
second Constants  10 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

2 DATA TYPES AND 

OPERATIONS 

We use computers to manipulate information that consists of letters, digits, and other 

special symbols. Such information is the interpretation of data. Although the word data 

is the plural of datum, many computer specialists use data as a mass noun such as water 

and sand. Data can be of different types. The basic data types in FORTRAN 77 are: 

integer, real, character, and logical. In this chapter we present these types in detail. 

2.1 Constants 

A constant is a fixed value of a data type that cannot be changed. 

2.1.1 Integer Constants 

Integer constants are whole numbers. An integer constant does not have a decimal point. 

Examples of integer constants are: 

 32  0  -6201   27  -83  1992 

2.1.2 Real Constants 

A real constant is a constant number that has a decimal point. Examples of real 

constants are 1.23, -0.0007, 3257.263, 5.0, 0.00002, 18., 774.00000, -64.9899 and 

94000000000000000.0. The last number in the previous example leads us to the 

scientific notation for real numbers. 94000000000000000.0 can be written as 9.4  10
16

 

or as 0.94  10
17

. In FORTRAN, this number can be written in two possible ways: as 

94000000000000000.0, or in scientific notation as 9.4E16 or 0.94E+17. Usually, such 

numbers are written in a way that the value of the first part is less than 1.0 and is greater 

than or equal to 0.1. The following table shows some examples of real numbers and 

their presentation in FORTRAN: 

 

Real Number   Decimal Notation   FORTRAN Representation  

6.3  10
-5 

  0.000063   0.63E-04  

4.932  10
7 
  49320000.0   0.4932E+08  

-5.7  10
-6 

  -0.0000057   -0.57E-05  

5.7  10
-6 

  0.0000057   0.57E-05  

5.7  10
6
   5700000.0   0.57E+07  



second Variables  11 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

2.1.3 Logical Constants 

There are two logical constants; true and false. In FORTRAN, the logical constant true 

is written as .TRUE. and the logical constant false is written as .FALSE..  

2.1.4 Character Constants 

FORTRAN allows character usage and manipulation. Character constants must be 

placed between two consecutive single quotes. A character constant is also referred to as 

a character string. The following table shows some character constants and their 

representation in FORTRAN:  

 

Character Constant   FORTRAN Representation  
THIS IS CHAPTER TWO   'THIS IS CHAPTER TWO'  

MORE THAN    ONE BLANK   'MORE THAN    ONE BLANK'  

ISN'T IT?   'ISN''T IT?'  

1234 AS CHARACTERS   '1234 AS CHARACTERS'  

Note that if a single quote needs to be included in a character constant, it should be 

written as two single quotes. 

2.2 Variables 

A variable is an object of a certain data type that takes a value of that type. A variable, 

as the name suggests, can change its value through certain FORTRAN statements such 

as the assignment statement (section 2.5) and the READ statement (section 2.6). When 

a variable is defined, the compiler allocates specific memory location to that variable. 

This location must be given a name to be referenced later. The name of such a location 

is called a variable name. We shall use the term variable to mean variable name. Before 

using a variable we may define it. The definition of a variable means that we are 

allocating a memory location for that variable. However, it does not mean that the 

compiler assigns a value to the variable. There are some rules for choosing variable 

names in FORTRAN. These rules are as follows: 

 The variable should start with an alphabetic character (A, B, C,...,Z) 

 The length of the variable should not exceed 6 characters. 

 A variable may contain digits (0, 1, 2, ..., 9). 

 A variable should not contain special characters ($, ;, ,, :, !, ~, ^,(,{, [, ), }, ], <, 

>, ?, “, „, \, | , @, %, &, #, +, -,/,*, .., etc.). 

 A variable should not contain blanks. 

Examples of valid and invalid variable names are given below: 



second Variables  12 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

Variable   Comment  
TRY   Valid.  
NAME21   Valid.  

NAME211   Invalid. Length is more than 6 characters.  
A+B   Invalid. Special character '+' can not be used.  
5TEST   Invalid. Name does not start with a letter.  
FIVE7   Valid.  

The following subsections present different variable types and how to define them. 

2.2.1 Integer Variables 

Integer variables can hold only integer values. There are two ways to define an integer 

variable in FORTRAN: explicitly and implicitly. The explicit definition allows us to 

define variable types, irrespective of the first letter of the variable name. In such a case, 

we must use the INTEGER statement. The general form of this statement is as follows: 

INTEGER  list of integer variables 

where list of integer variables is a list that has the names of variables separated by 

commas. The INTEGER statement is a FORTRAN declaration statement. This 

statement must be typed starting in either column 7 or after and must appear at the 

beginning of the program before any other executable statement. In fact, all declaration 

statements must appear at the beginning of the program. The following examples 

demonstrate the use of the INTEGER statement: 

 

Example   Comments  
INTEGER BOOKS, NUM, X   Three integer variables: BOOKS, NUM, X  
INTEGER Y1, AB3W   Two integer variables: Y1, AB3W  
INTEGER CLASS, ID, TOTAL   Three integer variables: CLASS, ID, TOTAL  
INTEGER SUM   One integer variable: SUM  

It is a good programming habit to use explicit definition in writing their programs. This 

minimizes logical errors that may arise while running such programs. 

In implicit definition, we choose a variable name that starts with one of the following 

letters: I, J, K, L, M, N. Hence, any variable that starts with one of these letters is 

considered implicitly as an integer variable unless it is otherwise explicitly stated. 

Examples of integer variables are: 

NUMB, N1, LAB, ISUM, JX, KILO, MEMO. 

Implicit definition is assumed when a programmer forgets to use explicit definition.  

2.2.2 Real Variables 

Real variables can hold only real values. As was the case in integer variable definition, 

there are two ways to define a real variable: explicitly and implicitly. The explicit 

definition allows us to define variable types irrespective of the first letter of the variable 

name, using the REAL statement. The general form of this statement is as follows: 

REAL   list of real variables 



second Variables  13 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

where list of real variable is a list that has the names of variables separated by commas. 

The REAL statement is a FORTRAN declaration statement. It must be typed starting in 

either column 7 or after and must appear in the beginning of the program before any 

other executable statement. The following examples demonstrate the use of the REAL 

statement: 

 

Example   Comments  
REAL NOTES, NUM2, IX   Three real variables: NOTES, NUM2, IX  
REAL M1, AB3   Two real variables: M1, AB3  
REAL INSIDE, KD2, SBTOT   Three real variables: INSIDE, KD2, SBTOT  
REAL J1SUM   One real variable: J1SUM  

We should try our best to declare our variables explicitly. If we forget to use explicit 

definition, then FORTRAN compilers assume implicit definition. 

In implicit definition, any variable that does not start with one of the letters I, J, K, 

L, M, N is considered, implicitly, as a real variable unless the type of the variable is 

explicitly stated. Examples of real variables are: 

YNUMB, X1, PERC, SUM, RJX, TOTAL, STID, A5, EPSLON, PI. 

2.2.3 Logical Variables 

Logical variables have either a .TRUE. or a .FALSE. value. There is only one way to 

define logical variables - they must be declared explicitly. The statement that is used to 

define logical variables is the declarative LOGICAL statement. This statement should 

be typed starting either in column 7 or after. It must appear at the beginning of the 

program before any executable statement. The general structure of the LOGICAL 

statement is: 

LOGICAL  list of logical variables  

where list of logical variables is one or more variables separated by commas. Examples 

of LOGICAL statement usage are given below: 

 

Example   Comments  
LOGICAL TEST, FLAG, Q, P   Four logical variables: TEST, FLAG, Q, P  
LOGICAL M5   One logical variable: M5  
LOGICAL SORTED, LINK   Two logical variables: SORTED, LINK  

2.2.4 Character Variables 

Character variables must be given character constants as their values. Only explicit 

definition allows us to define character variables. The declaration statement that is used 

in character definition is the CHARACTER statement. As is the case in other types of 

declaration statements, the CHARACTER declaration statement must appear at the 

beginning of the program and should be typed before any executable statement. The 

general form of the CHARACTER statement is as follows:  

CHARACTER   list of character variables with their lengths 

or 



second Arithmetic Operations  14 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

CHARACTER*n  list of character variables with their lengths 

where list of character variables with their lengths consists of one or more variables 

separated by commas. Each variable may be followed by *k, where k is a positive 

integer specifying the length of the string that particular variable can hold. If *k is not 

specified, the length of that variable is assumed to be n. If n is not specified, the length 

is assumed to be 1. The following table shows some examples of CHARACTER 

statements. 

 

Example   Character variables and their lengths  
CHARACTER NAME*20   NAME is a character variable of length 20  
CHARACTER*6 M, WS*3, IN2   M and IN2 are of length 6; WS is of length 3  
CHARACTER T1, T2, T3   T1, T2 and T3 are of length 1  
CHARACTER Z*8, TEST   Z is of length 8 and TEST is of length 1  
CHARACTER*12 Z1, Z2   Z1 and Z2 are of length 12  

 

Detailed character manipulation and usage will be discussed in chapter 10. In the 

remainder of this chapter, we present arithmetic and logical operations, the assignment 

statement, and simple input/output statements. 

2.3 Arithmetic Operations 

Addition, subtraction, multiplication, division, and exponentiation (power) are called 

arithmetic operations. The following subsections present details about these operations. 

2.3.1 Arithmetic Operators 

In FORTRAN there are five basic operators. These operators are shown in the following 

table with the sequence in which they are evaluated (precedency): 

 

FORTRAN 

Operator  

 Operation  FORTRAN 

Example  

 Math 

Notation  

Precedency  

**   Exponentiation   X ** Y   x
y
  1  

*   Multiplication   X * Y   x  y   2  

/   Division   X / Y   x  y   2  

+   Addition   X + Y   x + y   3  

-   Subtraction   X - Y   x - y   3  

 

An arithmetic expression consists of one or more arithmetic operations. Operations 

that are applied on two operands are called binary operations. Operations that are 

applied on one operand are called unary operations. The minus operator '-' may be used 

as a unary operator or as a binary one. An operand can be a constant value, a variable 

that has been given a value, or a correct expression. 

In any arithmetic expression, parentheses have the highest priority (precedence) in 

evaluation. In the case of nested parentheses (parentheses inside parentheses), 

evaluation starts with the most-inner parentheses. The next higher priority operator is 



second Arithmetic Operations  15 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

the exponentiation (also called power) operator '**'. If there are two or more 

consecutive exponentiation operators in an arithmetic expression, evaluation of these 

exponentiation operations is done from right to left. For example, in the expression 

2**2**3, we start evaluating 2**3 (which is 8) and after that we evaluate 2**8 (which 

is 256). Division and multiplication operators have the same priority, but they are lower 

in priority than the exponentiation operator. The addition and subtraction operators have 

the same priority which is lower than the priority of multiplication and division 

operators. Operators with the same priority are evaluated from left to right with the 

exception of the exponentiation operator as explained earlier.  

There are two restrictions on the use of arithmetic operators. The first restriction is 

that no two operators must appear consecutively. For example, if the expression 2 * -3  

is intended, in FORTRAN, it should be written as 2*(-3). The second restriction is on 

the use of the exponentiation operator. This operator must not be used to raise a 

negative number to a real exponent. For example, expressions such as (-2.0) ** 1.5 or (-

3) ** 2.3 are not allowed in FORTRAN language. To compute xy , when y  is real, most 

FORTRAN Compilers use the mathematical formula ey xln . When x  is negative, the 

value of ln x  is undefined. 

2.3.2 Integer Operations 

An operator between two integer operands is considered to be an integer operator and 

the operation is considered to be an integer operation. Integer operations always 

produce integer results. The fraction part is ignored. The following table shows some 

examples of integer operations: 

 

Expression   Value   Comment  

50 - 23   27    

3 ** 2   9    

5 * 7   35    

8 / 2   4    

8 / 3   2   Fraction part is truncated (not 2.6666667)  

9 / 10   0   Fraction part is truncated (not 0.9)  

 

Note that the expression I/J * J is not always equivalent to I. For example, if I and J are 

integer variables, and the value of I is 17  and the value of J is 6, the expression 

becomes 17 / 6 * 6. To evaluate this expression we consider operator precedence. Since 

operators '/' and '*' have the same priority, they are evaluated from left to right. We start 

with 17 / 6. The two operands are integers and therefore '/' here is an integer operator. 

The result must be an integer, which in this case evaluates to 2. Now, evaluation 

proceeds as 2 * 6 which results in 12 and not 17. 

2.3.3 Real Operations 

An operator between two real operands is considered to be a real operator and the 

operation is considered to be a real operation. Real operations produce real results. The 

following table shows some examples of real operations: 



second Arithmetic Operations  16 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

 

Expression   Value  

50.0 - 23.0   27.0000000  

3.0 ** 2.0   9.0000000  

5.0 * 7.0   35.0000000  

8.0 / 2.0   4.0000000  

8. / 3.0   2.6666667  

9. / 10.   0.9000000  

9.3 / 3.2   2.9062500  

2.3.4 Mixed-mode Operations 

An operator between an integer operand and a real operand is considered to be a mixed-

mode operator and the operation is considered to be a mixed-mode operation. Mixed-

mode operations produce real results. The following table shows examples of mixed-

mode operations: 

 

Expression   Value   Comment  

50 - 23.0   27.0000000    

3.0 ** 2   9.0000000    

3 ** 2.0   9.0000000    

4** 0.5   2.0000000    

5.0 * 7   35.0000000    

56.7 / 7   8.1000000    

8 / 2.0   4.0000000    

8.0 / 3   2.6666667    

9 / 10.   0.9000000   Decimal point can be placed without zero.  

17 / 6 * 6.0   12.0000000   '/' is an integer operator and '*' is a mixed 

mode operator  

 

The number of positions to the right of the decimal point in a real number depends on 

the computer used. In the examples above, we have assumed that the computer allows 

up to 7 positions. 

2.3.5 Examples 

Example 1: Evaluate the following arithmetic expression 

  20 - 14 / 5 * 2 ** 2 ** 3 

Solution: 

 Expression: 20 - 14 / 5 * 2 ** 2 ** 3 

   Priority is for ** from right to left 

 Step 1:   2 ** 3 = 8 (integer operation) 

 Expression: 20 - 14 / 5 * 2 ** 8   

   Priority is for ** from right to left 

 Step 2:   2 ** 8 = 256 (integer operation) 

 Expression: 20 - 14 / 5 * 256  



second Arithmetic Operations  17 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

   Priority is for / and * from left to right 

 Step 3:   14 / 5  = 2 (integer operation) 

 Expression: 20 - 2* 256  

   Priority is for *  

 Step 4:   2 * 256  = 512 (integer operation) 

 Expression: 20 - 512  

   Priority is for -  

 Result:  -492 

Example 2:  Evaluate the following arithmetic expression 

   14.0 / 5 * (2 * (7 - 4) / 4) ** 2  

Solution: 

 Expression: 14.0 / 5 * (2 * (7 - 4) / 4) ** 2  

   Priority is for expression inside the inner most parenthesis 

 Step 1:  (7 - 4) = 3  (integer operation) 

 Expression: 14.0 / 5 * (2 * 3 / 4) ** 2  

   Priority is for expression inside the parenthesis 

 Step 2 & 3:  (2 * 3 / 4)  = (6 / 4) = 1  (2 integer operations) 

 Expression: 14.0 / 5 * 1 ** 2   

   Priority is for ** 

 Step 4:   1 ** 2 = 1  (integer operation) 

 Expression: 14.0 / 5 * 1  

   Priority is for / and * from left to right 

 Step 5:   14.0 / 5  = 2.8000000 (Mixed mode operation) 

 Expression: 2.8000000 * 1  

   Priority is for *  

 Result:  2.8000000 

Example 3: Rewrite the following FORTRAN expression as a mathematical form 

X + Y / W - Z 

Solution: 

x
y

w
z   

Example 4: Rewrite the following FORTRAN expression as a  mathematical form 

X ** (1.0 / 2.0) / Y ** Z 

Solution: 

x

y
or

x

yz z

1

2

  

Example 5: Convert  the following  mathematical expression into FORTRAN 

expression. Use minimum number of parenthesis 

a b

a b



2 2
 

Solution: 

 (A + B) ** 0.5 / (A ** 2.0 - B ** 2.0) 



second Logical Operations  18 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

2.4 Logical Operations 

Logical operations evaluate to either .TRUE. or  .FALSE.. The following subsections 

discuss logical operators, relational operators and logical expressions:  

2.4.1 Logical Operators 

This section discusses the  three logical operators: .AND., .OR. and .NOT.. The .AND. 

operator is a binary logical operator that produces .TRUE., if and only if, both its 

operands have a .TRUE. value. If any of the operands have a .FALSE. value, the result 

of the operation is .FALSE.. The .OR. operator is a binary logical operator that 

produces .FALSE. if and only if both operands have the value .FALSE., otherwise, the 

result is .TRUE.. The unary logical operator .NOT. produces the opposite value of its 

operand. The following table shows the results of the three logical operations .AND., 

.OR. and .NOT. on different operand values, assuming P and Q are logical variables:  

 

P   Q   P .AND. Q   P. OR. Q   .NOT. P  

.FALSE.   .FALSE.   .FALSE.   .FALSE.   .TRUE.  

.FALSE.   .TRUE.   .FALSE.   .TRUE.   .TRUE.  

.TRUE.   .FALSE.   .FALSE.   .TRUE.   .FALSE.  

.TRUE.   .TRUE.   .TRUE.   .TRUE.   .FALSE.  

 

The .NOT. operator has the highest priority of the three logical operators followed by 

the .AND. operator. The .OR. operator has the lowest priority. These operators are 

shown in the following table with the sequence in which they are evaluated 

(precedency): 

 

Logical Operator  FORTRAN Example  Precedence  

.NOT.  .NOT. P  1  

.AND.  P .AND. Q  2  

.OR.  P .OR. Q   3  

 

Example 1: Evaluate the following logical expression: 

.FALSE. .OR. .NOT. .TRUE. .AND. .TRUE. 

Solution: 

Expression: .FALSE. .OR. .NOT. .TRUE. .AND. .TRUE. 

     priority is for .NOT. 

Step 1: .NOT. .TRUE. is .FALSE. 

Expression: .FALSE. .OR. .FALSE. .AND. .TRUE. 

     priority is for .AND. 

Step 2: .FALSE. .AND. .TRUE. is .FALSE. 

Expression: .FALSE. .OR. .FALSE.  

     priority is for .OR. 

Result: .FALSE. 

Example 2: Assume that the following declaration is given: 



second Logical Operations  19 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

LOGICAL FLAG 

If it is known that the expression 

.NOT. FLAG .OR. .FALSE. 

has the value .TRUE., what is the value of FLAG? 

Solution:  

The final result must be .TRUE.. The last step is  somevalue .OR. .FALSE. because the 

.NOT. operator has higher priority than the .OR. operator.  somevalue .OR. .FALSE. 

will have the value .TRUE. if and only if the value of somevalue is .TRUE.. But 

somevalue is equivalent to .NOT. FLAG, therefore the value of FLAG is .FALSE.. 

2.4.2 Relational Operators 

The values of arithmetic expressions can be compared using relational operators. The 

following table shows the different relational operators. Assume all variables have been 

initialized: 

 

Operator   Math   Example   Description  

.EQ.   =  X .EQ. Y  True if X and Y are equal  

 .NE.    N .NE. 8  True if N is not equal to 8  

.GT.   >  P1 .GT. 7.3  True if P1 is greater than 7.3  

 .GE.    SM .GE. TOT  True if SM is greater than or equal to TOT  

.LT.   <  A+B.LT.A*2.0  True if the sum of A and B is less than 2A  

.LE.    NUM.LE.CLASS  True if NUM is less than or equal to CLASS  

 

A relational expression evaluates to either .TRUE. or .FALSE.. Relational operators 

have lower priority than arithmetic operators and higher priority than logical operators. 

They are evaluated from left to right. The next subsection presents the use of relational, 

logical, and arithmetic operators in logical expressions. 

2.4.3 Logical Expressions 

A logical expression evaluates to .TRUE. or .FALSE.. It may contain different types of 

variables and operators. It may contain arithmetic expressions, logical expressions, and 

relational expressions. Logical expressions are used in selection constructs which are 

discussed in chapter 3. The evaluation of a logical expression starts with the evaluation 

of arithmetic expressions first followed by the relational expressions, and finally the 

logical expressions. The following examples demonstrate the evaluation of logical 

expressions: 

Example 1: Given that X has a value of 3.0, Y has a value of 5.0, Z has a value of 10.0, 

and FLAG is a logical variable with .FALSE. value, evaluate the following FORTRAN 

expression: 

.NOT. FLAG .AND. X*Y .GT. Z .OR. X+Y .GT. Z 

Solution: 

Expression: .NOT. FLAG .AND. X*Y .GT. Z .OR. X+Y .GT. Z 

  Evaluate arithmetic expressions first. 



third Assignment Statement  20 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

Expression: .NOT. FLAG .AND. 15.0 .GT.10.0 .OR. 8.0 .GT.10.0 

  Evaluate relational expressions next. 

Expression: .NOT. FLAG .AND. .TRUE. .OR. .FALSE. 

  Evaluate logical expressions. Start with .NOT.. 

Expression: .TRUE. .AND. .TRUE. .OR. .FALSE. 

  Evaluate logical .AND. next. 

Expression: .TRUE. .OR. .FALSE. 

  Evaluate .OR. next 

Result: .TRUE. 

Example 2: When is the value of the following expression .TRUE.? Assume K and L are 

integers. 

K / L * L .EQ. K 

Solution: 

If K is divisible by L, the value of the expression is .TRUE.. Otherwise, the value will 

be .FALSE.. 

Example 3: Given that X has a value of 3.0, Y has a value of 5.0, Z has a value of 10.0, 

and FLAG is a logical variable with the value .FALSE., find the value of each of the 

following expressions: 

.NOT. FLAG .OR. FLAG  

X .GT. Y - Z / 2.0  

X*Z .EQ. 20.0 .OR. FLAG .AND. .NOT. Z .EQ. 5.0  

X .GT. Y .AND. X .GT. Z .OR. X .LT. Y .AND. X .LT. Z  

Z*10 .NE. Y*30 .AND. X .LE. Y .AND. FLAG  

.NOT. FLAG .AND. FLAG  

.NOT. .NOT. FLAG  

Solution: 

Expression   Value  
.NOT. FLAG .OR. FLAG   .TRUE.  
X .GT. Y - Z / 2.0   .TRUE.  
X*Z .EQ. 20.0 .OR. FLAG .AND. .NOT. Z .EQ. 5.0   .FALSE.  

X .GT. Y .AND. X .GT. Z .OR. X .LT. Y .AND. X .LT. Z   .TRUE.  
Z*10 .NE. Y*30 .AND. X .LE. Y .AND. FLAG   .FALSE.  
.NOT. FLAG .AND. FLAG   .FALSE.  
.NOT. .NOT. FLAG   .FALSE.  

2.5 Assignment Statement 

The assignment statement in FORTRAN assigns a value to a variable. The general form 

of the FORTRAN assignment statement is: 

variable = expression 

where expression must have a value of the same type as the variable with one 

exception: integer values can be assigned to real variables and real values can be 

assigned to integer variables. In assigning a real value to an integer variable, the decimal 

part is truncated before the value is stored in the variable. In the case of an integer value 



third Assignment Statement  21 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

being assigned to a real variable, the integer value is converted to a real value before it 

is stored in the variable. The FORTRAN assignment statement is not a mathematical 

equation. Therefore, it is possible to write assignment statements such as: 

 X = 1.0 

 X = X + 1.0 

where the first statement assigns the value 1.0 to the variable X. The second statement 

evaluates the expression X + 1.0 which will be 2.0 and then assigns the result to the 

variable X. It should be clear that the old value of X (i.e 1.0) is changed to the new 

value (i.e. 2.0).  

Example 1: Write FORTRAN assignment statements to store the real number 3.25 into 

the variable X1 and 7.0 into the variable Y1. 

Solution:  

  X1 = 3.25 

  Y1 = 7.0 

Example 2: Write a FORTRAN assignment statement to store in X1 the value stored in 

Y1. 

Solution:  

  X1 = Y1 

Example 3: Write a FORTRAN assignment statement to increment X1 by 1. 

Solution: 

  X1 = X1 + 1.0 

Example 4: Write a FORTRAN assignment statement to add to X1 the value of Y1. 

Solution:  

  X1 = X1 + Y1 

Example 5: Write a FORTRAN assignment statement to store in X1 the contents of X1 

times the contents of Y1. 

Solution: 

  X1 = X1 * Y1 

Example 6: Assume that the coefficients of a quadratic equation are given as A, B, and 

C. Write FORTRAN assignment statements to find the two roots, ROOT1 and ROOT2, 

of the quadratic equation. 

Solution:  

 ROOT1 = (-B + (B ** 2.0 - 4.0 * A * C) ** 0.5) / (2.0 * A) 

 ROOT2 = (-B - (B ** 2.0 - 4.0 * A * C) ** 0.5) / (2.0 * A) 

Example 7: Given SUM as the sum of student grades in an exam and COUNT as the 

number of students, write an assignment statement to find the average AVER. 

Solution:  

  AVER = SUM / COUNT 

Example 8: Write FORTRAN assignment statements to exchange the values of the 

variables X and Y. (Hint: Use a temporary variable T) 

Solution: 



third Simple Input Statement  22 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

  T = X  

  X = Y  
  Y = T  

Example 9: If the variable NAME is declared as follows: 

 CHARACTER NAME * 8 

what will the value of NAME be after the following assignment statement is executed? 

NAME = 'ICS101 FORTRAN' 

Solution: 

Since the length of the variable NAME is declared as 8, the assignment statement will 

assign the first 8 characters of the string constant to NAME. Hence, the value of 

NAME is going to be: 

ICS101 F 

Example 10: Given the following declaration and assignment statements: 

  CHARACTER MAJOR * 15 
  MAJOR = 'FINAL' 

what is the value of the variable MAJOR ? 

Solution: 

Since the length of the variable NAME is declared as 15, the assignment statement will 

assign the string constant FINAL to the first 5 positions of MAJOR and fill the 

remaining 10 positions with blanks. 

2.6 Simple Input Statement 

We may assign a value to a variable by using either the assignment statement or by 

reading an input value into the variable. To read an input value from the terminal into a 

variable, we must use an input statement. There are two types of input statements: the 

formatted READ and the unformatted READ. This section presents the unformatted 

READ statement. The general form of the unformatted READ is 

READ*,  list of variables separated by commas 

The following points must be noted while using the unformatted READ statement: 

 Each read statement starts reading from a new line.  

 If the input data is not enough in the current line, reading continues in the next 

line. 

 The data values can be separated by blanks or comma. 

 The data values must agree in type with the variables.  

 Integer values can be read into real variables but real values must not be read 

into integer variables. 

 Extra data on an input line is ignored.  

2.6.1 Examples 

Example 1: Assume the following declaration: 

 INTEGER NUM, M1, K, L1, L2, L3, K1, K2 
 REAL TOT, X1, YY, S, ST, A, X, Y, Z 



third Simple Output Statement  23 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

The following table gives examples of READ statements: 

 

Statement   Input Line   Effect  
READ*, NUM, TOT   9 5.08  NUM = 9 

TOT = 5.08   

READ*, X1, YY   325 27  X1 = 325.0 

YY = 27.0 

READ*, M1   20.0  ERROR MESSAGE. DATA TYPE MISMATCH  

READ*, K, S   18, 0.35E-2  K = 18  

S = 0.35E-2 

READ*, ST   -23.4  ST = -23.4  

READ*, L1, L2, L3   7 6 5  L1 = 7  

L2 = 6 

L3 = 5 

READ*, A, A   1.0, 2.0  A = 2.0  

READ*, K1 
READ*, K2  

 5 8 

20 9   

K1 = 5  

K2 = 20 

READ*, X, Y, Z   5 8  

20 9 

X = 5.0  

Y = 8.0 
Z = 20.0 

Example 2: Assume the following declaration: 

 CHARACTER NAME*9, STR1*5, STR2*3 
 LOGICAL P1, P2 

The following table gives examples of READ statements: 

 

Statement   Input Line   Effect  
READ*, NAME   'AHMED ALI'  NAME = 'AHMED ALI' 

READ*,STR1, STR2  'ALI'   'CLASS'  STR1 = 'ALI  ' 

STR2 = 'CLA' 

READ*, P1, P2  T    F P1 = .TRUE. 

P2 = .FALSE. 

2.7 Simple Output Statement 

The PRINT  output statement is used to print the values of variables, expressions or 

constants. There are two types of PRINT output statements: the formatted PRINT 

statement and the unformatted PRINT statement. The formatted PRINT statement will 

be discussed in chapter 8. The general form of the unformatted PRINT statement in 

FORTRAN is  

PRINT*, list of variables, expressions, or constants separated by commas 

The following subsection presents some examples on PRINT statement. 

2.7.1 Examples 

Example 1: In the table below, examples of the PRINT statement are given assuming 

the following initializations:  



third A Complete Program  24 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

 LOGICAL FLAG 
 INTEGER K, L 
 REAL S1, S2 
 FLAG = .TRUE. 

 K = 3 
 L = 20 
 S1 = 35.0 

 S2 = S1 - K - L 

 

Statement   Output   Comments  
PRINT*, K, S1   3 35.0000000  Blanks depends the type of 

computer  
PRINT*, L+S2, W   32.0000000  ???????   ??????? for undefined 
PRINT*, L, FLAG   20    T    
PRINT*, L / K * K   18    
PRINT*, L / K * K * 1.0   18.0000000    
PRINT*, L * 1.0 / K * K   20.0000000  May be 19.9999994 

(accuracy)  
PRINT*,5,6+7, L, 2, K+3  5   13  20   2   6 Constants and expressions  
PRINT*, 'K= ',K,' L IS ',L  K= 3 L IS 20  Characters may be printed  
PRINT*, 'THIS TESTS'   THIS TESTS    
PRINT*, FLAG, .FALSE.   T    F  Logical values either T or F  
PRINT*  Prints an empty line 

Example 2: In the table below, more examples of the PRINT statement are given 

assuming the following initializations:  

 CHARACTER*10 LSTNAM 
 CHARACTER CLASS*5, MAJOR*4 
 LSTNAM = 'AL-FORTRAN' 
 CLASS = 'BATAL' 
 MAJOR = 'ANY1' 

 

Statement   Output   Comments  
PRINT*, CLASS, MAJOR  BATALANY1 No blanks in between 
PRINT*,LSTNAM, ' ',MAJOR  AL-FORTRAN ANY1 Explicit blank as it is 

 

The following points must be noted while using the PRINT statement: 

 Each PRINT statement starts printing on a new line. 

 If the spaces in the line are not enough to hold the whole output, printing 

continues on the next line. 

 A variable that does not have a value will produce question marks if it is 

printed.  

2.8 A Complete Program 

The following program reads three real numbers, prints them, computes their average 

and prints it: 



third Exercises  25 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

C THIS PROGRAM READS 3 REAL NUMBERS 

C AND COMPUTES AND PRINTS THE AVERAGE 
C 
 REAL NUM1, NUM2, NUM3, COUNT, AVER 
 COUNT = 3.0 
 READ*, NUM1, NUM2, NUM3 
 PRINT*, 'THE NUMBERS ARE ', NUM1, NUM2, NUM3 
 AVER = (NUM1 + NUM2 + NUM3) / COUNT 
 PRINT*, 'THE AVERAGE IS ', AVER 
 END 

The first three lines are comment lines. We can insert comment lines anywhere in the 

program. Each comment line must start with 'C' or '*' in column one. The fourth 

statement of the program is the REAL declaration statement. It declares five real 

variables that are going to be used in the program. The next statement is an assignment 

statement that assigns 3.0 to the variable COUNT. The READ statement will read 3 

values from the input line and assign them to the variables NUM1, NUM2, and NUM3, 

respectively. The first PRINT statement is used to print the values that were read. The 

next statement is an assignment statement that computes the average. The result is 

stored in the variable AVER. The second PRINT statement prints the average with a 

proper message. The last statement is the END statement. The END statement signals 

the physical end of the program. 

If the input line of this program is 
9.0   8.0   10.0 

the output is as follows: 
THE NUMBERS ARE 9.0000000 8.0000000 10.0000000 

THE AVERAGE IS 9.0000000 

In FORTRAN programs, execution starts from the beginning of the program and 

proceeds statement by statement, in sequence, unless there is an indication for changing 

the sequence. Statements that may change the sequence of execution are selection and 

repetition statements. Selection is discussed in chapter 3  and repetition in chapter 5. 

2.9 Exercises 

1. Evaluate the following arithmetic expressions: 

1. 4 ** 2 / 3 

2. ( ( 2 + 6 ) / 2 + 3.0 /6.0 *4 ) * ( 2 / 4 ) 

3. 10 ** 2 ** 3 

4. 10 / 4 /4 + ( 2 - 10 / 2.0 ) 

2. Indicate if the statements below are valid FORTRAN statements or not: 

1. Y + X = K 

2. AB = A * B 

3. PRINT*, 1.0, '+', 2.0, '=', 1.0 + 2.0 

4. X = Y ** -3 

5. X12345 = 8.0 

6. X = Y = 5.0 

7. P = ( Q + R ) * ( - ( -8 ) ) 



third Exercises  26 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

8. X3X = 8.0 

9. READ*, R+A 

10. READ*, NUM,NUM 

3. What will be printed by the following FORTRAN 77 programs ? 

1. INTEGER I, J, K 
 I = 300 

 J = 500 
 K = J/I 
 PRINT*, K 
 END 

 

2. INTEGER ONE,TWO,THREE,FOUR,FIVE 
 ONE = 1 
 TWO = 2 

 THREE = 3 
 FOUR = 4 
 FIVE = THREE + FOUR ** ( ONE / TWO ) 
 PRINT*, FIVE 
 END 

 

3. INTEGER  M, N 
 READ*, M 
 READ*, N 
 PRINT*, M, N 
 END 

Assume the input for the program is: 
7  9 

4. INTEGER I, J, K, L 
 READ*, I, J 
 READ*, K, I 
 PRINT*, I, J, K, L 
 END 

Assume the input for the program is: 
4  5  6 

7  8  9 
 

5. REAL X 
 X = 1.2 
 X = X + 1.0 
 X = X + 1.0 

 X = X + 1.0 
 PRINT*, X , X, X, X 
 END 

 

6. REAL A, X 
 A = 8 ** 1/3 

 X = 25 ** 1/2 
 PRINT*, X, A 
 END 

 



third Exercises  27 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

7. INTEGER XLM, NUM1, NUM2 
 REAL PNM 
 READ*, NUM1, NUM2 
 PNM = NUM1 / NUM2 

 XLM = 3 / PNM * 3.00 ** NUM2 
 PRINT*, PNM, NUM1, NUM2, XLM 
 END 

Assume the input for the program is: 
3,2 

4. What is the value of each of the following expressions? Use the following values if 

needed: 

 REAL A, B 
 INTEGER K, J 
 A = 2.0 

 K = -2 

 B = 3.5 
 J = 1 

1. 6 * J / K * 4 

2. 9 + K / 5 * A / 2 

3. A / ( B + K ) / J 

4. 3 ** J ** A ** 1 + K / J 

5. -2 / 4 * 4 ** 2 

6. -2 / 4.0 * 2 ** 2 + 2 * 4.0 ** 2 

7. 3 ** 2.0 * ( 3.0 - 1 ) + 2.0 * 1 * 3.0 

8. 5 ** 3 / 2 ** 5 / 2 

9. ( 5 / 2 ) ** 1.0 ** 2 

10. ( 1 + ( 3.2 * 2 - ( 5 - 4 ) ) ) 

11. ( ( 2 + 6 ) / 2 + 3.0 / 6.0 * 4 ) * ( 2 / 4 ) 

12. 99999 / 100000 - 1 

13. 2 ** 2 ** 3 

14. 9 / 4 * 2 ** 1 / 2 

15. 900 / 3.0E2 

5. Convert the following FORTRAN assignment statements into an algebraic form : 

1. W = ( X / Y / Z * T ) ** 3 + 1 + 1.674E-24 * C 

2. Q = 1012.0 * P ** 0.5 * (1.0 - P / 100.0 ) 

3. K = A * B / C - 2 

6. Which of the following are valid FORTRAN variable names? 

1. CS101GRADE  

2. AH/Q 

3. PRICE 

4. +RATE 

5. 2THIRD 

6. NUMB12 

7. IDNUMB 



third Exercises  28 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

8. WHOLE-SALE-PRICE 

9. $FORT 

10. Y8X 

11. ALL* 

7. Indicate the following statements as either TRUE or FALSE: 

1. A REAL statement is an executable statement. 

2. Compiling the statement Y = 2 ** 4 ** 3.5E50 will cause syntax error. 

3. The statement INTEGER X,Y,Z implies that XYZ is an integer variable. 

4. If J, K, and L are integers, then the FORTRAN expressions (J + K) / L and (J / 

L) +(K / L) are equivalent. 

5. The INTEGER statement can appear any where in the program.  

6. If K and L are integers, then the FORTRAN expressions K * L**2 / K**2 and 

K * (L**2 / K**2) are equivalent. 

7. PRINT*,X=5 is a valid FORTRAN 77 statement. 

8. Add the minimum number of parentheses to the FORTRAN expression  

A ** B ** 2 + B - C / D + A * B / C * D 

to be equivalent to the mathematical expression : 

a

d a

b

cd

b b c( ) 2 


  

9. In the following FORTRAN expression the operators have been numbered : 

       1      2     3    4      5     6     7     8    9 

  A ** B ** 2 + B -  C  / D + A * B  / C * D 

Give the order in which the operators are evaluated a cording to FORTRAN 77 

rules. (only write the operator numbers in order) 

10. Write a  FORTRAN  program to  read  a  3 digit number,  then  prints  the 

hundredth, the tenth, and the ones digits. If the input is: 
728 

 The output should be: 
 THE HUNDREDS DIGIT =  7 

 THE TENTH DIGIT    =  2 
 THE ONES DIGIT     =  8 

11. Write a FORTRAN  program which reads the radius of a sphere and  calculates the 

surface area and the volume of the sphere. Your  program should print the radius, 

surface  area  and  the volume: 

 Surface area = 4 r 2  

 Volume  =  
4

3

3 r  

12. Convert  the  following  mathematical  expressions / assignments to FORTRAN 

expressions / assignments. (do not use extra parentheses) 

1. 2
2

x
y

  



third Exercises  29 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

2. 
a b

a b




 

3. r ac

b

2

3

4

3 2
  

4. 
1

1

1

1

2

1

3r r r
 

 

5.  a b
xy

c d
 


 2  

6. 2 6a c   

7. 
a b

a






4

2

2
5

1  

13. For each of the following FORTRAN expressions, write an equivalent expression 

by deleting all "REDUNDANT" parentheses (i.e. parentheses whose deletion does 

not change the result of the expression). 

1. ( A*B ) * C / ( ( X*Y ) **2 ) 

2. ( ( A+B ) ** 2 + ( 3*C ) ** 3 ) ** ( A/B ) 

3. (( A-B ) +C ) +( D*E ) 

4. ( C*X ) ** (( 2-A ) * B ) 

5. -B + (( B**2 - ( 4 * ( A*C )))) ** 0.05 

14. Write a program that converts a quantity expressed in seconds to a correspondence  

quantity expressed in hours, minutes and seconds. If the input is: 
8125 

The output should be: 
2 HOURS, 15 MINUTES, 25 SECONDS. 

15. The input data to a certain program is more than what is required. The data is as 

follows: 
4  5  12  10 

6  1  8  13  19 

3  2  9  0  7  18  20 

Write a FORTRAN program to read enough data (i.e. using the minimum number 

of variables in the READ statement) to print the following output: 
4 5 
1 8 

9 0 

(your program should have READ and PRINT statements only) 

16. i) The output of the program below is as follows: 
8 

Fill in the spaces to get the output shown above 



second Solutions to Exercises  30 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

 INTEGER K, M, N 
 K = ----- 
 M = 2 

 N = 3 
 PRINT*, M**N**M**K 
 END 

ii) The output of the program below is as follows: 
1 4  
7 8 10 

Fill in the spaces to get the output shown above 

 INTEGER K1, K2, K3, K4, K5 
 READ*, ------- 
 READ*, ------- 
 READ*, ------- 
 PRINT*, K1, K2 
 PRINT*, K3,K4,K5 
 END 

Assume the input for the program is: 
1 2 3 

4 5 6 
7 8 
10 11 12 

17. Determine whether the following conditions are TRUE or FALSE. Assume 

A = 3.5, B = -4.1, I = -4, J = 9, FLAG = .TRUE. when needed: 

1.  (3.0/2.LT.1.5).AND.(4/2.GT.1) 

2. .FALSE..AND..TRUE..OR..NOT.(.FALSE..AND..TRUE.) 

3. .NOT..FALSE..AND..TRUE. 

4. .NOT..FALSE..OR..TRUE..AND.3/2.EQ.1.0 

5. .NOT.5**2.EQ.5*2.AND.0.GT.5.OR.5*2+2.GT.0 

6. A.GT.B.OR.I.EQ.J.AND.FLAG 

7. A+I-4.GT.B-3+2*J.OR.A*B.GT.2.0*I 

8. FLAG.OR.(A-I)/(B-J).GT.1.021 

9. .NOT.(A.GT.B).OR.(I.GT.J) 

10. (A+B)/(I+J).LT.-5.0.AND..NOT.A*I.LE-.14.0 

11. .NOT.(.NOT..FALSE.).AND..TRUE..OR..FALSE. 

2.10 Solutions to Exercises 

Ans 1. 

1. 5  2. 0.0   3. 100000000   4. -3.0 

Ans 2. 

1. Invalid 2. Valid 3. Valid 4. Invalid 5. Valid 

6. Invalid 7. Valid 8. Valid 9. Invalid 10. Valid 

Ans 3. 

 1 

 4 



second Solutions to Exercises  31 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

  Error Message 

 8   5   7    ??????? 

 4.2  4.2  4.2  4.2 

 12.0  2.0 

 1.0  3   2  27 

Ans 4. 

1.  -12 2.  9.0 3. 1.3333333 4. 1.0 5.    0 6. 30.0 

7. 24.0 8. 1 9. 2.0 10.  6.4 11.  0.0 

12. -1 13. 256 14. 2 15.  3.0 

Ans 5. 

1 1 1674 10

2 1012 1
100

3 2

3

24

1

2

.. .

.

w

x

y

z
t c

q p
p

k
ab

c





















  

 










 



 

Ans 6. 

1. Invalid 2. Invalid 3. Valid 4. Invalid 5. Invalid 

6. Valid 7. Valid 8. Invalid   9. Invalid  

10. Valid 11. Invalid 

Ans 7. 

1. FALSE 2. FALSE 3. FALSE 4. FALSE 5. FALSE 

6. FALSE 7. FALSE 

Ans 8. 

A ** B ** ( 2 + B - C) / (D + A) * B / (C * D) 

Ans 9. 

2   1   5   7   8   9   3   4    6 

Ans 10. 

  INTEGER N, M, J, K 
 READ*, N 
 M = N / 100 

 N = N - M * 100 
 J = N / 10 
 K = N - J * 10 
 PRINT*, 'THE HUNDREDS DIGIT = ', M 
 PRINT*, 'THE TENTH DIGIT    = ', J 
 PRINT*, 'THE ONES DIGIT = ', K 

 END 



second Solutions to Exercises  32 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

Ans 11. 

 REAL R, PI, SAREA, VOLUME 

 READ*, R 
 PI = 3.14159 
 SAREA = 4 * PI * R ** 2 
 VOLUME = 4.0 / 3.0 * PI * R ** 3 
 PRINT*,'RADIUS = ', R 
 PRINT*, 'AREA = ', SAREA 
 PRINT*, 'VOLUME = ', VOLUME 
 END 

Ans 12. 

 2 * X + Y / 2 

 (( A + B ) / ( A - B )) ** 0.5 

 R ** 3 / 3.0 - A * C ** ( 3.0 / 4.0 ) / ( 2 * B ) 

 1 / ( 1 / R1 + 1 / R2 + 1 / R3 ) 

 B + X * Y / ( C + D ) + 2 

 2 * A + C ** (-6) 

 ( A + B ** ( 1.0 / 4.0 ) ) / ( 2 / (A **2 + 5 ) ) - 1 

Ans 13. 

 A * B * C / ( X * Y ) ** 2 

 (( A + B ) ** 2  + ( 3 * C )** 3) ** ( A / B ) 

 ( A - B + C ) + D * E 

 ( C * X ) ** ( ( 2 - A ) * B ) 

 -B + ( B ** 2 - 4 * A * C ) ** 0.05 

Ans 14. 

 INTEGER  SECNDS , MINTS , HOURS , QUAN 
 READ*, QUAN 
 HOURS  = QUAN / 3600 

 QUAN   = QUAN - HOURS * 3600 
 MINTS  = QUAN / 60 
 SECNDS = QUAN - MINTS * 60 
 PRINT*, HOURS,'HOURS',MINTS,'MINUTES',SECNDS,'SECONDS' 

 END 

Ans 15. 

 INTEGER K1, K2 
 READ*, K1 , K2 
 PRINT*, K1 , K2 
 READ*, K1 , K1 , K2 
 PRINT*, K1 , K2 
 READ*, K1 , K1 , K1 , K2 
 PRINT*, K1 , K2 
 END 

Ans 16. 

  i)  0 

 ii)  

  READ*, K1 
  READ*, K2 
  READ*, K3 , K4 , K5 



second Solutions to Exercises  33 

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative 

Ans 17. 

1.  F 2.  T 3.  T 4.   T 5.   T 6.  T 

7.  F 8.  T 9.  F  10.   F 11.   F 

 



 

34 

 




