ELSE
        B
    ENDIF
    C
```

```
II. IF (CONDITION) D
    END
III. IF (CONDITION) THEN
    ELSEIF (CONDITION) THEN
    ELSE
        H
    ENDIF
    END
```

Assuming that X has a value 0.0 , which block(s) are executed in program sexments (i), (ii) and (iii), if CONDITION is the expression listed below?
i) X.GE. 0
ii) X.LE. 0
iii) X.GT. 0
iv) X.LT. 0
14. Write a FORTRAN program that reads three intes A, B , and C . The program checks if A, B, and C are in increasing order o in decreasing order and prints an appropriate message. If the integers are il order, then the program prints UNORDERED. For example, if the input is

345
The program prints
INCREASING ORDER
15. A year between 1900 and 1999 is a EARyear if it is divisible by 4 and not by 100 or if it is divisible by 400 . W te FQRTRAN program which will read a year and determine whether the year is 15 LE or NOT. The program should print one of the following messages acc ed gly.

In each of the following program segments, fill the spaces by relational or logical operators (.EQ., .NE., .LT., LE., .GT., .GE., .AND., .OR., .NOT.) such that each of the program segments below gives the same output as the program segment above.

```
I. IF (X ------ Y) PRINT*, X
IF (X ------ Y) PRINT*, Y
```

```
II. IF (X.GT.Y) THEN
    PRINT*, X
    ELSEIF (X ----- Y) THEN
        PRINT*, X
    ELSE
        PRINT*, Y
    ENDIF
```

```
III. IF (X ----- Y ----- X.EQ.Y) THEN
    PRINT*, X
    ELSE
        PRINT*, Y
    ENDIF
```

17. Write a program that reads any two positive integer numbers and fint the lareer of the two numbers. The program then checks if the larger number is din islbre by the smaller one. If it is divisible the program should print the wor DIV SIB E. If the larger number is not divisible by the smaller number, the pogre checks if both numbers are odd and prints BOTH ODD.

3.6 Solutions to Exercises

Ans 1.
915
F T
1.0
4.5

```
                -4
                    -2 -4 -3
```


T F

MONDAY
21
8345675450
Ans 2.

```
READ*, DELTA
```

IF (DELTA .LT. O.O) THEN
PRINT*, 'NUMBER IS OUT OF RANGE'
ELSE
PRINT*, DELTA ** 0.5
ENDIF
END

Ans $>$
READ*, A , B , C
$D=A-B+2$ *A ** 3
IF (C .EQ. O .OR. D .LT. O) THEN
IF (C .EQ. 0) PRINT*, 'DIVISION BY ZERO'
IF (D .LT. 0) PRINT*, 'NEGATIVE UNDER SQUARE ROOT'
ELSE
$X=D * * 0.5 / C$
PRINT*, X
ENDIF
END

Ans 4.

1. Never
2. $10 \geq \mathrm{A}>6$
3. $6 \geq \mathrm{A} \geq 5$

Ans 5.
I and III
Ans 6.
I and III
Ans 7.
No values for X ,
A can't be changed according to this condition
Ans 8.
REAL NUM
READ*, NUM
IF (NUM . NE. 0) THEN
PRINT*, 1 / NUM
ELSE PRINT*, 'RECIPROCAL NOT DEFINED'
ENDIF
END

Ans 9.
1.

IF (Y .LT. 0 .AND. (X .GT. 1.5 .AND. X .LT. 3.5)) PRINT*, Y
2.

IF (TIME .GT. 15.0) TIME = TIME + 1
3.

IF (A . GT. 0 .AND. B.GT. 0) THEN
$T=A$
$A=B$
$B=T$
ENDIF
5.

```
IF( GRADE .GE. 4.0 ) THEN
    A = A + 1.0
    ELSEIF( GRADE .GE. 3.0 ) THEN
    B = B + 1.0
ELSEIF( GRADE .GE. 2.0 ) THEN
    C = C + 1.0
    ELSE
    D = D + 1.0
    ENDIF
```

Ans 10.
COND1: T
COND2 : F
COND3: F
COND4 : Can be T or F
Ans 11.
READ*, N
IF (N . GT. 50 .AND. N .LT. 100) THEN
PRINT*, 'YES'
ENDIF
END
Ans 12.
INTEGER REV
READ*, K
IF (K . GT. 10 .AND. K .LE. 99) THEN
REV $=(\mathrm{K}-\mathrm{K} / 10 * 10) * 10+\mathrm{K} / 10$
PRINT*, REV
ELSE
PRINT*, 'NUMBER IS OUT OF RANGE'
ENDIF
END
Ans 13.

| X.GE. 0 | i) A, C | ii) D, E | iii) F |
| :--- | :--- | :--- | :--- |
| X.LE. 0 | i) A, C | i) D, E | iii) F |
| X.GT. 0 | i) B, | ii) E | iii) H |
| X.LT. 0 | i) B | ii) E | iii) H |

Ans 14.

READ*, A , B , C
IF (A.GE. B .AND. B .GE. C) THEN
PRINT*, 'DECREASING ORDER'
ELSEIF (A.LE. B .AND. B . LE. C) THEN
PRINT*, 'INCREASING ORDER'
ELSE
PRINT*, 'UNORDERD'
ENDIF
END
Ans 15.

```
INTEGER Y
READ*, Y
IF(Y .GE. 1900 .AND. Y .LE. 1999) THEN
        IF(Y/4*4.EQ.Y.AND.Y/100*100.NE.Y.OR.Y/400*400.EQ.Y) THEN
            PRINT*, 'THE YEAR IS A LEAP YEAR'
        ELSE
            PRINT*, 'THE YEAR IS NOT A LEAP YEAR'
        ENDIF
    ELSE
        PRINT*, 'THE YEAR IS OUT OF RANGE'
    ENDIF
    END
```

Ans 16.
i) X .GE. Y
ii) X .EQ. Y
iii) X .GT. Y .OR.X .LT. Y

Ans 17.

```
READ*, M , N
IF(M .GE. N) THEN
    MAX = M
    MIN = N
ELSE
    MAX = N
    MIN = M
ENDIF
IF(MAX / MIN * MIN .EQ. MAX) THEN
    PRINT*, 'DIVISABLE'
ELSE
        IF(MAX/2*2 .NE. MAX .AND. MIN/2*2 .NE. MIN) THEN
            PRINT*,'BOTH ODD'
        ENDIF
    ENDIF
    END
```


[^0]: INPUT: 9189622.9000000

