

Introduction to Computer
Programming Using FORTRAN 77

 Al-Dhaher, K. Garout, Y. Lafi, A.

 Al-Muhtaseb, H. Nazzal, A. Saeed, M.

 Yazdani, J. Zeidan, Y
.

August 1995 Second Edition

Information and Computer Science Department

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

ii – This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

CONTENTS

1 INTRODUCTION .. 1

1.1 COMPUTER SYSTEM COMPONENTS ... 2
1.2 PROGRAMS & PROGRAMMING LANGUAGES ... 2

1.2.1 Programs ... 3
1.3 SOFTWARE LIFE CYCLE .. 3
1.4 MODULAR SOFTWARE DESIGN ... 4
1.5 SOFTWARE SYSTEMS AND TOOLS ... 4

1.5.1 Editors ... 4
1.5.2 Compilers .. 5
1.5.3 FORTRAN Programs .. 5
1.5.4 Conclusion .. 5

1.6 EXERCISES .. 6
1.7 SOLUTIONS TO EXERCISES .. 7

2 DATA TYPES AND OPERATIONS .. 10

2.1 CONSTANTS .. 10
2.1.1 Integer Constants .. 10
2.1.2 Real Constants .. 10
2.1.3 Logical Constants ... 11
2.1.4 Character Constants ... 11

2.2 VARIABLES ... 11
2.2.1 Integer Variables ... 12
2.2.2 Real Variables ... 12
2.2.3 Logical Variables .. 13
2.2.4 Character Variables .. 13

2.3 ARITHMETIC OPERATIONS .. 14
2.3.1 Arithmetic Operators .. 14
2.3.2 Integer Operations .. 15
2.3.3 Real Operations .. 15
2.3.4 Mixed-mode Operations .. 16
2.3.5 Examples ... 16

2.4 LOGICAL OPERATIONS .. 18
2.4.1 Logical Operators ... 18
2.4.2 Relational Operators ... 19
2.4.3 Logical Expressions .. 19

2.5 ASSIGNMENT STATEMENT .. 20
2.6 SIMPLE INPUT STATEMENT ... 22

2.6.1 Examples ... 22

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

iii

2.7 SIMPLE OUTPUT STATEMENT.. 23
2.7.1 Examples ... 23

2.8 A COMPLETE PROGRAM ... 24
2.9 EXERCISES .. 25
2.10 SOLUTIONS TO EXERCISES .. 30

3 SELECTION CONSTRUCTS ... 35

3.1 IF-ELSE CONSTRUCT ... 35
3.1.1 Definition .. 35
3.1.2 Examples on the IF-ELSE Construct .. 35

3.2 IF CONSTRUCT.. 36
3.2.1 Definition .. 36
3.2.2 Examples on the IF Construct ... 37

3.3 IF-ELSEIF CONSTRUCT ... 38
3.3.1 Definition .. 38
3.3.2 Examples on the IF-ELSEIF Construct ... 38

3.4 SIMPLE IF CONSTRUCT ... 41
3.4.1 Definition .. 41
3.4.2 Examples on the Simple IF Construct ... 42

3.5 EXERCISES .. 43
3.6 SOLUTIONS TO EXERCISES .. 49

4 TOP DOWN DESIGN .. 54

4.1 BASIC CONCEPTS OF TOP DOWN DESIGN ... 54
4.2 SUBPROGRAM TERMINOLOGY .. 54
4.3 FUNCTION SUBPROGRAMS .. 55

4.3.1 Function Header ... 55
4.3.2 Function Body ... 55
4.3.3 Examples on function subprograms .. 56
4.3.4 Function Call .. 56
4.3.5 Function Rules .. 57
4.3.6 Complete Examples on function subprograms .. 57

4.4 SPECIAL CASES OF FUNCTIONS ... 59
4.4.1 Intrinsic Functions .. 59
4.4.2 Statement Functions .. 60

4.4.2.1 Examples of statement functions: ... 60
4.5 SUBROUTINE SUBPROGRAMS .. 61

4.5.1 Examples on Subroutine Subprograms: .. 62
4.6 COMMON ERRORS IN SUBPROGRAMS ... 65
4.7 EXERCISES .. 65
4.8 SOLUTIONS TO EXERCISES .. 77

5 REPETITION ... 85

5.1 THE DO LOOP .. 86
5.1.1 Examples on DO loops .. 88

5.2 NESTED DO LOOPS ... 89
5.2.1 Example on Nested DO loops.. 89

5.3 THE WHILE LOOP ... 90
5.3.1 Examples on WHILE Loops .. 91

5.4 NESTED WHILE LOOPS .. 92
5.5 EXAMPLES ON DO AND WHILE LOOPS.. 93
5.6 IMPLIED LOOPS ... 95
5.7 REPETITION CONSTRUCTS IN SUBPROGRAMS ... 96
5.8 EXERCISES .. 97
5.9 SOLUTIONS TO EXERCISES .. 104

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

iv

6 ONE-DIMENSIONAL ARRAYS .. 109

6.1 ONE-DIMENSIONAL ARRAY DECLARATION .. 109
6.2 ONE-DIMENSIONAL ARRAY INITIALIZATION .. 110

6.2.1 Initialization Using the Assignment Statement .. 110
6.2.2 Initialization Using the READ Statement .. 111

6.3 PRINTING ONE-DIMENSIONAL ARRAYS .. 113
6.4 ERRORS IN USING ONE-DIMENSIONAL ARRAYS ... 114
6.5 COMPLETE EXAMPLES ON ONE-DIMENSIONAL ARRAYS .. 114
6.6 ONE-DIMENSIONAL ARRAYS AND SUBPROGRAMS ... 116
6.7 EXERCISES .. 119
6.8 SOLUTIONS TO EXERCISES .. 125

7 TWO-DIMENSIONAL ARRAYS ... 130

7.1 TWO-DIMENSIONAL ARRAY DECLARATION ... 130
7.2 TWO-DIMENSIONAL ARRAY INITIALIZATION .. 131

7.2.1 Initialization Using the Assignment Statement .. 131
7.3 INITIALIZATION USING THE READ STATEMENT ... 132
7.4 PRINTING TWO-DIMENSIONAL ARRAYS ... 134
7.5 COMPLETE EXAMPLES ON TWO-DIMENSIONAL ARRAYS .. 135
7.6 TWO-DIMENSIONAL ARRAYS AND SUBPROGRAMS ... 137
7.7 COMMON ERRORS IN ARRAY USAGE .. 138
7.8 EXERCISES .. 139
7.9 SOLUTIONS TO EXERCISES .. 143

8 OUTPUT DESIGN AND FILE PROCESSING ... 147

8.1 OUTPUT FORMATTING .. 147
8.1.1 I Specification ... 148
8.1.2 F Specification .. 150
8.1.3 X Specification .. 153
8.1.4 Literal Specification .. 154
8.1.5 A Specification .. 154
8.1.6 L Specification ... 155

8.2 SPECIFICATION REPETITION: ANOTHER FORMAT FEATURE .. 155
8.3 CARRIAGE CONTROL SPECIFICATION ... 156
8.4 FILE PROCESSING ... 156

8.4.1 Opening Files .. 156
8.4.2 Reading from Files .. 157
8.4.3 Writing to Files ... 158
8.4.4 Working with Multiple Files .. 158
8.4.5 Closing Files ... 159
8.4.6 Rewinding Files ... 159

8.5 EXERCISES .. 159
8.5.1 Exercises on Output Design .. 159
8.5.2 Exercises on FILES ... 164

8.6 SOLUTIONS TO EXERCISES .. 168
8.6.1 Solutions to Exercises on Output Design .. 168
8.6.2 Solutions to Exercises on Files .. 170

9 APPLICATION DEVELOPMENT: SORT & SEARCH ... 174

9.1 SORTING ... 174
9.1.1 A Simple Sorting Technique .. 175

9.2 SEARCHING ... 176
9.2.1 Sequential Search .. 176

9.3 AN APPLICATION: MAINTAINING STUDENT GRADES ... 176

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

v

9.4 EXERCISES .. 178
9.5 SOLUTIONS TO EXERCISES .. 180

10 ADVANCED TOPICS .. 186

10.1 CHARACTER OPERATIONS .. 186
10.1.1 Character Assignment .. 186
10.1.2 Comparison of Character Strings .. 187
10.1.3 Extraction of Substrings ... 189
10.1.4 String Concatenation .. 190
10.1.5 Character Intrinsic Functions .. 190
10.1.6 Function INDEX(c1 , c2) .. 190
10.1.7 Function LEN(c) ... 191
10.1.8 Function CHAR(i) .. 191
10.1.9 Function ICHAR(c) .. 191
10.1.10 Functions LGE, LGT, LLE, LLT ... 192

10.2 N-DIMENSIONAL ARRAYS .. 192
10.3 DOUBLE PRECISION DATA TYPE ... 193

10.3.1 Double Precision Definition ... 193
10.3.2 Double Precision Operations ... 193
10.3.3 Double Precision Intrinsic Functions... 194

10.4 COMPLEX DATA TYPE .. 194
10.4.1 Complex Data Type Definition ... 194
10.4.2 Complex Operations ... 194
10.4.3 Complex Intrinsic Functions .. 194

10.5 EXERCISES .. 195
10.6 SOLUTIONS TO EXERCISES .. 201

1

1 INTRODUCTION

ICS101 is an introductory course on computer programming. The goal of this course is

to teach students the use of computers as tools to solve engineering and scientific

problems.

We use many tools in our daily life, from simple things like pens and screwdrivers,

to complicated things like watches, radios and TV remote controls, to more complicated

things like calculators, television sets, video cameras and cars. More recently computers

have been emerging as tools that are used in everyday life. Just as any other tool we

should know how to use them properly. It would also be useful, though not necessary,

to know how they work and what affects their behavior. If we know for example the

structure of a compass, and that it uses a magnet as one of its components, and we know

that magnetic fields affect each other, we can understand the behavior of the compass if

another magnet is placed beside it.

Knowing how to use a tool or device involves knowing what it can do for us, how we

should express what we want to do with the device (e.g. by pressing a key on a

calculator, or turning the knob of a radio) and how to receive and interpret the result

from this device (e.g. read the sum of the numbers from the calculator display, or listen

to the sound from the radio speaker).

Computers vary in size, shape and function. There are small computers and big

computers. Large computers are referred to as mainframes. Smaller computers are

classified either as minicomputers or microcomputers. Some are used for a specific task,

others are general purpose. This variation is similar to the variation in many other

devices and tools. There are different screwdrivers, radios and cars. The proper tool for

the task should be used. A truck should be used to carry heavy machinery, while a car

would be used to carry people (and not the other way around).

A mainframe computer is a powerful machine that can serve hundreds of users that

work on it through terminals scattered around and connected to the mainframe through a

computer network. The terminals are used by computer users to enter data, write

programs and see their results. All the computing is done by the mainframe.

There are other kinds of computers. Personal computers are getting more popular.

These are computers that are mainly used by a single person at a time. They have

attachments or devices for entering the data and programs, reading the results, as well as

performing the actual computing. When you want to use a computer, big or small, you

should at least know:

 what the computer can do for you (it might also be useful to know what it

cannot do for you);

first Programs & Programming Languages 2

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 the problem you want to solve, and understand it well;

 how to solve the problem;

 how to express the solution to the computer (what you want it to do for you);

and

 how to receive and interpret the results.

Remember that the computer is a tool, just like a car for example. If you want to get

somewhere, but you do not know where that place is, or how to get there, the car is

useless. You have to know how to drive the car, in addition to knowing how to get to

your destination from wherever you are. In the remainder of this introductory chapter,

we will briefly describe the basic components of computers, and how to interact with

them.

1.1 Computer System Components

We can think of computers as devices or machines that are capable of performing

certain tasks. A very simple task, for example, is addition. Different computers might

have different abilities, but in general, they have a similar internal structure. A typical

computer should have input devices to receive input from the user, output devices to

enable users to observe and interpret the results, a central processing unit to enable it to

perform the needed operations and tasks, and memory to store all the data and programs

it needs. An example of an input device is a keyboard or a mouse, an output device can

be a video screen or a printer. The physical devices that make up the computer are

called “Hardware”.

1.2 Programs & Programming Languages

Arabic, English, French and other languages, are called natural languages. They are

languages used by people to communicate with each other. To communicate correctly,

people have to agree on a common language. If you go to Japan and start speaking in

Arabic, even if you say simple things like “What time is it?”, people will not understand

what you are saying. A common language that is understood by both parties has to be

used.

Even though there are grammar rules to control the language (what is linguistically

correct and what is not), sometimes different interpretations of the same word or

sentence are possible, which could be understood by the duration of breaks between

words, tone of voice, facial expression, and so on. Some sentences are difficult to

understand, even by humans. “I saw Ahmed on a hill with a telescope” could be

interpreted in different ways. This problem is called the ambiguity of natural language.

For these reasons - to avoid ambiguity and different interpretations - restricted special

languages that have simpler grammars (structure) and restricted vocabulary, are used to

communicate with machines (computers in particular). These are called computer

programming languages.

Computers are electronic devices. They can only interpret electrical signals. They

can be programmed based on their ability to interpret these electrical signals; by asking

them to perform different tasks when they detect a signal or when they do not detect a

signal. For example, if there are three wires that must have an electrical signal of [+5]

first Software Life Cycle 3

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

volts to indicate that there is a signal [interpreted as ON or 1], and [-5] volts to indicate

that there is no signal [or simply as OFF or 0], the computer can be instructed to

interpret the sequence [000] to be the number zero and [001] to be the number one, and

[010] to be the number two, and [011] to be the number three, and so on. This is called

the binary system. A program expressed in this form is usually said to be written in

machine language. This language is also known as low level language because it is

close to the machine hardware structure.

However, to perform any non-trivial task, thousands and thousands of these data

values and instructions have to be written, and any mistake could lead to undesirable

behavior. It is also extremely difficult to write these instructions and to correct them if

there are errors. For this reason, it was suggested to assemble or group some of these

binary digits into symbols, called mnemonics, and write a program (called an assembler)

to read these symbols and convert them to machine code. These programs are known as

assembly language programs. Assembly programs are at a higher level (in the

programming language hierarchy) than machine code. Assembly programs are easier to

write than machine code, but it is still difficult for humans to write and modify them.

This is why high level programming languages were introduced. In a high level

language, the programmer uses a compiler, which takes each statement in the programs,

and translates it to machine code for the computer to understand.

1.2.1 Programs

In section 1.1, we mentioned that computers are machines that perform certain tasks,

such as addition. We have to express what tasks we want it to perform, and in what

order. If we tell the computer that we want it to add two numbers, it would know how to

do that. For example in FORTRAN we can say X = 3 + 5. This asks the computer (we

will see how later) to add 3 and 5, and store the value in X. This is a simple command,

or program statement, that uses the computer's ability to perform the addition task or

operation. A sequence of such statements is called a program.

A program is a sequence of statements that fully and clearly describes how a problem

should be solved. The programs that tell the computer what to do, are usually called

“Software”.

A program should be written in a language that the computer understands. There are

different kinds of languages used for different purposes. Some of the most widely used

programming languages include FORTRAN, PASCAL, C, LISP, COBOL and

PROLOG. All of these languages are high level programming languages.

1.3 Software Life Cycle

The production of software is similar to the production of artifacts in other engineering

fields. A building, for example, might be constructed by laying bricks here and there,

without an overall plan or a blue-print. However except for the simplest of buildings,

the results would not be satisfactory, unsafe to say the least. The correct engineering

method of constructing a building requires that the architect or civil engineers

understand the requirements for constructing the building (e.g. residential), produce a

preliminary design, verify it with the customer and modify the design accordingly,

before the actual building is constructed. The process of software design is similar. The

second Software Systems and Tools 4

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

programmer, or software engineer, should understand and analyze the problem to be

solved well before any program is written. After the problem is analyzed, the approach

for solving the problem should be identified. A solution is then designed and developed.

After a solution is identified, the programmer can start writing the program code. After

the code is written it has to be verified and checked for any mistakes or inconsistencies

with the requirements, and the process is then repeated until the program behaves as

required.

1.4 Modular Software Design

One approach for software development that has been shown to be effective for the

production of large software systems is stepwise refinement or top-down design.

Stepwise refinement is a form of divide and conquer strategy of problem solving. The

basic idea is to divide the problem being solved into a number of steps, each of which

can be described by an algorithm which is simpler and more manageable than an

algorithm that describes the complete problem as a whole. Using this approach,

problems that might seem difficult at the beginning are reduced to smaller problems that

can be handled individually. In large software projects, different software engineers

work on different sub-problems or modules. When they are done, the process of

combining the modules to construct the solution of the original problem is conducted,

and is usually straight-forward.

In this course, we apply the concepts of top-down design to solve simple scientific

and engineering problems. The knowledge that you gain while you develop skills in top-

down design will be valuable for you in other areas of problem solving in your field of

study, not only in programming and software development.

1.5 Software Systems and Tools

To develop software, programmers need to use certain systems and tools. In this section

we introduce some of the tools we will be using in this course. These include an editor

and a compiler. All these tools are programs used by the computer system to assist the

programmer in developing, running and maintaining programs.

1.5.1 Editors

To write programs and enter data in the computer, the programmer or user needs to use

a tool called an editor. The editor allows the user to create and modify files. You can

think of a file as a reserved area to write programs and data, just as you can write it on a

piece of paper. However to enable the computer to read your program, it has to be

written in a file, in a form that the computer can interpret. We will see in section1.5.3

the form of a FORTRAN program.

Editors allow their users to add, modify and delete things from a file. These things

include characters, words, lines, pages and so on. There are some editors that offer other

features and facilities. These include checking spelling mistakes, repeating words, lines

and other things. In some systems, you can edit more than one file at the same time.

You can copy from file to file. The features of editors are many and we will not attempt

to enumerate them here. It suffices to know the purpose of using an editor, and that

there are several kinds of editors available for use.

second Software Systems and Tools 5

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

1.5.2 Compilers

In section 1.5.1, we mentioned that an editor enables the programmer to create files of

programs and data according to specific forms. Some programming languages require

that the program be written in a specific form so that it is easy to interpret. The

computer uses a program called a compiler to read the program from a file that the

programmer writes in, and converts the program into machine language. The

FORTRAN compiler requires that the program be written in a specific form so that the

compiler can perform the conversion to machine language.

1.5.3 FORTRAN Programs

FORTRAN (FORmula TRANslation) was developed in the fifties as a programming

language for scientific and engineering applications. In 1977, standards for FORTRAN

were revised, which resulted in a version of FORTRAN that came to be known as

FORTRAN77. This is the version of FORTRAN that we will be using in this course.

Using any editor, a programmer writes his/ here program in a file. A file consists of a

collection of lines (which could also be called statements or records). The FORTRAN

compiler requires that all program statements or lines, have a specific structure. A line

can hold a maximum of 80 characters. Thus you can think of the program file as having

80 columns. The first position on the line is column one, the second position is column

two and so on. Each program statement must begin in a new line and must be typed

between columns 7 to 72 of the file. The compiler ignores any characters in columns 73

to 80. Columns 1 to 5 are used to include a label or a statement number, which is used

to identify a specific line or statement of the program. Column 6 is used for

continuation, which might be needed if the program statement or line is too long to fit in

columns 7 to 72. Any character, except a zero, placed in column 6, indicates that this

line is a continuation of the previous line.

A “*” or the character “C” in column one indicates that the line is a comment line.

The compiler ignores what is typed on a comment line and does not execute it. This is

useful for programmers to write descriptions of the different parts of their programs.

Each program should end with the “END” statement. This signifies the physical end

of the program. The STOP statement signals the logical end of the program. While the

END statement appears at the end of the program, the STOP statement may appear

anywhere in the program, possibly, to stop execution of the program under certain

conditions. The compiler sequentially executes each statement in the program.

Exceptions to this sequential execution is possible using special FORTRAN statements

such as GOTO, IF and DO. These are used to perform selection and repetition, as we

shall see in later chapters.

1.5.4 Conclusion

In this course, you will be introduced to the basic concepts of computing and computer

programming. The skills you gain in this course will enable you to start using computers

as tools to solve the engineering and scientific problems you will encounter during your

study. You should keep in mind that what you encounter in this course is but a drop in

the ocean. The field of computer science is growing rapidly. As scientists and engineers,

it is important to educate ourselves in different areas of technology. Without this new

second Exercises 6

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

technology, we will not be able to succeed and excel in our studies. It is also important

to continue educating ourselves by identifying new developments in these areas. This

course is the starting point. You should continue this process in order to remain

competitive. Accordingly, when you study the material in this course, you should

attempt to relate it to your field of study, and consider how the use of such tools can

facilitate and enhance your productivity, and aid in the understanding of the material

that you have already taken as well as the material that you will study in the future.

1.6 Exercises

1. Indicate the following statements as either TRUE or FALSE:

1. Syntax errors are detected during compilation.

2. A compiler is a hardware component that translates programs written in a

high level language to a machine language.

3. The input unit is the part of the computer that controls all the other parts.

4. The last statement in a FORTRAN program should be the END statement.

5. FORTRAN is a high level language.

6. A comment statement is used for documentation purposes.

7. Dividing by zero will cause a compilation error.

8. If a FORTRAN statement exceeds column 72, then '+' at column # 6 in the

next line can be used to continue the statement on that line.

9. A computer is a machine used to solve problems only.

10. A compiler checks the syntax of the program and converts the program into

machine language.

11. A program is a set of computer instructions.

12. One can use as many 'STOP' and 'END' statements as he/she wishes in a

single program.

2. Which of the following statement(s) is/are correct according to FORTRAN:

A. Only column 1 is used for the statement label.

B. Column 6 is used for comment.

C. Column 1-5 is used for the statement label.

D. Column 7 is used for the continuation line.

E. Characters C or * in Column 1 is used to comment a line.

3. For each item of list (A), choose the correct definition from list (B) :

second Solutions to Exercises 7

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 List A List B

Assembler 1. A machine that converts an assembly language program into machine

language.

Compiler 2. The physical components of a computer.

Software 3. A machine that converts a high level language program into machine

language.

 Hardware 4. A fundamental computer component that controls the operations of the

other parts of the computer.

 5. Programs used to specify the operations in a computer.

 6. A fundamental computer component that performs all arithmetic and

logic operations.

 7. A program that converts an assembly language program into machine

language.

 8. A program that converts a high level language program into machine

language.

4. For each term in list (A) choose the correct definition from list (B) :

List A List B

 A program 1. is a FORTRAN statement that indicates the logical end of the

program.

A computer 2. is a machine that can solve all problems.

END 3. translates programs written in an assembly language to a machine

language.

STOP 4. is a machine that uses instructions given by the user to solve a

problem.

 5. is a sequence of instructions which, when performed, will do a

certain task.

 6. is a FORTRAN statement that indicates the physical end of a

program.

1.7 Solutions to Exercises

Ans 1.

1. T 2. F 3. F

4. T 5. T 6. T

7. F 8. T 9. F

10. T 11. F 12. F

Ans 2.

III and V

Ans 3.

Assembler 7

Compiler 8

Software 5

second Solutions to Exercises 8

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Hardware 2

Ans 4.

A program 5

A computer 4

END 6

STOP 1

9

second Constants 10

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2 DATA TYPES AND

OPERATIONS

We use computers to manipulate information that consists of letters, digits, and other

special symbols. Such information is the interpretation of data. Although the word data

is the plural of datum, many computer specialists use data as a mass noun such as water

and sand. Data can be of different types. The basic data types in FORTRAN 77 are:

integer, real, character, and logical. In this chapter we present these types in detail.

2.1 Constants

A constant is a fixed value of a data type that cannot be changed.

2.1.1 Integer Constants

Integer constants are whole numbers. An integer constant does not have a decimal point.

Examples of integer constants are:

 32 0 -6201 27 -83 1992

2.1.2 Real Constants

A real constant is a constant number that has a decimal point. Examples of real

constants are 1.23, -0.0007, 3257.263, 5.0, 0.00002, 18., 774.00000, -64.9899 and

94000000000000000.0. The last number in the previous example leads us to the

scientific notation for real numbers. 94000000000000000.0 can be written as 9.4 10
16

or as 0.94 10
17

. In FORTRAN, this number can be written in two possible ways: as

94000000000000000.0, or in scientific notation as 9.4E16 or 0.94E+17. Usually, such

numbers are written in a way that the value of the first part is less than 1.0 and is greater

than or equal to 0.1. The following table shows some examples of real numbers and

their presentation in FORTRAN:

Real Number Decimal Notation FORTRAN Representation

6.3 10
-5

 0.000063 0.63E-04

4.932 10
7
 49320000.0 0.4932E+08

-5.7 10
-6

 -0.0000057 -0.57E-05

5.7 10
-6

 0.0000057 0.57E-05

5.7 10
6
 5700000.0 0.57E+07

second Variables 11

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2.1.3 Logical Constants

There are two logical constants; true and false. In FORTRAN, the logical constant true

is written as .TRUE. and the logical constant false is written as .FALSE..

2.1.4 Character Constants

FORTRAN allows character usage and manipulation. Character constants must be

placed between two consecutive single quotes. A character constant is also referred to as

a character string. The following table shows some character constants and their

representation in FORTRAN:

Character Constant FORTRAN Representation
THIS IS CHAPTER TWO 'THIS IS CHAPTER TWO'

MORE THAN ONE BLANK 'MORE THAN ONE BLANK'

ISN'T IT? 'ISN''T IT?'

1234 AS CHARACTERS '1234 AS CHARACTERS'

Note that if a single quote needs to be included in a character constant, it should be

written as two single quotes.

2.2 Variables

A variable is an object of a certain data type that takes a value of that type. A variable,

as the name suggests, can change its value through certain FORTRAN statements such

as the assignment statement (section 2.5) and the READ statement (section 2.6). When

a variable is defined, the compiler allocates specific memory location to that variable.

This location must be given a name to be referenced later. The name of such a location

is called a variable name. We shall use the term variable to mean variable name. Before

using a variable we may define it. The definition of a variable means that we are

allocating a memory location for that variable. However, it does not mean that the

compiler assigns a value to the variable. There are some rules for choosing variable

names in FORTRAN. These rules are as follows:

 The variable should start with an alphabetic character (A, B, C,...,Z)

 The length of the variable should not exceed 6 characters.

 A variable may contain digits (0, 1, 2, ..., 9).

 A variable should not contain special characters ($, ;, ,, :, !, ~, ^,(,{, [,), },], <,

>, ?, “, „, \, | , @, %, &, #, +, -,/,*, .., etc.).

 A variable should not contain blanks.

Examples of valid and invalid variable names are given below:

second Variables 12

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Variable Comment
TRY Valid.
NAME21 Valid.

NAME211 Invalid. Length is more than 6 characters.
A+B Invalid. Special character '+' can not be used.
5TEST Invalid. Name does not start with a letter.
FIVE7 Valid.

The following subsections present different variable types and how to define them.

2.2.1 Integer Variables

Integer variables can hold only integer values. There are two ways to define an integer

variable in FORTRAN: explicitly and implicitly. The explicit definition allows us to

define variable types, irrespective of the first letter of the variable name. In such a case,

we must use the INTEGER statement. The general form of this statement is as follows:

INTEGER list of integer variables

where list of integer variables is a list that has the names of variables separated by

commas. The INTEGER statement is a FORTRAN declaration statement. This

statement must be typed starting in either column 7 or after and must appear at the

beginning of the program before any other executable statement. In fact, all declaration

statements must appear at the beginning of the program. The following examples

demonstrate the use of the INTEGER statement:

Example Comments
INTEGER BOOKS, NUM, X Three integer variables: BOOKS, NUM, X
INTEGER Y1, AB3W Two integer variables: Y1, AB3W
INTEGER CLASS, ID, TOTAL Three integer variables: CLASS, ID, TOTAL
INTEGER SUM One integer variable: SUM

It is a good programming habit to use explicit definition in writing their programs. This

minimizes logical errors that may arise while running such programs.

In implicit definition, we choose a variable name that starts with one of the following

letters: I, J, K, L, M, N. Hence, any variable that starts with one of these letters is

considered implicitly as an integer variable unless it is otherwise explicitly stated.

Examples of integer variables are:

NUMB, N1, LAB, ISUM, JX, KILO, MEMO.

Implicit definition is assumed when a programmer forgets to use explicit definition.

2.2.2 Real Variables

Real variables can hold only real values. As was the case in integer variable definition,

there are two ways to define a real variable: explicitly and implicitly. The explicit

definition allows us to define variable types irrespective of the first letter of the variable

name, using the REAL statement. The general form of this statement is as follows:

REAL list of real variables

second Variables 13

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

where list of real variable is a list that has the names of variables separated by commas.

The REAL statement is a FORTRAN declaration statement. It must be typed starting in

either column 7 or after and must appear in the beginning of the program before any

other executable statement. The following examples demonstrate the use of the REAL

statement:

Example Comments
REAL NOTES, NUM2, IX Three real variables: NOTES, NUM2, IX
REAL M1, AB3 Two real variables: M1, AB3
REAL INSIDE, KD2, SBTOT Three real variables: INSIDE, KD2, SBTOT
REAL J1SUM One real variable: J1SUM

We should try our best to declare our variables explicitly. If we forget to use explicit

definition, then FORTRAN compilers assume implicit definition.

In implicit definition, any variable that does not start with one of the letters I, J, K,

L, M, N is considered, implicitly, as a real variable unless the type of the variable is

explicitly stated. Examples of real variables are:

YNUMB, X1, PERC, SUM, RJX, TOTAL, STID, A5, EPSLON, PI.

2.2.3 Logical Variables

Logical variables have either a .TRUE. or a .FALSE. value. There is only one way to

define logical variables - they must be declared explicitly. The statement that is used to

define logical variables is the declarative LOGICAL statement. This statement should

be typed starting either in column 7 or after. It must appear at the beginning of the

program before any executable statement. The general structure of the LOGICAL

statement is:

LOGICAL list of logical variables

where list of logical variables is one or more variables separated by commas. Examples

of LOGICAL statement usage are given below:

Example Comments
LOGICAL TEST, FLAG, Q, P Four logical variables: TEST, FLAG, Q, P
LOGICAL M5 One logical variable: M5
LOGICAL SORTED, LINK Two logical variables: SORTED, LINK

2.2.4 Character Variables

Character variables must be given character constants as their values. Only explicit

definition allows us to define character variables. The declaration statement that is used

in character definition is the CHARACTER statement. As is the case in other types of

declaration statements, the CHARACTER declaration statement must appear at the

beginning of the program and should be typed before any executable statement. The

general form of the CHARACTER statement is as follows:

CHARACTER list of character variables with their lengths

or

second Arithmetic Operations 14

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

CHARACTER*n list of character variables with their lengths

where list of character variables with their lengths consists of one or more variables

separated by commas. Each variable may be followed by *k, where k is a positive

integer specifying the length of the string that particular variable can hold. If *k is not

specified, the length of that variable is assumed to be n. If n is not specified, the length

is assumed to be 1. The following table shows some examples of CHARACTER

statements.

Example Character variables and their lengths
CHARACTER NAME*20 NAME is a character variable of length 20
CHARACTER*6 M, WS*3, IN2 M and IN2 are of length 6; WS is of length 3
CHARACTER T1, T2, T3 T1, T2 and T3 are of length 1
CHARACTER Z*8, TEST Z is of length 8 and TEST is of length 1
CHARACTER*12 Z1, Z2 Z1 and Z2 are of length 12

Detailed character manipulation and usage will be discussed in chapter 10. In the

remainder of this chapter, we present arithmetic and logical operations, the assignment

statement, and simple input/output statements.

2.3 Arithmetic Operations

Addition, subtraction, multiplication, division, and exponentiation (power) are called

arithmetic operations. The following subsections present details about these operations.

2.3.1 Arithmetic Operators

In FORTRAN there are five basic operators. These operators are shown in the following

table with the sequence in which they are evaluated (precedency):

FORTRAN

Operator

 Operation FORTRAN

Example

 Math

Notation

Precedency

** Exponentiation X ** Y x
y
 1

* Multiplication X * Y x y 2

/ Division X / Y x y 2

+ Addition X + Y x + y 3

- Subtraction X - Y x - y 3

An arithmetic expression consists of one or more arithmetic operations. Operations

that are applied on two operands are called binary operations. Operations that are

applied on one operand are called unary operations. The minus operator '-' may be used

as a unary operator or as a binary one. An operand can be a constant value, a variable

that has been given a value, or a correct expression.

In any arithmetic expression, parentheses have the highest priority (precedence) in

evaluation. In the case of nested parentheses (parentheses inside parentheses),

evaluation starts with the most-inner parentheses. The next higher priority operator is

second Arithmetic Operations 15

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

the exponentiation (also called power) operator '**'. If there are two or more

consecutive exponentiation operators in an arithmetic expression, evaluation of these

exponentiation operations is done from right to left. For example, in the expression

2**2**3, we start evaluating 2**3 (which is 8) and after that we evaluate 2**8 (which

is 256). Division and multiplication operators have the same priority, but they are lower

in priority than the exponentiation operator. The addition and subtraction operators have

the same priority which is lower than the priority of multiplication and division

operators. Operators with the same priority are evaluated from left to right with the

exception of the exponentiation operator as explained earlier.

There are two restrictions on the use of arithmetic operators. The first restriction is

that no two operators must appear consecutively. For example, if the expression 2 * -3

is intended, in FORTRAN, it should be written as 2*(-3). The second restriction is on

the use of the exponentiation operator. This operator must not be used to raise a

negative number to a real exponent. For example, expressions such as (-2.0) ** 1.5 or (-

3) ** 2.3 are not allowed in FORTRAN language. To compute xy , when y is real, most

FORTRAN Compilers use the mathematical formula ey xln . When x is negative, the

value of ln x is undefined.

2.3.2 Integer Operations

An operator between two integer operands is considered to be an integer operator and

the operation is considered to be an integer operation. Integer operations always

produce integer results. The fraction part is ignored. The following table shows some

examples of integer operations:

Expression Value Comment

50 - 23 27

3 ** 2 9

5 * 7 35

8 / 2 4

8 / 3 2 Fraction part is truncated (not 2.6666667)

9 / 10 0 Fraction part is truncated (not 0.9)

Note that the expression I/J * J is not always equivalent to I. For example, if I and J are

integer variables, and the value of I is 17 and the value of J is 6, the expression

becomes 17 / 6 * 6. To evaluate this expression we consider operator precedence. Since

operators '/' and '*' have the same priority, they are evaluated from left to right. We start

with 17 / 6. The two operands are integers and therefore '/' here is an integer operator.

The result must be an integer, which in this case evaluates to 2. Now, evaluation

proceeds as 2 * 6 which results in 12 and not 17.

2.3.3 Real Operations

An operator between two real operands is considered to be a real operator and the

operation is considered to be a real operation. Real operations produce real results. The

following table shows some examples of real operations:

second Arithmetic Operations 16

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Expression Value

50.0 - 23.0 27.0000000

3.0 ** 2.0 9.0000000

5.0 * 7.0 35.0000000

8.0 / 2.0 4.0000000

8. / 3.0 2.6666667

9. / 10. 0.9000000

9.3 / 3.2 2.9062500

2.3.4 Mixed-mode Operations

An operator between an integer operand and a real operand is considered to be a mixed-

mode operator and the operation is considered to be a mixed-mode operation. Mixed-

mode operations produce real results. The following table shows examples of mixed-

mode operations:

Expression Value Comment

50 - 23.0 27.0000000

3.0 ** 2 9.0000000

3 ** 2.0 9.0000000

4** 0.5 2.0000000

5.0 * 7 35.0000000

56.7 / 7 8.1000000

8 / 2.0 4.0000000

8.0 / 3 2.6666667

9 / 10. 0.9000000 Decimal point can be placed without zero.

17 / 6 * 6.0 12.0000000 '/' is an integer operator and '*' is a mixed

mode operator

The number of positions to the right of the decimal point in a real number depends on

the computer used. In the examples above, we have assumed that the computer allows

up to 7 positions.

2.3.5 Examples

Example 1: Evaluate the following arithmetic expression

 20 - 14 / 5 * 2 ** 2 ** 3

Solution:

 Expression: 20 - 14 / 5 * 2 ** 2 ** 3

 Priority is for ** from right to left

 Step 1: 2 ** 3 = 8 (integer operation)

 Expression: 20 - 14 / 5 * 2 ** 8

 Priority is for ** from right to left

 Step 2: 2 ** 8 = 256 (integer operation)

 Expression: 20 - 14 / 5 * 256

second Arithmetic Operations 17

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 Priority is for / and * from left to right

 Step 3: 14 / 5 = 2 (integer operation)

 Expression: 20 - 2* 256

 Priority is for *

 Step 4: 2 * 256 = 512 (integer operation)

 Expression: 20 - 512

 Priority is for -

 Result: -492

Example 2: Evaluate the following arithmetic expression

 14.0 / 5 * (2 * (7 - 4) / 4) ** 2

Solution:

 Expression: 14.0 / 5 * (2 * (7 - 4) / 4) ** 2

 Priority is for expression inside the inner most parenthesis

 Step 1: (7 - 4) = 3 (integer operation)

 Expression: 14.0 / 5 * (2 * 3 / 4) ** 2

 Priority is for expression inside the parenthesis

 Step 2 & 3: (2 * 3 / 4) = (6 / 4) = 1 (2 integer operations)

 Expression: 14.0 / 5 * 1 ** 2

 Priority is for **

 Step 4: 1 ** 2 = 1 (integer operation)

 Expression: 14.0 / 5 * 1

 Priority is for / and * from left to right

 Step 5: 14.0 / 5 = 2.8000000 (Mixed mode operation)

 Expression: 2.8000000 * 1

 Priority is for *

 Result: 2.8000000

Example 3: Rewrite the following FORTRAN expression as a mathematical form

X + Y / W - Z

Solution:

x
y

w
z

Example 4: Rewrite the following FORTRAN expression as a mathematical form

X ** (1.0 / 2.0) / Y ** Z

Solution:

x

y
or

x

yz z

1

2

Example 5: Convert the following mathematical expression into FORTRAN

expression. Use minimum number of parenthesis

a b

a b

2 2

Solution:

 (A + B) ** 0.5 / (A ** 2.0 - B ** 2.0)

second Logical Operations 18

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2.4 Logical Operations

Logical operations evaluate to either .TRUE. or .FALSE.. The following subsections

discuss logical operators, relational operators and logical expressions:

2.4.1 Logical Operators

This section discusses the three logical operators: .AND., .OR. and .NOT.. The .AND.

operator is a binary logical operator that produces .TRUE., if and only if, both its

operands have a .TRUE. value. If any of the operands have a .FALSE. value, the result

of the operation is .FALSE.. The .OR. operator is a binary logical operator that

produces .FALSE. if and only if both operands have the value .FALSE., otherwise, the

result is .TRUE.. The unary logical operator .NOT. produces the opposite value of its

operand. The following table shows the results of the three logical operations .AND.,

.OR. and .NOT. on different operand values, assuming P and Q are logical variables:

P Q P .AND. Q P. OR. Q .NOT. P

.FALSE. .FALSE. .FALSE. .FALSE. .TRUE.

.FALSE. .TRUE. .FALSE. .TRUE. .TRUE.

.TRUE. .FALSE. .FALSE. .TRUE. .FALSE.

.TRUE. .TRUE. .TRUE. .TRUE. .FALSE.

The .NOT. operator has the highest priority of the three logical operators followed by

the .AND. operator. The .OR. operator has the lowest priority. These operators are

shown in the following table with the sequence in which they are evaluated

(precedency):

Logical Operator FORTRAN Example Precedence

.NOT. .NOT. P 1

.AND. P .AND. Q 2

.OR. P .OR. Q 3

Example 1: Evaluate the following logical expression:

.FALSE. .OR. .NOT. .TRUE. .AND. .TRUE.

Solution:

Expression: .FALSE. .OR. .NOT. .TRUE. .AND. .TRUE.

 priority is for .NOT.

Step 1: .NOT. .TRUE. is .FALSE.

Expression: .FALSE. .OR. .FALSE. .AND. .TRUE.

 priority is for .AND.

Step 2: .FALSE. .AND. .TRUE. is .FALSE.

Expression: .FALSE. .OR. .FALSE.

 priority is for .OR.

Result: .FALSE.

Example 2: Assume that the following declaration is given:

second Logical Operations 19

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

LOGICAL FLAG

If it is known that the expression

.NOT. FLAG .OR. .FALSE.

has the value .TRUE., what is the value of FLAG?

Solution:

The final result must be .TRUE.. The last step is somevalue .OR. .FALSE. because the

.NOT. operator has higher priority than the .OR. operator. somevalue .OR. .FALSE.

will have the value .TRUE. if and only if the value of somevalue is .TRUE.. But

somevalue is equivalent to .NOT. FLAG, therefore the value of FLAG is .FALSE..

2.4.2 Relational Operators

The values of arithmetic expressions can be compared using relational operators. The

following table shows the different relational operators. Assume all variables have been

initialized:

Operator Math Example Description

.EQ. = X .EQ. Y True if X and Y are equal

 .NE. N .NE. 8 True if N is not equal to 8

.GT. > P1 .GT. 7.3 True if P1 is greater than 7.3

 .GE. SM .GE. TOT True if SM is greater than or equal to TOT

.LT. < A+B.LT.A*2.0 True if the sum of A and B is less than 2A

.LE. NUM.LE.CLASS True if NUM is less than or equal to CLASS

A relational expression evaluates to either .TRUE. or .FALSE.. Relational operators

have lower priority than arithmetic operators and higher priority than logical operators.

They are evaluated from left to right. The next subsection presents the use of relational,

logical, and arithmetic operators in logical expressions.

2.4.3 Logical Expressions

A logical expression evaluates to .TRUE. or .FALSE.. It may contain different types of

variables and operators. It may contain arithmetic expressions, logical expressions, and

relational expressions. Logical expressions are used in selection constructs which are

discussed in chapter 3. The evaluation of a logical expression starts with the evaluation

of arithmetic expressions first followed by the relational expressions, and finally the

logical expressions. The following examples demonstrate the evaluation of logical

expressions:

Example 1: Given that X has a value of 3.0, Y has a value of 5.0, Z has a value of 10.0,

and FLAG is a logical variable with .FALSE. value, evaluate the following FORTRAN

expression:

.NOT. FLAG .AND. X*Y .GT. Z .OR. X+Y .GT. Z

Solution:

Expression: .NOT. FLAG .AND. X*Y .GT. Z .OR. X+Y .GT. Z

 Evaluate arithmetic expressions first.

third Assignment Statement 20

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Expression: .NOT. FLAG .AND. 15.0 .GT.10.0 .OR. 8.0 .GT.10.0

 Evaluate relational expressions next.

Expression: .NOT. FLAG .AND. .TRUE. .OR. .FALSE.

 Evaluate logical expressions. Start with .NOT..

Expression: .TRUE. .AND. .TRUE. .OR. .FALSE.

 Evaluate logical .AND. next.

Expression: .TRUE. .OR. .FALSE.

 Evaluate .OR. next

Result: .TRUE.

Example 2: When is the value of the following expression .TRUE.? Assume K and L are

integers.

K / L * L .EQ. K

Solution:

If K is divisible by L, the value of the expression is .TRUE.. Otherwise, the value will

be .FALSE..

Example 3: Given that X has a value of 3.0, Y has a value of 5.0, Z has a value of 10.0,

and FLAG is a logical variable with the value .FALSE., find the value of each of the

following expressions:

.NOT. FLAG .OR. FLAG

X .GT. Y - Z / 2.0

X*Z .EQ. 20.0 .OR. FLAG .AND. .NOT. Z .EQ. 5.0

X .GT. Y .AND. X .GT. Z .OR. X .LT. Y .AND. X .LT. Z

Z*10 .NE. Y*30 .AND. X .LE. Y .AND. FLAG

.NOT. FLAG .AND. FLAG

.NOT. .NOT. FLAG

Solution:

Expression Value
.NOT. FLAG .OR. FLAG .TRUE.
X .GT. Y - Z / 2.0 .TRUE.
X*Z .EQ. 20.0 .OR. FLAG .AND. .NOT. Z .EQ. 5.0 .FALSE.

X .GT. Y .AND. X .GT. Z .OR. X .LT. Y .AND. X .LT. Z .TRUE.
Z*10 .NE. Y*30 .AND. X .LE. Y .AND. FLAG .FALSE.
.NOT. FLAG .AND. FLAG .FALSE.
.NOT. .NOT. FLAG .FALSE.

2.5 Assignment Statement

The assignment statement in FORTRAN assigns a value to a variable. The general form

of the FORTRAN assignment statement is:

variable = expression

where expression must have a value of the same type as the variable with one

exception: integer values can be assigned to real variables and real values can be

assigned to integer variables. In assigning a real value to an integer variable, the decimal

part is truncated before the value is stored in the variable. In the case of an integer value

third Assignment Statement 21

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

being assigned to a real variable, the integer value is converted to a real value before it

is stored in the variable. The FORTRAN assignment statement is not a mathematical

equation. Therefore, it is possible to write assignment statements such as:

 X = 1.0

 X = X + 1.0

where the first statement assigns the value 1.0 to the variable X. The second statement

evaluates the expression X + 1.0 which will be 2.0 and then assigns the result to the

variable X. It should be clear that the old value of X (i.e 1.0) is changed to the new

value (i.e. 2.0).

Example 1: Write FORTRAN assignment statements to store the real number 3.25 into

the variable X1 and 7.0 into the variable Y1.

Solution:

 X1 = 3.25

 Y1 = 7.0

Example 2: Write a FORTRAN assignment statement to store in X1 the value stored in

Y1.

Solution:

 X1 = Y1

Example 3: Write a FORTRAN assignment statement to increment X1 by 1.

Solution:

 X1 = X1 + 1.0

Example 4: Write a FORTRAN assignment statement to add to X1 the value of Y1.

Solution:

 X1 = X1 + Y1

Example 5: Write a FORTRAN assignment statement to store in X1 the contents of X1

times the contents of Y1.

Solution:

 X1 = X1 * Y1

Example 6: Assume that the coefficients of a quadratic equation are given as A, B, and

C. Write FORTRAN assignment statements to find the two roots, ROOT1 and ROOT2,

of the quadratic equation.

Solution:

 ROOT1 = (-B + (B ** 2.0 - 4.0 * A * C) ** 0.5) / (2.0 * A)

 ROOT2 = (-B - (B ** 2.0 - 4.0 * A * C) ** 0.5) / (2.0 * A)

Example 7: Given SUM as the sum of student grades in an exam and COUNT as the

number of students, write an assignment statement to find the average AVER.

Solution:

 AVER = SUM / COUNT

Example 8: Write FORTRAN assignment statements to exchange the values of the

variables X and Y. (Hint: Use a temporary variable T)

Solution:

third Simple Input Statement 22

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 T = X

 X = Y
 Y = T

Example 9: If the variable NAME is declared as follows:

 CHARACTER NAME * 8

what will the value of NAME be after the following assignment statement is executed?

NAME = 'ICS101 FORTRAN'

Solution:

Since the length of the variable NAME is declared as 8, the assignment statement will

assign the first 8 characters of the string constant to NAME. Hence, the value of

NAME is going to be:

ICS101 F

Example 10: Given the following declaration and assignment statements:

 CHARACTER MAJOR * 15
 MAJOR = 'FINAL'

what is the value of the variable MAJOR ?

Solution:

Since the length of the variable NAME is declared as 15, the assignment statement will

assign the string constant FINAL to the first 5 positions of MAJOR and fill the

remaining 10 positions with blanks.

2.6 Simple Input Statement

We may assign a value to a variable by using either the assignment statement or by

reading an input value into the variable. To read an input value from the terminal into a

variable, we must use an input statement. There are two types of input statements: the

formatted READ and the unformatted READ. This section presents the unformatted

READ statement. The general form of the unformatted READ is

READ*, list of variables separated by commas

The following points must be noted while using the unformatted READ statement:

 Each read statement starts reading from a new line.

 If the input data is not enough in the current line, reading continues in the next

line.

 The data values can be separated by blanks or comma.

 The data values must agree in type with the variables.

 Integer values can be read into real variables but real values must not be read

into integer variables.

 Extra data on an input line is ignored.

2.6.1 Examples

Example 1: Assume the following declaration:

 INTEGER NUM, M1, K, L1, L2, L3, K1, K2
 REAL TOT, X1, YY, S, ST, A, X, Y, Z

third Simple Output Statement 23

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

The following table gives examples of READ statements:

Statement Input Line Effect
READ*, NUM, TOT 9 5.08 NUM = 9

TOT = 5.08

READ*, X1, YY 325 27 X1 = 325.0

YY = 27.0

READ*, M1 20.0 ERROR MESSAGE. DATA TYPE MISMATCH

READ*, K, S 18, 0.35E-2 K = 18

S = 0.35E-2

READ*, ST -23.4 ST = -23.4

READ*, L1, L2, L3 7 6 5 L1 = 7

L2 = 6

L3 = 5

READ*, A, A 1.0, 2.0 A = 2.0

READ*, K1
READ*, K2

 5 8

20 9

K1 = 5

K2 = 20

READ*, X, Y, Z 5 8

20 9

X = 5.0

Y = 8.0
Z = 20.0

Example 2: Assume the following declaration:

 CHARACTER NAME*9, STR1*5, STR2*3
 LOGICAL P1, P2

The following table gives examples of READ statements:

Statement Input Line Effect
READ*, NAME 'AHMED ALI' NAME = 'AHMED ALI'

READ*,STR1, STR2 'ALI' 'CLASS' STR1 = 'ALI '

STR2 = 'CLA'

READ*, P1, P2 T F P1 = .TRUE.

P2 = .FALSE.

2.7 Simple Output Statement

The PRINT output statement is used to print the values of variables, expressions or

constants. There are two types of PRINT output statements: the formatted PRINT

statement and the unformatted PRINT statement. The formatted PRINT statement will

be discussed in chapter 8. The general form of the unformatted PRINT statement in

FORTRAN is

PRINT*, list of variables, expressions, or constants separated by commas

The following subsection presents some examples on PRINT statement.

2.7.1 Examples

Example 1: In the table below, examples of the PRINT statement are given assuming

the following initializations:

third A Complete Program 24

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 LOGICAL FLAG
 INTEGER K, L
 REAL S1, S2
 FLAG = .TRUE.

 K = 3
 L = 20
 S1 = 35.0

 S2 = S1 - K - L

Statement Output Comments
PRINT*, K, S1 3 35.0000000 Blanks depends the type of

computer
PRINT*, L+S2, W 32.0000000 ??????? ??????? for undefined
PRINT*, L, FLAG 20 T
PRINT*, L / K * K 18
PRINT*, L / K * K * 1.0 18.0000000
PRINT*, L * 1.0 / K * K 20.0000000 May be 19.9999994

(accuracy)
PRINT*,5,6+7, L, 2, K+3 5 13 20 2 6 Constants and expressions
PRINT*, 'K= ',K,' L IS ',L K= 3 L IS 20 Characters may be printed
PRINT*, 'THIS TESTS' THIS TESTS
PRINT*, FLAG, .FALSE. T F Logical values either T or F
PRINT* Prints an empty line

Example 2: In the table below, more examples of the PRINT statement are given

assuming the following initializations:

 CHARACTER*10 LSTNAM
 CHARACTER CLASS*5, MAJOR*4
 LSTNAM = 'AL-FORTRAN'
 CLASS = 'BATAL'
 MAJOR = 'ANY1'

Statement Output Comments
PRINT*, CLASS, MAJOR BATALANY1 No blanks in between
PRINT*,LSTNAM, ' ',MAJOR AL-FORTRAN ANY1 Explicit blank as it is

The following points must be noted while using the PRINT statement:

 Each PRINT statement starts printing on a new line.

 If the spaces in the line are not enough to hold the whole output, printing

continues on the next line.

 A variable that does not have a value will produce question marks if it is

printed.

2.8 A Complete Program

The following program reads three real numbers, prints them, computes their average

and prints it:

third Exercises 25

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

C THIS PROGRAM READS 3 REAL NUMBERS

C AND COMPUTES AND PRINTS THE AVERAGE
C
 REAL NUM1, NUM2, NUM3, COUNT, AVER
 COUNT = 3.0
 READ*, NUM1, NUM2, NUM3
 PRINT*, 'THE NUMBERS ARE ', NUM1, NUM2, NUM3
 AVER = (NUM1 + NUM2 + NUM3) / COUNT
 PRINT*, 'THE AVERAGE IS ', AVER
 END

The first three lines are comment lines. We can insert comment lines anywhere in the

program. Each comment line must start with 'C' or '*' in column one. The fourth

statement of the program is the REAL declaration statement. It declares five real

variables that are going to be used in the program. The next statement is an assignment

statement that assigns 3.0 to the variable COUNT. The READ statement will read 3

values from the input line and assign them to the variables NUM1, NUM2, and NUM3,

respectively. The first PRINT statement is used to print the values that were read. The

next statement is an assignment statement that computes the average. The result is

stored in the variable AVER. The second PRINT statement prints the average with a

proper message. The last statement is the END statement. The END statement signals

the physical end of the program.

If the input line of this program is
9.0 8.0 10.0

the output is as follows:
THE NUMBERS ARE 9.0000000 8.0000000 10.0000000

THE AVERAGE IS 9.0000000

In FORTRAN programs, execution starts from the beginning of the program and

proceeds statement by statement, in sequence, unless there is an indication for changing

the sequence. Statements that may change the sequence of execution are selection and

repetition statements. Selection is discussed in chapter 3 and repetition in chapter 5.

2.9 Exercises

1. Evaluate the following arithmetic expressions:

1. 4 ** 2 / 3

2. ((2 + 6) / 2 + 3.0 /6.0 *4) * (2 / 4)

3. 10 ** 2 ** 3

4. 10 / 4 /4 + (2 - 10 / 2.0)

2. Indicate if the statements below are valid FORTRAN statements or not:

1. Y + X = K

2. AB = A * B

3. PRINT*, 1.0, '+', 2.0, '=', 1.0 + 2.0

4. X = Y ** -3

5. X12345 = 8.0

6. X = Y = 5.0

7. P = (Q + R) * (- (-8))

third Exercises 26

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8. X3X = 8.0

9. READ*, R+A

10. READ*, NUM,NUM

3. What will be printed by the following FORTRAN 77 programs ?

1. INTEGER I, J, K
 I = 300

 J = 500
 K = J/I
 PRINT*, K
 END

2. INTEGER ONE,TWO,THREE,FOUR,FIVE
 ONE = 1
 TWO = 2

 THREE = 3
 FOUR = 4
 FIVE = THREE + FOUR ** (ONE / TWO)
 PRINT*, FIVE
 END

3. INTEGER M, N
 READ*, M
 READ*, N
 PRINT*, M, N
 END

Assume the input for the program is:
7 9

4. INTEGER I, J, K, L
 READ*, I, J
 READ*, K, I
 PRINT*, I, J, K, L
 END

Assume the input for the program is:
4 5 6

7 8 9

5. REAL X
 X = 1.2
 X = X + 1.0
 X = X + 1.0

 X = X + 1.0
 PRINT*, X , X, X, X
 END

6. REAL A, X
 A = 8 ** 1/3

 X = 25 ** 1/2
 PRINT*, X, A
 END

third Exercises 27

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7. INTEGER XLM, NUM1, NUM2
 REAL PNM
 READ*, NUM1, NUM2
 PNM = NUM1 / NUM2

 XLM = 3 / PNM * 3.00 ** NUM2
 PRINT*, PNM, NUM1, NUM2, XLM
 END

Assume the input for the program is:
3,2

4. What is the value of each of the following expressions? Use the following values if

needed:

 REAL A, B
 INTEGER K, J
 A = 2.0

 K = -2

 B = 3.5
 J = 1

1. 6 * J / K * 4

2. 9 + K / 5 * A / 2

3. A / (B + K) / J

4. 3 ** J ** A ** 1 + K / J

5. -2 / 4 * 4 ** 2

6. -2 / 4.0 * 2 ** 2 + 2 * 4.0 ** 2

7. 3 ** 2.0 * (3.0 - 1) + 2.0 * 1 * 3.0

8. 5 ** 3 / 2 ** 5 / 2

9. (5 / 2) ** 1.0 ** 2

10. (1 + (3.2 * 2 - (5 - 4)))

11. ((2 + 6) / 2 + 3.0 / 6.0 * 4) * (2 / 4)

12. 99999 / 100000 - 1

13. 2 ** 2 ** 3

14. 9 / 4 * 2 ** 1 / 2

15. 900 / 3.0E2

5. Convert the following FORTRAN assignment statements into an algebraic form :

1. W = (X / Y / Z * T) ** 3 + 1 + 1.674E-24 * C

2. Q = 1012.0 * P ** 0.5 * (1.0 - P / 100.0)

3. K = A * B / C - 2

6. Which of the following are valid FORTRAN variable names?

1. CS101GRADE

2. AH/Q

3. PRICE

4. +RATE

5. 2THIRD

6. NUMB12

7. IDNUMB

third Exercises 28

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8. WHOLE-SALE-PRICE

9. $FORT

10. Y8X

11. ALL*

7. Indicate the following statements as either TRUE or FALSE:

1. A REAL statement is an executable statement.

2. Compiling the statement Y = 2 ** 4 ** 3.5E50 will cause syntax error.

3. The statement INTEGER X,Y,Z implies that XYZ is an integer variable.

4. If J, K, and L are integers, then the FORTRAN expressions (J + K) / L and (J /

L) +(K / L) are equivalent.

5. The INTEGER statement can appear any where in the program.

6. If K and L are integers, then the FORTRAN expressions K * L**2 / K**2 and

K * (L**2 / K**2) are equivalent.

7. PRINT*,X=5 is a valid FORTRAN 77 statement.

8. Add the minimum number of parentheses to the FORTRAN expression

A ** B ** 2 + B - C / D + A * B / C * D

to be equivalent to the mathematical expression :

a

d a

b

cd

b b c() 2

9. In the following FORTRAN expression the operators have been numbered :

 1 2 3 4 5 6 7 8 9

 A ** B ** 2 + B - C / D + A * B / C * D

Give the order in which the operators are evaluated a cording to FORTRAN 77

rules. (only write the operator numbers in order)

10. Write a FORTRAN program to read a 3 digit number, then prints the

hundredth, the tenth, and the ones digits. If the input is:
728

 The output should be:
 THE HUNDREDS DIGIT = 7

 THE TENTH DIGIT = 2
 THE ONES DIGIT = 8

11. Write a FORTRAN program which reads the radius of a sphere and calculates the

surface area and the volume of the sphere. Your program should print the radius,

surface area and the volume:

 Surface area = 4 r 2

 Volume =
4

3

3 r

12. Convert the following mathematical expressions / assignments to FORTRAN

expressions / assignments. (do not use extra parentheses)

1. 2
2

x
y

third Exercises 29

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2.
a b

a b

3. r ac

b

2

3

4

3 2

4.
1

1

1

1

2

1

3r r r

5. a b
xy

c d

 2

6. 2 6a c

7.
a b

a

4

2

2
5

1

13. For each of the following FORTRAN expressions, write an equivalent expression

by deleting all "REDUNDANT" parentheses (i.e. parentheses whose deletion does

not change the result of the expression).

1. (A*B) * C / ((X*Y) **2)

2. ((A+B) ** 2 + (3*C) ** 3) ** (A/B)

3. ((A-B) +C) +(D*E)

4. (C*X) ** ((2-A) * B)

5. -B + ((B**2 - (4 * (A*C)))) ** 0.05

14. Write a program that converts a quantity expressed in seconds to a correspondence

quantity expressed in hours, minutes and seconds. If the input is:
8125

The output should be:
2 HOURS, 15 MINUTES, 25 SECONDS.

15. The input data to a certain program is more than what is required. The data is as

follows:
4 5 12 10

6 1 8 13 19

3 2 9 0 7 18 20

Write a FORTRAN program to read enough data (i.e. using the minimum number

of variables in the READ statement) to print the following output:
4 5
1 8

9 0

(your program should have READ and PRINT statements only)

16. i) The output of the program below is as follows:
8

Fill in the spaces to get the output shown above

second Solutions to Exercises 30

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 INTEGER K, M, N
 K = -----
 M = 2

 N = 3
 PRINT*, M**N**M**K
 END

ii) The output of the program below is as follows:
1 4
7 8 10

Fill in the spaces to get the output shown above

 INTEGER K1, K2, K3, K4, K5
 READ*, -------
 READ*, -------
 READ*, -------
 PRINT*, K1, K2
 PRINT*, K3,K4,K5
 END

Assume the input for the program is:
1 2 3

4 5 6
7 8
10 11 12

17. Determine whether the following conditions are TRUE or FALSE. Assume

A = 3.5, B = -4.1, I = -4, J = 9, FLAG = .TRUE. when needed:

1. (3.0/2.LT.1.5).AND.(4/2.GT.1)

2. .FALSE..AND..TRUE..OR..NOT.(.FALSE..AND..TRUE.)

3. .NOT..FALSE..AND..TRUE.

4. .NOT..FALSE..OR..TRUE..AND.3/2.EQ.1.0

5. .NOT.5**2.EQ.5*2.AND.0.GT.5.OR.5*2+2.GT.0

6. A.GT.B.OR.I.EQ.J.AND.FLAG

7. A+I-4.GT.B-3+2*J.OR.A*B.GT.2.0*I

8. FLAG.OR.(A-I)/(B-J).GT.1.021

9. .NOT.(A.GT.B).OR.(I.GT.J)

10. (A+B)/(I+J).LT.-5.0.AND..NOT.A*I.LE-.14.0

11. .NOT.(.NOT..FALSE.).AND..TRUE..OR..FALSE.

2.10 Solutions to Exercises

Ans 1.

1. 5 2. 0.0 3. 100000000 4. -3.0

Ans 2.

1. Invalid 2. Valid 3. Valid 4. Invalid 5. Valid

6. Invalid 7. Valid 8. Valid 9. Invalid 10. Valid

Ans 3.

 1

 4

second Solutions to Exercises 31

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 Error Message

 8 5 7 ???????

 4.2 4.2 4.2 4.2

 12.0 2.0

 1.0 3 2 27

Ans 4.

1. -12 2. 9.0 3. 1.3333333 4. 1.0 5. 0 6. 30.0

7. 24.0 8. 1 9. 2.0 10. 6.4 11. 0.0

12. -1 13. 256 14. 2 15. 3.0

Ans 5.

1 1 1674 10

2 1012 1
100

3 2

3

24

1

2

.. .

.

w

x

y

z
t c

q p
p

k
ab

c

Ans 6.

1. Invalid 2. Invalid 3. Valid 4. Invalid 5. Invalid

6. Valid 7. Valid 8. Invalid 9. Invalid

10. Valid 11. Invalid

Ans 7.

1. FALSE 2. FALSE 3. FALSE 4. FALSE 5. FALSE

6. FALSE 7. FALSE

Ans 8.

A ** B ** (2 + B - C) / (D + A) * B / (C * D)

Ans 9.

2 1 5 7 8 9 3 4 6

Ans 10.

 INTEGER N, M, J, K
 READ*, N
 M = N / 100

 N = N - M * 100
 J = N / 10
 K = N - J * 10
 PRINT*, 'THE HUNDREDS DIGIT = ', M
 PRINT*, 'THE TENTH DIGIT = ', J
 PRINT*, 'THE ONES DIGIT = ', K

 END

second Solutions to Exercises 32

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 11.

 REAL R, PI, SAREA, VOLUME

 READ*, R
 PI = 3.14159
 SAREA = 4 * PI * R ** 2
 VOLUME = 4.0 / 3.0 * PI * R ** 3
 PRINT*,'RADIUS = ', R
 PRINT*, 'AREA = ', SAREA
 PRINT*, 'VOLUME = ', VOLUME
 END

Ans 12.

 2 * X + Y / 2

 ((A + B) / (A - B)) ** 0.5

 R ** 3 / 3.0 - A * C ** (3.0 / 4.0) / (2 * B)

 1 / (1 / R1 + 1 / R2 + 1 / R3)

 B + X * Y / (C + D) + 2

 2 * A + C ** (-6)

 (A + B ** (1.0 / 4.0)) / (2 / (A **2 + 5)) - 1

Ans 13.

 A * B * C / (X * Y) ** 2

 ((A + B) ** 2 + (3 * C)** 3) ** (A / B)

 (A - B + C) + D * E

 (C * X) ** ((2 - A) * B)

 -B + (B ** 2 - 4 * A * C) ** 0.05

Ans 14.

 INTEGER SECNDS , MINTS , HOURS , QUAN
 READ*, QUAN
 HOURS = QUAN / 3600

 QUAN = QUAN - HOURS * 3600
 MINTS = QUAN / 60
 SECNDS = QUAN - MINTS * 60
 PRINT*, HOURS,'HOURS',MINTS,'MINUTES',SECNDS,'SECONDS'

 END

Ans 15.

 INTEGER K1, K2
 READ*, K1 , K2
 PRINT*, K1 , K2
 READ*, K1 , K1 , K2
 PRINT*, K1 , K2
 READ*, K1 , K1 , K1 , K2
 PRINT*, K1 , K2
 END

Ans 16.

 i) 0

 ii)

 READ*, K1
 READ*, K2
 READ*, K3 , K4 , K5

second Solutions to Exercises 33

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 17.

1. F 2. T 3. T 4. T 5. T 6. T

7. F 8. T 9. F 10. F 11. F

34

third IF-ELSE Construct 35

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3 SELECTION CONSTRUCTS

Selection constructs are used to select between blocks of statements depending on

certain conditions. Each condition is a logical expression (section 2.4.3) . In

FORTRAN, the IF statement is used to represent selection constructs. This chapter

introduces four types of IF constructs: IF-ELSE, IF, IF-ELSEIF, and the simple IF

constructs.

3.1 IF-ELSE Construct

3.1.1 Definition

The general form of the IF-ELSE construct is as follows:

 IF (condition) THEN
 BLOCK1
 ELSE
 BLOCK2
 ENDIF

where condition is a logical expression that evaluates either to .TRUE. or .FALSE..

BLOCK1 and BLOCK2 consist of one or more FORTRAN statements. If a block

contains more than one statement, each statement must be in a separate line. Statements

of BLOCK1 and BLOCK2 may be any FORTRAN statements including IF statements,

assignment statements, input/output statements, repetition statements, transfer (GOTO)

statements and others. In the above construct, BLOCK1 will be executed if condition

has the value .TRUE.. If the value of condition is .FALSE., BLOCK2 will be executed.

In either case, only one block is executed. After executing one of the two blocks, control

transfers to the first statement after the ENDIF.

The keywords IF and THEN should appear in the same line along with the

condition. The condition should be between parentheses. The keyword ELSE should

appear in a separate line and the construct must end with the keyword ENDIF in a

separate line. BLOCK1 and BLOCK2 begin, in a new line, after the column in which

IF, ELSE and ENDIF appear. This is known as indentation. Indentation is not a must

but it increases program readability.

3.1.2 Examples on the IF-ELSE Construct

The following examples illustrate the IF-ELSE construct.

Example 1: Write a FORTRAN program that reads two integer numbers and prints the

maximum.

third IF Construct 36

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER NUM1, NUM2
 READ*, NUM1, NUM2
 PRINT*, 'INPUT: ', NUM1, NUM2
 IF (NUM1 .GT. NUM2) THEN
 PRINT*, 'MAXIMUM IS ', NUM1
 ELSE
 PRINT*, 'MAXIMUM IS ', NUM2
 ENDIF
 END

Example 2: What will be the output of the previous program if the input line is as

follows:
 347 -670

Solution:

The output will be as follows:
INPUT: 347 -670

MAXIMUM IS 347

Example 3: Write a FORTRAN program that reads an integer number and finds out if

the number is even or odd. The program should print a proper message.

Solution:

 INTEGER K
 READ*, K
 PRINT*, 'INPUT: ', K
 IF(K / 2 * 2 .EQ. K) THEN
 PRINT*, 'EVEN'
 ELSE
 PRINT*, 'ODD'
 ENDIF
 END

Example 4: What will be the output of the previous program if the input is as follows:
 79

Solution: The output will be as follows:
INPUT: 79

ODD

3.2 IF Construct

3.2.1 Definition

We sometimes require a block of statements to be executed, if a condition is .TRUE..

Otherwise, if the condition is .FALSE., no statements must be executed. In this case we

use the IF construct. The IF construct has the following general form:

 IF (condition) THEN
 BLOCK

 ENDIF

where condition is a logical expression that evaluates to either .TRUE. or .FALSE..

BLOCK consists of one or more FORTRAN statements. A statement in the BLOCK

may be any FORTRAN statement including the IF statement. BLOCK will be executed

if the condition evaluates to .TRUE. . The control then transfers to the first statement

after the ENDIF. If the condition evaluates to .FALSE., control transfers to the first

third IF Construct 37

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

statement after ENDIF, without executing any statement inside the IF construct. The

keywords IF and THEN should appear in the same line along with the condition. The

condition must be between parentheses. As was the case in the previous IF construct,

indentation is not a must but it increases readability.

3.2.2 Examples on the IF Construct

The following examples illustrate the IF construct.

Example 1: Write a FORTRAN program that reads a grade. If the grade is not zero, the

program must add 2 points to the grade. Then, the new grade should be printed.

Solution:

 REAL GRADE
 READ*, GRADE
 PRINT*, 'ORIGINAL GRADE IS', GRADE
 IF (GRADE .GT. 0) THEN
 GRADE = GRADE + 2.0
 PRINT*, 'SCALED GRADE IS ', GRADE
 ENDIF
 END

Example 2: What will be the output of the previous program if the input line is as

follows:
 7.5

Solution: The output is as follows:
ORIGINAL GRADE IS 7.5000000

SCALED GRADE IS 9.5000000

Example 3: What will be the output of the program of the previous example if the input

line is as follows:
 0.0

Solution: The output is as follows:
ORIGINAL GRADE IS 0.0000000

Example 4: Write a FORTRAN program that reads a student ID and his GPA. If the

GPA is greater than or equal to 3.0, the program should print the message 'HONOR'.

Solution:

 REAL GPA
 INTEGER ID
 READ*, ID, GPA
 PRINT*, 'INPUT: ', ID, GPA
 IF (GPA .GE. 3.0) THEN
 PRINT*, 'HONOR'
 ENDIF
 END

Example 5: What will be the output of the previous program if the input line is as

follows:
 918962 2.90

Solution: The output is as follows: (Note: Since the condition in the IF statement is not

satisfied, the message HONOR is not printed.)
INPUT: 918962 2.9000000

third IF-ELSEIF Construct 38

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3.3 IF-ELSEIF Construct

3.3.1 Definition

Assume you are given a numeric grade. A letter grade is to be printed based on the

standard criteria i.e. if the grade is greater than or equal to 90, letter A is to be printed; if

the grade is greater than or equal to 80, letter B is to be printed and so on . In such a

case, we must use several IF statements. Instead FORTRAN provides a construct that

can select a single block of statements from several blocks based on different

conditions. This construct is the IF-ELSEIF construct and it is used when a single

block is to be executed from a choice of several blocks. The general form of this

construct is as follows:

 IF (condition-1) THEN
 BLOCK1
 ELSEIF (condition-2) THEN
 BLOCK2
 ELSEIF (condition-3) THEN
 BLOCK3
 ..
 ..
 ELSEIF (condition-n) THEN
 BLOCKn
 ELSE
 BLOCKn+1
 ENDIF

where condition-i for i = 1, 2, 3, ..., n is a logical expression that evaluates to either

.TRUE. or .FALSE.. BLOCKi consists of one or more FORTRAN statements. The

statements in each BLOCK are FORTRAN statements including any type of IF

constructs. In the IF-ELSEIF construct, BLOCK1 will be executed if condition-1

evaluates to .TRUE.. The control then transfers to the first statement after the ENDIF. If

condition-1 evaluates to .FALSE., condition-2 is examined. If condition-2 evaluates to

.TRUE., BLOCK2 will be executed and control transfers to the first statement after the

ENDIF. Otherwise, condition-3 is examined and if it evaluates to .TRUE., BLOCK3

will be executed and control transfers to the first statement after the ENDIF. The same

action is applied to the rest of the ELSEIF clauses until a condition evaluates to

.TRUE.. If all conditions evaluate to .FALSE., the ELSE part, i.e. BLOCKn+1, is

executed and control passes to the first statement after the ENDIF. The ELSE part is

optional. If all conditions are .FALSE and there is no ELSE part, control passes to the

first statement after the ENDIF, without executing any of the blocks. In summary, the

block corresponding to first condition that evaluates to .TRUE. is the only block that is

executed. In case, no condition evaluates to .TRUE., the block corresponding to the

ELSE part, if present, is executed. Indentation is not a must but it increases readability.

3.3.2 Examples on the IF-ELSEIF Construct

The following examples illustrate the IF-ELSEIF construct

Example 1: Write a FORTRAN program that reads a student ID and his GPA out of

4.0. The program should print a message according to the following:

Condition Message

third IF-ELSEIF Construct 39

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

GPA 3.5 EXCELLENT

3.5 > GPA 3.0 VERY GOOD

3.0 > GPA 2.5 GOOD

2.5 > GPA 2.0 FAIR

GPA < 2.0 POOR

Solution:

 REAL GPA
 INTEGER ID
 CHARACTER*10 STATE
 READ*, ID, GPA
 PRINT*, 'INPUT: ', ID, GPA
 IF (GPA .GE. 3.5) THEN
 STATE = 'EXCELLENT'
 ELSEIF (GPA .GE. 3.0) THEN
 STATE = 'VERY GOOD'
 ELSEIF (GPA .GE. 2.5) THEN
 STATE = 'GOOD'
 ELSEIF (GPA .GE. 2.0) THEN
 STATE = 'FAIR'
 ELSE
 STATE = 'POOR'
 ENDIF
 PRINT*, ID,' ', STATE
 END

Another Solution:

 REAL GPA
 INTEGER ID
 CHARACTER*10 STATE
 READ*, ID, GPA
 PRINT*, 'INPUT: ', ID, GPA
 IF (GPA .LT. 2.0) THEN
 STATE = 'POOR'
 ELSEIF (GPA .LT. 2.5) THEN
 STATE = 'FAIR'
 ELSEIF (GPA .LT. 3.0) THEN
 STATE = 'GOOD'
 ELSEIF (GPA .LT. 3.5) THEN
 STATE = 'VERY GOOD'
 ELSE
 STATE = 'EXCELLENT'
 ENDIF
 PRINT*, ID,' ', STATE
 END

Example 2: The following table has two columns, the first column gives the sample

input to the previous program and the second column shows the expected output.

Solution:

Sample Input Expected Output

927322 2.3 INPUT: 927322 2.3000000

927322 FAIR

922822 3.4 INPUT: 922822 3.4000000

922822 VERY GOOD

848000 1.8 INPUT: 848000 1.8000000

848000 POOR

third IF-ELSEIF Construct 40

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

899999 3.7 INPUT: 899999 3.7000000

899999 EXCELLENT

912877 2.0 INPUT: 912877 2.0000000

912877 FAIR

943245 -2.0 INPUT: 943245 -2.0000000

943245 POOR

942221 7.0 INPUT: 942221 7.0000000

942221 EXCELLENT

Example 3: Use IF-ELSE constructs to write a FORTRAN program that reads a

student ID and his GPA out of 4.0. The program should print a message according to

the following:

Condition Message

GPA 3.5 EXCELLENT

3.5 > GPA 3.0 VERY GOOD

3.0 > GPA 2.5 GOOD

2.5 > GPA 2.0 FAIR

GPA < 2.0 POOR

Solution:

 INTEGER ID
 REAL GPA
 CHARACTER*10 STATE
 READ*, ID, GPA
 PRINT*, 'INPUT: ', ID, GPA
 IF (GPA .GE. 3.5) THEN
 STATE = 'EXCELLENT'
 ELSE
 IF (GPA .GE. 3.0) THEN
 STATE = 'VERY GOOD'
 ELSE
 IF (GPA .GE. 2.5) THEN
 STATE = 'GOOD'
 ELSE
 IF (GPA .GE. 2.0) THEN
 STATE = 'FAIR'
 ELSE
 STATE = 'POOR'
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 PRINT*, ID,' ', STATE
 END

Example 4: Rewrite the above program using IF constructs.

third Simple IF Construct 41

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER ID
 REAL GPA
 CHARACTER*10 STATE
 READ*, ID, GPA
 PRINT*, 'INPUT: ', ID, GPA
 IF (GPA .GE. 3.5) THEN
 STATE = 'EXCELLENT'
 ENDIF
 IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) THEN
 STATE = 'VERY GOOD'
 ENDIF
 IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) THEN
 STATE = 'GOOD'
 ENDIF
 IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) THEN
 STATE = 'FAIR'
 ENDIF
 IF (GPA .LT. 2.0) THEN
 STATE = 'POOR'
 ENDIF
 PRINT*, ID,' ', STATE
 END

Example 5: Write a FORTRAN program that reads three integer numbers and finds

and prints the maximum. Use IF-ELSEIF construct.

Solution:

 INTEGER X1, X2, X3, MAXIM
 READ*, X1, X2, X3
 IF (X1 .GE. X2 .AND. X1 .GE. X3) THEN
 MAXIM = X1

 ELSEIF (X2 .GE. X3) THEN
 MAXIM = X2
 ELSE
 MAXIM = X3
 ENDIF
 PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
 PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS = ',MAXIM
 END

3.4 Simple IF Construct

3.4.1 Definition

Sometimes a single FORTRAN statement must be executed if a condition is .TRUE.. In

such cases, we may use a simple form of the IF construct which is written in a single

line. It has the following general form:

 IF (condition) STATEMENT

where condition evaluates to .TRUE. or .FALSE. and STATEMENT is a simple

FORTRAN statement such as an assignment statement, a READ statement, a PRINT

statement, a GOTO statement, or a STOP statement. If condition evaluates to .TRUE.,

STATEMENT is executed and the control passes to the next statement. If condition is

.FALSE., STATEMENT is not executed and the control transfers to the next statement.

third Simple IF Construct 42

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3.4.2 Examples on the Simple IF Construct

The following examples illustrate the simple IF construct.

Example 1: Use simple IF constructs to write a FORTRAN program that reads a

student ID and his GPA out of 4.0. The program should print a message according to

the following:

Condition Message

GPA 3.5 EXCELLENT

3.5 > GPA 3.0 VERY GOOD

3.0 > GPA 2.5 GOOD

2.5 > GPA 2.0 FAIR

GPA < 2.0 POOR

Solution:

 INTEGER ID
 REAL GPA
 CHARACTER*10 STATE
 READ*, ID, GPA
 PRINT*, 'INPUT: ', ID, GPA
 IF (GPA .GE. 3.5) STATE = 'EXCELLENT'
 IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) STATE = 'VERY GOOD'
 IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) STATE = 'GOOD'
 IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) STATE = 'FAIR'
 IF (GPA .LT. 2.0) STATE = 'POOR'
 PRINT*, ID,' ', STATE
 END

Example 2: Write a FORTRAN program that reads three integer numbers and finds

and prints the maximum. Use simple IF constructs.

Solution:

 INTEGER X1, X2, X3, MAXIM
 READ*, X1, X2, X3
 PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
 MAXIM = X1
 IF (X2 .GT. MAXIM) MAXIM = X2
 IF (X3 .GT. MAXIM) MAXIM = X3
 PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS IS ', MAXIM
 END

Another Solution:

 INTEGER X1, X2, X3
 READ*, X1, X2, X3
 PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
 IF (X1 .GE. X2 .AND. X1 .GE. X3) PRINT*, 'MAXIMUM IS ', X1
 IF (X2 .GE. X1 .AND. X2 .GE. X3) PRINT*, 'MAXIMUM IS ', X2
 IF (X3 .GE. X1 .AND. X3 .GE. X2) PRINT*, 'MAXIMUM IS ', X3
 END

fourth Exercises 43

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3.5 Exercises

1. What will be printed by the following programs? If an error message is generated,

which statement causes the error?

1. INTEGER N, M
 N = 15

 M = 10
 IF (M.GE.N) THEN
 M = M + 1
 IF (N.EQ.M) THEN
 N = N + 5
 ELSEIF (N.GT.0) THEN
 N = N + 10
 ENDIF
 M = M - 1

 ENDIF
 M = M - 1
 PRINT*, M, N
 END

2. LOGICAL A, B
 INTEGER EX1, EX2, EX3
 READ*, EX1, EX2, EX3
 A = EX1.LE.EX2.OR.EX2.LE.EX3

 B = EX2+2.GT.EX3*2
 IF (B) THEN
 A = .NOT. A
 ELSE
 B = .NOT. B
 ENDIF
 PRINT*, A, B
 END

Assume the input for the program is:
40 35 20

3. REAL A, B, C
 A = -3
 B = -4.0
 IF (.NOT. A.LT.B) THEN
 C = A - B
 ELSE
 C = A * B
 ENDIF
 PRINT*, C
 END

4. REAL A,B
 INTEGER I
 READ*, A, I, B
 IF (A.LT.3.0) THEN
 PRINT*, A+I
 IF (B.LT.2.5) THEN
 PRINT*, B**I
 ENDIF
 ELSE
 PRINT*, A*B*I
 ENDIF
 END

Assume the input for the program is:

fourth Exercises 44

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2.5 2 2.5

5. INTEGER A, B, C
 READ*, A, B, C
 IF (A.GT.B) THEN
 IF (B.LT.C) THEN
 PRINT*, B
 ELSE
 PRINT*, C
 ENDIF
 ELSE
 PRINT*, A
 ENDIF
 PRINT*, A, B, C
 END

Assume the input for the program is:
-2 -4 -3

6. LOGICAL A,B
 INTEGER K1, K2
 K1 = 10

 K2 = 12
 A = K1.LT.K2
 B = .TRUE.
 IF (A) B = .FALSE.
 PRINT*, A, B
 END

7. EEAL A, B
 INTEGER K, L
 READ*, A, B, L, K
 IF (A .GT. B) THEN
 IF (A .LT. L/2) THEN
 PRINT*, 'THURSDAY'
 ELSE
 PRINT*, 'SUNDAY'
 ENDIF
 ELSE
 IF (K/4.GE.B-2) THEN
 PRINT*, 'MONDAY'
 ELSE
 PRINT*, 'TUESDAY'
 ENDIF
 ENDIF
 END

Assume the input for the program is:
3.0 3.0 4 6

8. INTEGER RANKX, RANKY
 REAL X, Y
 READ*, X, Y
 IF (X.GT.Y) THEN
 RANKX = 1

 RANKY = 2
 ELSE
 RANKX = 2

 RANKY = 1
 ENDIF
 PRINT*, RANKX, RANKY
 END

fourth Exercises 45

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Assume the input for the program is:
4.0 4.0

9. INTEGER SALARY, BONUS, TOTAL
 INTEGER AGE, EXP
 READ*, IDNO, AGE, EXP, SALARY
 IF (AGE.GE.40 .OR. EXP.GT.10) THEN
 BONUS = SALARY/8 + 450.0
 ELSE
 BONUS = SALARY/10 + 350.0
 ENDIF
 TOTAL = SALARY + BONUS
 PRINT*, IDNO, BONUS, TOTAL
 END

Assume the input for the program is:
834567 38 12 40000

2. Write a FORTRAN program that reads the value of a real number (DELTA) . If the

value of (DELTA) is negative, then the program prints the message (NUMBER IS

OUT OF RANGE) . Otherwise, the program computes the square root of (DELTA)

and prints the result.

3. Write a complete FORTRAN program that reads the variables A, B and C, then

computes the value of X where:

x
a b a

c

 2 2

The program should take care of the problem of dividing by zero or getting a

negative number under the square root. The program should print the appropriate

messages accordingly (i.e. "DIVIDING BY ZERO", or, "NEGATIVE NUMBER

UNDER SQUARE ROOT"). If both errors occur, the program should print both

messages. If no error occurs, the program should print the value of X.

4. Consider the following structure where A is a real variable :

 IF (A.LE.10) THEN
 IF (A.LT.5) THEN
 PRINT*, 'AAA'
 ELSEIF (A.LT.4) THEN
 PRINT*, 'BBB'
 ELSEIF (A.GT.6) THEN
 PRINT*, 'CCC'
 ELSE
 PRINT*, 'DDD'
 ENDIF
 ENDIF

The condition that causes AAA to be printed is (A < 5) .

1. What is the condition that will cause BBB to be printed?

2. What is the condition that will cause CCC to be printed?

3. What is the condition that will cause DDD to be printed?

5. Assume that V1 and V2 are LOGICAL variables and STATEMENT1,

STATEMENT2 and STATEMENT3 are any valid FORTRAN statements. Given the

following IF-structure:

fourth Exercises 46

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 IF (V1) THEN
 STATEMENT1
 ELSEIF (.NOT. V2) THEN
 STATEMENT2
 ELSE
 STATEMENT3
 ENDIF

choose the equivalent structure(s) from the following:

I. IF (.NOT. V1) THEN
 IF (.NOT. V2) THEN
 STATEMENT2
 ELSE
 STATEMENT3
 ENDIF
 ELSE
 STATEMENT1
 ENDIF

II. IF (.NOT.V2) THEN
 STATEMENT2
 ELSEIF (V1) THEN
 STATEMENT1
 ELSE
 STATEMENT3
 ENDIF

III. IF (V1) THEN
 STATEMENT1
 ELSE
 IF (.NOT. V2) THEN
 STATEMENT2
 ELSE
 STATEMENT3
 ENDIF
 ENDIF

6. Consider the following FORTRAN 77 program segment :

 IF (A.GT.B .OR. A.EQ.B) PRINT*, A

Which one(s) of the following segments is(are) equivalent to the above?

I. IF (A.GE.B) THEN
 PRINT*, A
 ENDIF

II. IF (A.GT.B .AND. A.EQ.B) THEN
 PRINT*, A
 ENDIF

III. IF (.NOT. (A.LT.B)) THEN
 PRINT*, A
 ENDIF

7. What values of X cause the value of A to be changed in the following statement?

 IF (X.LT.3.0 .AND. 7.0.LT.X) A = A + 1

8. Write a complete FORTRAN program that reads a real number into a real variable

NUM. If NUM is non-zero prints the value of its reciprocal (1/NUM) . Otherwise,

prints the message "RECIPROCAL NOT DEFINED".

fourth Exercises 47

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

9. Give the FORTRAN statements that perform the steps indicated below :

1. If y is not positive, and 3.5>x>1.5 then print the value of y.

2. If time is greater than 15.0, increment time by 1.0.

3. If dist is less than 50.0 and time is greater than 10.0, increment time by 2.0.

Otherwise, increment time by 2.5.

4. Interchange the value of a and b (i.e. a gets the value of b and b gets the old

value of a, if both a and b are positive.

5. If grade is greater than or equal to 4.0 then increment a by 1.0. If grade is

greater than or equal to 3.0 but less than 4.0 then increment b by 1.0. If grade is

greater than or equal to 2.0 but less than 3.0 then increment c by 1.0, otherwise

increment d by 1.0.

10. Assume COND1, COND2, COND3, and COND4 are FORTRAN logical

expressions. Consider the following program segment.

 IF (COND1) THEN
 IF (COND2) THEN
 PRINT*,'RIYADH'
 ELSE
 IF (COND3) THEN
 PRINT*, 'JEDDAH'
 ELSE
 PRINT*, 'KHOBAR'
 ENDIF
 ENDIF
 ELSEIF (COND4) THEN
 PRINT*, 'TAIF'
 ELSE
 PRINT*, 'DHAHRAN'
 ENDIF

If the output of the above segment is
KHOBAR

What are the logical values of COND1, COND2, COND3 and COND4?

11. Write a program that reads an integer number N and prints YES if the following

expression is satisfied.

0 < N < 100 and N > 50

12. Write a FORTRAN program which reads an integer number between 10 and 99 and

prints the number reversed. For example, if the number read is 87, then the program

output must be 78.

13. Consider the following IF statements carefully. Each of Blocks A, B, C, D, E, F, G,

H represents a block of FORTRAN statements.

I. IF (CONDITION) THEN
 A
 ELSE
 B
 ENDIF
 C
 END

fourth Exercises 48

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

II. IF (CONDITION) D
 E
 END

III. IF (CONDITION) THEN
 F
 ELSEIF (CONDITION) THEN
 G
 ELSE
 H
 ENDIF
 END

Assuming that X has a value 0.0, which block(s) are executed in program segments

(i) , (ii) and (iii) , if CONDITION is the expression listed below?

i) X.GE.0

ii) X.LE.0

iii) X.GT.0

iv) X.LT.0

14. Write a FORTRAN program that reads three integers A, B, and C. The program

checks if A, B, and C are in increasing order or in decreasing order and prints an

appropriate message. If the integers are not in order, then the program prints

UNORDERED. For example, if the input is
 3 4 5

The program prints
INCREASING ORDER

15. A year between 1900 and 1999 is a LEAP year if it is divisible by 4 and not by 100

or if it is divisible by 400. Write a FORTRAN program which will read a year and

determine whether the year is a LEAP or NOT. The program should print one of the

following messages accordingly:
THE YEAR IS OUT OF RANGE

or
THE YEAR IS A LEAP YEAR

or
THE YEAR IS NOT A LEAP YEAR

16. Consider the following IF statement:

 IF (X.GE.Y) THEN
 PRINT*, X
 ELSE
 PRINT*, Y
 ENDIF

In each of the following program segments, fill the spaces by relational or logical

operators (.EQ., .NE., .LT., LE., .GT., .GE., .AND., .OR., .NOT.) such that each of

the program segments below gives the same output as the program segment above.

I. IF (X ------ Y) PRINT*, X
 IF (X ------ Y) PRINT*, Y

fourth Solutions to Exercises 49

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

II. IF (X.GT.Y) THEN
 PRINT*, X
 ELSEIF (X ----- Y) THEN
 PRINT*, X
 ELSE
 PRINT*, Y
 ENDIF

III. IF (X ----- Y ----- X.EQ.Y) THEN
 PRINT*, X
 ELSE
 PRINT*, Y
 ENDIF

17. Write a program that reads any two positive integer numbers and finds the larger of

the two numbers. The program then checks if the larger number is divisible by the

smaller one. If it is divisible the program should print the word DIVISIBLE. If the

larger number is not divisible by the smaller number, the program checks if both

numbers are odd and prints BOTH ODD.

3.6 Solutions to Exercises

Ans 1.

 9 15

 F T

 1.0

 4.5

 -4

-2 -4 -3

 T F

 MONDAY

 2 1

 834567 5450 45450

Ans 2.

 READ*, DELTA
 IF (DELTA .LT. 0.0) THEN
 PRINT*, 'NUMBER IS OUT OF RANGE'
 ELSE
 PRINT*, DELTA ** 0.5
 ENDIF
 END

Ans 3.

 READ*, A , B , C
 D = A - B + 2 * A ** 3
 IF (C .EQ. 0 .OR. D .LT. 0) THEN
 IF (C .EQ. 0) PRINT*, 'DIVISION BY ZERO'
 IF (D .LT. 0) PRINT*, 'NEGATIVE UNDER SQUARE ROOT'
 ELSE
 X = D ** 0.5/ C
 PRINT*, X
 ENDIF
 END

fourth Solutions to Exercises 50

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 4.

1. Never 2. 10 A > 6 3. 6 A 5

Ans 5.

I and III

Ans 6.

I and III

Ans 7.

No values for X,

A can't be changed according to this condition

Ans 8.

 REAL NUM
 READ* , NUM
 IF (NUM .NE. 0) THEN
 PRINT*, 1 / NUM
 ELSE
 PRINT*, 'RECIPROCAL NOT DEFINED'
 ENDIF
 END

Ans 9.

1.

IF(Y .LT. 0 .AND. (X .GT. 1.5 .AND. X .LT. 3.5))PRINT*,Y

2.

IF(TIME .GT. 15.0) TIME = TIME + 1

3.

 IF(DIST .LT. 50.0 .AND. TIME .GT. 10.0) THEN
 TIME = TIME + 2.0
 ELSE
 TIME = TIME + 2.5
 ENDIF

4.

 IF(A .GT. 0 .AND. B .GT. 0) THEN
 T = A
 A = B
 B = T
 ENDIF

5.

 IF(GRADE .GE. 4.0) THEN
 A = A + 1.0
 ELSEIF(GRADE .GE. 3.0) THEN
 B = B + 1.0
 ELSEIF(GRADE .GE. 2.0) THEN
 C = C + 1.0
 ELSE
 D = D + 1.0
 ENDIF

fourth Solutions to Exercises 51

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 10.

COND1 : T

COND2 : F

COND3 : F

COND4 : Can be T or F

Ans 11.

 READ*, N
 IF (N .GT. 50 .AND. N .LT. 100) THEN
 PRINT*,'YES'
 ENDIF
 END

Ans 12.

 INTEGER REV
 READ*, K
 IF (K .GT. 10 .AND. K .LE. 99) THEN
 REV = (K - K / 10 * 10) * 10 + K / 10
 PRINT*, REV
 ELSE
 PRINT*, 'NUMBER IS OUT OF RANGE'
 ENDIF
 END

Ans 13.

 X .GE. 0 i) A , C ii) D , E iii) F

 X .LE. 0 i) A , C ii) D , E iii) F

 X .GT. 0 i) B , C ii) E iii) H

 X .LT. 0 i) B , C ii) E iii) H

Ans 14.

 READ*, A , B , C
 IF (A .GE. B .AND. B .GE. C) THEN
 PRINT*, 'DECREASING ORDER'
 ELSEIF(A .LE. B .AND. B .LE. C) THEN
 PRINT*, 'INCREASING ORDER'
 ELSE
 PRINT*, 'UNORDERD'
 ENDIF
 END

Ans 15.

 INTEGER Y
 READ*, Y
 IF(Y .GE. 1900 .AND. Y .LE. 1999) THEN
 IF(Y/4*4.EQ.Y.AND.Y/100*100.NE.Y.OR.Y/400*400.EQ.Y) THEN
 PRINT*, 'THE YEAR IS A LEAP YEAR'
 ELSE
 PRINT*, 'THE YEAR IS NOT A LEAP YEAR'
 ENDIF
 ELSE
 PRINT*, 'THE YEAR IS OUT OF RANGE'
 ENDIF
 END

fourth Solutions to Exercises 52

 This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 16.

i) X .GE. Y ii) X .EQ. Y iii) X .GT. Y .OR.X .LT. Y

Ans 17.

 READ*, M , N
 IF(M .GE. N) THEN
 MAX = M
 MIN = N
 ELSE
 MAX = N
 MIN = M
 ENDIF
 IF(MAX / MIN * MIN .EQ. MAX) THEN
 PRINT*, 'DIVISABLE'
 ELSE
 IF(MAX/2*2 .NE. MAX .AND. MIN/2*2 .NE. MIN) THEN
 PRINT*,'BOTH ODD'
 ENDIF
 ENDIF
 END

53

fourth Subprogram Terminology 54

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4 TOP DOWN DESIGN

Many problems consist of a number of tasks. One good technique in solving such

problems is to identify the tasks, decompose each task into sub-tasks and solve these

sub-tasks by smaller and simpler solutions. Ultimately, the main tasks and the sub-tasks

are converted to program code. In this chapter, we introduce the top down design

technique based on problem decomposition and the means to implement such a

technique.

4.1 Basic Concepts of Top Down Design

Top down design is a technique that reduces the complexity of large problems. The

technique is based on the divide-and-conquer strategy, wherein the problem tasks are

divided into sub-tasks repetitively. The division of tasks stops when the sub-tasks are

relatively easy to program. The terms successive refinement or step-wise refinement also

refer to the top-down design technique.

In FORTRAN, each sub-task can be implemented by a separate module. FORTRAN

uses two types of program modules, subroutines and functions. These modules are also

called subprograms. A typical FORTRAN program consists of a main program with

several subprograms. Each subprogram represents a sub-task in the top down design

solution.

The top down design process has many advantages:

1. The subprograms can be independently implemented and tested.

2. Subprograms developed by others can be used. For example, a huge library of

FORTRAN subprograms known as IMSL (International Mathematical and

Statistical Library) is available. The IMSL library has efficient, well tested

subprograms for common problems in matrix manipulation, algebraic

equations, statistical computations, .. etc.

3. The size of the program is reduced, since identical code segments in the main

program are replaced by a single subprogram.

4.2 Subprogram Terminology

There are several new terms with which we should be familiar with while using

subprograms. The program file usually consists of a program called the main program

and all the associated subprograms. These subprograms may appear before or after the

main program. A subprogram is called or invoked by another subprogram or the main

fourth Function Subprograms 55

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

program. The calling program passes information to the subprogram through arguments

or parameters. The subprogram returns information to the calling program. In the case

of a function, the information which is a single value, is returned as the value of the

function name. In the case of a subroutine, the information is returned through some or

all the arguments. The arguments that appear in the description of the subprogram are

called dummy arguments and those that appear in the calling statement are called actual

arguments. Every subprogram consists of a header followed by a body. The subprogram

body has a statement called the RETURN statement to return execution control to the

calling program. There may be more than one RETURN statements in a subprogram. A

subprogram ends with an END statement.

4.3 Function Subprograms

A function subprogram is the description of a function consisting of several statements.

The subprogram computes a single value and stores that value in the function name. A

function subprogram consists of a function header and a function body.

4.3.1 Function Header

The function header is the first statement of the function and has the following format:

type FUNCTION fname (a list of arguments)

where

type is the type for the function name (REAL, INTEGER ..);

fname is the name of the function;

a list of arguments is the optional list of dummy arguments.

If the type of the function is not specified, the function type is assumed as either

INTEGER or REAL, as in the case of variables. The rules that apply in naming a

variable also apply to function names. If there are no arguments to a function, then the

empty parentheses () appear with the function name.

4.3.2 Function Body

The function body is similar to a FORTRAN program. It consists of declaration

statements, if any, in the beginning, followed by executable statements. Each function

body must end with an END statement. The RETURN statement must appear in the

function body at least once. This statement is used to transfer control from the function

back to the calling program. The function name should be assigned a value in the

function body. A typical layout of a function is as follows:

 TYPE FUNCTION FNAME (A LIST OF DUMMY ARGUMENTS)
 DECLARATION OF DUMMY ARGUMENTS AND VARIABLES TO BE USED IN THE

FUNCTION

 EXECUTABLE STATEMENTS
 ..
 ..

 FNAME = EXPRESSION
 ..
 ..
 RETURN
 END

fourth Function Subprograms 56

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4.3.3 Examples on function subprograms

Example 1: Write a real function VOLUME that computes the volume of a sphere

(4/3r
3
) given its radius.

Solution:

 REAL FUNCTION VOLUME(RADIUS)
 REAL RADIUS, PI
 PI = 3.14159
 VOLUME = 4.0 / 3.0 * PI * RADIUS ** 3
 RETURN
 END

Example 2: Write a logical function ORDER that checks whether three different integer

numbers are ordered in increasing or decreasing order.

Solution:

 LOGICAL FUNCTION ORDER(X, Y, Z)
 INTEGER X, Y, Z
 LOGICAL INC, DEC
 DEC = X .GT. Y .AND. Y .GT. Z
 INC = X .LT. Y .AND. Y .LT. Z

 ORDER = INC .OR. DEC
 RETURN
 END

Example 3: Write a function subprogram to evaluate the function f(x) defined below.

f(x) = 2x
2
 + 4x + 2 if x < 5

f(x) = 0 if x = 5

f(x) = 3x + 1 if x > 5

Solution:

 FUNCTION F(X)
 REAL F, X
 IF (X .LT. 5) THEN
 F = 2 * X ** 2 + 4 * X + 2
 ELSEIF (X .EQ. 5) THEN
 F = 0
 ELSE
 F = 3 * X + 1
 ENDIF
 RETURN
 END

4.3.4 Function Call

Let us consider a program consisting of a main program and a function subprogram.

The execution of the program begins with the main program. For each call to a function,

control is transferred to the function. After the function is executed, the RETURN

statement ensures that control is transferred back to the calling program. The execution

of the main program then resumes at the location the function is called.

Example: In the following two tables, correct and incorrect function calls to the

functions defined in Examples 1, 2 and 3 are given. We assume that in the calling

fourth Function Subprograms 57

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

program the function names VOLUME, F are declared as REAL, and ORDER as

LOGICAL. We also assume A = 5.0, B = 21.0, where A and B are real numbers:

Examples of correct function calls:

Function Call Function Value

ORDER(3, 2, 4) .FALSE.

ORDER(3, 4 * 3, 99) .TRUE.

F(A) 0.0

F(3 + F(2.0)) 64.0

VOLUME(B) 38808.0

F(A + B) 79.0

Examples of incorrect function calls:

Incorrect

Function Call

 Error Message

ORDER(3.0, 2, 4) Argument 1 referenced as real but defined to be integer

F(3.2, 3.4) More than one argument to function F

VOLUME(5) Argument 1 referenced as integer but defined to be real

4.3.5 Function Rules

The following rules must be observed in writing programs with function subprograms:

 Actual and dummy arguments must match in type, order and number. The

names of these arguments may or may not be the same.

 Actual arguments may be expressions, constants or variable names. Dummy

arguments must be variable names and should never be expressions or

constants.

 The type of the function name must be the same in both the calling program and

the function description.

 The result from the function subprogram, to be returned to the calling program,

should be stored in the function name.

 A return statement transfers control back to the calling program. Every function

should have at least one return statement.

 The function may be placed either before or after the main program.

 A function is called or invoked as part of an expression.

 A FORTRAN function cannot call itself.

4.3.6 Complete Examples on function subprograms

Example 1: The sum of three integer numbers: Write an integer function SUM to sum

three integer numbers. Also write a main program to test the function SUM.

fourth Function Subprograms 58

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

C MAIN PROGRAM
 INTEGER X, Y, Z, SUM
 READ*, X, Y, Z
 PRINT*, SUM (X, Y, Z)
 END

C FUNCTION SUBPROGRAM
 INTEGER FUNCTION SUM(A, B, C)
 INTEGER A, B, C
 SUM = A + B + C
 RETURN
 END

The execution starts with the reading of variables X, Y and Z in the main program. The

execution of the expression SUM(X, Y, Z) transfers control to the function SUM. The

value of the actual arguments X, Y and Z is passed to the dummy arguments A, B and C

respectively. In the function SUM, execution begins with the first executable statement

which computes the value of SUM. The return statement returns control to the main

program. The print statement in the main program prints the value of SUM(X, Y, Z) and

the execution ends. Assume that the input to the above program is as follows:
7 3 9

then the output of the program is
19

Example 2: Reverse a Two Digit Number: A two digit integer number is to be reversed.

A two digit number ranges between 10 and 99. Write a function that first checks if the

number is a two digit number and then returns the number with the digits reversed. The

function should return an error code -1 if the argument is not a two digit number. Write

a main program to test the function.

Solution:

The main program invokes function RVSNUM after reading a number. If the value

returned from the function is -1, an error message is printed. Otherwise, the number and

its reversed value are printed. Notice the use of two RETURN statements in the

function.

fourth Special Cases of Functions 59

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 INTEGER FUNCTION RVSNUM(NUMBER)
 INTEGER NUMBER, RDIGIT, LDIGIT
 IF (NUMBER .LT. 10 .OR. NUMBER .GT.99) THEN
 RVSNUM = -1
 RETURN
 ENDIF
 LDIGIT = NUMBER / 10

 RDIGIT = NUMBER - LDIGIT / 10 * 10
 RVSNUM = RDIGIT * 10 + LDIGIT
 RETURN
 END

C MAIN PROGRAM
 INTEGER NUMBER, RVSNUM, RNUM
 READ*, NUMBER
 RNUM = RVSNUM(NUMBER)
 IF (RNUM .EQ. -1) THEN
 PRINT*, 'INPUT ERROR : ', NUMBER
 ELSE
 PRINT*, 'ORIGINAL NUMBER IS ', NUMBER
 PRINT*, 'REVERSED NUMBER IS ', RNUM
 ENDIF
 END

If the input to this program is
78

 then the output is:
ORIGINAL NUMBER IS 78

REVERSED NUMBER IS 87

If the input to this program is
123

 then the output is:
INPUT ERROR : 123

Note that the actual arguments can be expressions. If the function is invoked with the

statement PRINT*, RVSNUM(4 * 6), the value 42 is printed.

4.4 Special Cases of Functions

There are special cases of functions that do not require subprogram description. These

cases may be classified into two groups:

1. Intrinsic (built-in) Functions

2. Statement Functions

4.4.1 Intrinsic Functions

These are predefined functions that are available from the FORTRAN language. Certain

functions, such as the trigonometric functions, are frequently encountered in

programming. Instead of developing them repeatedly in each program, the language

provides these functions. For example, MOD(M,N) is an intrinsic function that requires

two integer arguments M and N. The result of the function MOD is an integer value

representing the remainder when M is divided by N. A list of commonly used intrinsic

functions is given below.

fourth Special Cases of Functions 60

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Function Function Value Comment

SQRT(X) Square Root of X X is a real argument

ABS(X) Absolute Value of X

SIN(X) Sine of angle X Angle is in radians

COS(X) Cosine of angle X Angle is in radians

TAN(X) Tangent of angle X Angle is in radians

EXP(X) e raised to the power X

LOG(X) Natural Logarithm of X X is real

LOG10(X) Logarithm of X to base 10 X is real

INT(X) Integer value of X Converts a real to an integer

REAL(K) Real value of K Converts an integer to real

MOD(M, N) Remainder of M/N Modulo function

Common Intrinsic Functions

4.4.2 Statement Functions

In engineering and science applications, we frequently encounter functions that can be

written in a single statement. For example, f x x() 2 is a simple function. In such

cases, FORTRAN allows us to write a statement function instead of writing a function

subprogram. A statement function is defined in the beginning of a program after

declaration statements. As a non-executable statement, it should appear before any

executable statement. The general form of this statement is as follows:

fname (a list of arguments) = expression

where

fname is the name of the function;

a list of arguments is the optional list of dummy arguments; and

expression computes the function value.

The type of the statement function may be declared in the declaration statements. If the

type of the function is not declared, it is implicitly defined.

4.4.2.1 Examples of statement functions:

Example 1: Write a statement function to compute the area of a triangle, given its two

sides and an angle.

REAL AREA
AREA(SIDE1,SIDE2,ANGLE) = 0.5 * SIDE1 * SIDE2 * SIN (ANGLE)

Example 2: Write a statement function to compute the total number of seconds, given

the time in hours, minutes and seconds.

Solution:

REAL TOTSEC
TOTSEC(HOUR,MINUTE,SECOND) = 3600 * HOUR +60 * MINUTE + SECOND

Example 3: Write a statement function to compute the function f(x,y) = 3x
2
 + 5xy

Solution:

fifth Subroutine Subprograms 61

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

REAL F
F(X, Y) = 3 * X ** 2 + 5 * X * Y

Example 4: Write a logical statement function to check if three different integer

numbers are in increasing or decreasing order.

Solution:

LOGICAL ORDER
ORDER(X,Y,Z) = X.GT.Y .AND. Y .GT. Z .OR. X.LT.Y .AND. Y.LT.Z

Example 5: Temperature Conversion: Convert temperatures from one unit into another

using statement functions. Write a main program to test the functions based on a code.

If the code is 1, convert from centigrade to Fahrenheit. If code is 2, convert from

Fahrenheit to centigrade. Otherwise, print an error message.

Solution:

 REAL FTEMP, CTEMP, TEMP, VALUE
 INTEGER CODE
C FUNCTION FTEMP CONVERTS FROM CENTIGRADE TO FAHRENHEIT
 FTEMP(TEMP) = TEMP * 9 / 5 + 32

C FUNCTION CTEMP CONVERTS FROM FAHRENHEIT TO CENTIGRADE
 CTEMP(TEMP) = (TEMP - 32) * 5 / 9
 READ*, CODE, VALUE
 IF (CODE .EQ. 1) THEN
 PRINT*, VALUE , ' C = ' , FTEMP(VALUE), ' F'
 ELSEIF (CODE .EQ. 2) THEN
 PRINT*, VALUE , ' F = ' , CTEMP(VALUE), ' C'
 ELSE
 PRINT*, 'INPUT ERROR'
 ENDIF
 END

The statement functions FTEMP and CTEMP convert the argument value to Fahrenheit

and centigrade respectively. The statement functions are placed immediately after the

declaration statements. The variables CODE and VALUE are read. Based on the value

of CODE, the appropriate statement function is invoked and the converted value is

printed.

4.5 Subroutine Subprograms

A function produces a single result. In many instances, we would like a subprogram to

produce more than one result. Subroutines are designed to produce zero, one or many

results. A subroutine consists of a subroutine header and a body.

Subroutines differ from functions in the following ways:

 A subroutine may return a single value, many values, or no value.

 To return results, the subroutine uses the argument list; thus, the subroutine

argument list consists of input arguments and output arguments.

 Since the results are returned through arguments, a subroutine name is used for

documentation purposes only and does not specify a value.

 The general form of the subroutine header is as follows:

 SUBROUTINE SNAME (a list of dummy arguments)

where

fifth Subroutine Subprograms 62

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

SNAME is the name of the subroutine; and

a list of dummy arguments is optional.

 A subroutine is called or invoked by an executable statement, the CALL

statement. The general form of the statement is as follows:

 CALL SNAME (a list of actual arguments)

A subroutine is similar to a function in several ways. The subroutine actual and

dummy arguments must match in type, number and order. At least one RETURN

statement must be present to ensure transfer of control from a subroutine to the calling

program.

Consider a program that consists of a subroutine and a main program. With each

CALL statement in the main program, control is transferred to the subroutine. After the

subroutine is executed, the RETURN statement ensures that control is transferred back

to the calling program, to the statement immediately following the CALL statement.

4.5.1 Examples on Subroutine Subprograms:

Example 1: Write a subroutine that exchanges the value of its two real arguments.

Solution:

 SUBROUTINE EXCHNG(NUM1, NUM2)
 REAL NUM1, NUM2, TEMP
 TEMP = NUM1
 NUM1 = NUM2
 NUM2 = TEMP
 RETURN
 END

The subroutine EXCHNG can be invoked using the CALL statement. An example

illustrating a call to the subroutine EXCHNG is given below:

Assume the variables X, Y are declared as real in the calling program and have the

values 3.0 and 8.0 respectively. The CALL statement

CALL EXCHNG(X, Y)

after execution will exchange the value of X and Y. During the execution of the CALL

statement, the value of actual argument X is passed to the dummy argument NUM1 and

the value of actual argument Y is passed to the dummy argument NUM2. At this point,

the execution control is transferred to the subroutine EXCHNG. The subroutine

exchanges the values of variables NUM1 and NUM2. When the RETURN statement of

the subroutine is executed, the control returns to the calling program and the new values

of variables NUM1 and NUM2 are passed back to the actual arguments X and Y

respectively. Therefore, the new value of variable X would be 8.0 and the value of

variable Y would be 3.0.

Example 2: Write a subroutine that takes three different integer arguments X, Y and Z

and returns the maximum and the minimum.

fifth Subroutine Subprograms 63

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 SUBROUTINE MINMAX(X, Y, Z, MAX, MIN)
 INTEGER X, Y, Z, MAX, MIN
 MIN = X
 MAX = X
 IF (Y .GT. MAX) MAX = Y
 IF (Y .LT. MIN) MIN = Y
 IF (Z .GT. MAX) MAX = Z
 IF (Z .LT. MIN) MIN = Z
 RETURN
 END

Examples illustrating calls to the subroutine MINMAX is given below:

Example 3: Assume the variables A, B, C are declared as integer in the calling

program and have the values 4, 6, 8 respectively. Also assume that MAX and MIN are

integer variables. After the following CALL statement

 CALL MINMAX(A, B, C, MAX, MIN)

is executed, the value of MAX will be 8 (the maximum of variables A, B, C) and the

value of MIN will be 4 (the minimum of variables A, B, C). Note that the names of the

actual arguments may be similar or different from the corresponding dummy arguments

but the type must be the same.

Example 4: If the following CALL statement

 CALL MINMAX(C+4, -1, A+B, MAX, MIN)

is executed, the value of MAX will be 12 and the value of MIN will be -1, since the first

three actual arguments in the CALL statement are evaluated to 12, -1 and 10

respectively. Note here that the actual arguments can be expressions.

Example 5: Sum and Average: Write a subroutine to sum three integers and compute

their average. The subroutine should return the sum and average of the three numbers.

Write a main program to test the subroutine.

Solution:

C MAIN PROGRAM
 INTEGER X, Y, Z, TOTAL
 REAL AVERAG
 READ*, X, Y, Z
 CALL SUBSUM (X, Y, Z, TOTAL, AVERAG)
 PRINT*, 'TOTAL IS ', TOTAL
 PRINT*, 'AVERAGE IS ' , AVERAG
 END
C SUBROUTINE SUBPROGRAM

 SUBROUTINE SUBSUM(A, B, C, TOTAL, AVG)
 INTEGER A, B, C, TOTAL
 REAL AVG
 TOTAL = A + B + C

 AVG = TOTAL / 3.0
 RETURN
 END

The subroutine SUBSUM has three dummy arguments A, B, C and returns two results,

the value of the fourth argument TOTAL and the fifth argument AVERAG. The CALL

statement in the main program invokes the subroutine.

fifth Subroutine Subprograms 64

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Arguments X, Y, Z, TOTAL and AVERAG in the main program are the actual

arguments. Note that, before the subroutine is called, arguments X, Y and Z have values

and arguments TOTAL and AVERAG do not have a value. Arguments A, B, C,

TOTAL and AVERAG in the subprogram are the dummy arguments. X, Y and Z are

input arguments, TOTAL and AVERAG are output arguments.

The execution starts with the reading of variables X, Y and Z in the main program.

The execution of the CALL statement transfers control to the subroutine SUBSUM.

The value of the actual arguments X, Y and Z is passed to the dummy arguments A, B

and C respectively. Since TOTAL and AVERAG in the main program are not

initialized, no value is passed to the corresponding arguments in the subprogram. In the

subroutine SUBSUM, execution begins with the first executable statement which

computes the value of argument TOTAL. The next statement computes the average of

the three arguments. The return statement returns control to the main program.

The values of arguments A, B, C, TOTAL and AVERAG in the subroutine are

passed back to the arguments X, Y, Z, TOTAL and AVERAG in the main program

respectively. The print statement in the main program prints the value of TOTAL and

AVERAG, and the execution ends.

If the input to this program is
20, 60, 40

then the output is:
TOTAL IS 120

AVERAGE IS 40.0000000

Example 6: Integer and Real Parts of a Number: The integer and decimal parts of a

real number are to be separated. For example, if the number is 3.14, the integer part is

3 and the decimal part is 0.14. Write a subroutine SEPNUM to separate the real and

integer parts.

Solution:

C SUBROUTINE SUBPROGRAM
 SUBROUTINE SEPNUM(NUMBER, IPART, RPART)
 REAL NUMBER, RPART
 INTEGER IPART
 IPART = INT(NUMBER)
 RPART = NUMBER - IPART
 RETURN
 END
C MAIN PROGRAM
 REAL NUMBER, PART2
 INTEGER PART1
 READ*, NUMBER
 CALL SEPNUM(NUMBER, PART1, PART2)
 PRINT*, ' INTEGER PART OF ', NUMBER, ' IS ', PART1
 PRINT*, ' DECIMAL PART OF ', NUMBER, ' IS ', PART2
 END

The subroutine has three dummy arguments: argument NUMBER represents the real

number to be separated, argument IPART is the integer part of NUMBER and argument

RPART represents the real part of the number.

If the input to this program is
57.231

fifth Exercises 65

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

then the output is:
INTEGER PART OF 57.2310000 IS 57
DECIMAL PART OF 57.2310000 IS 0.2310000

If the subroutine SEPNUM is invoked with the statement

 CALL SEPNUM(3.14, PART1, PART2)

 then the value of PART1 is 3 and value of PART2 is 0.14.

4.6 Common Errors in Subprograms

There are several common errors that occur in the use of subprograms. We illustrate

such errors through an example. The following program computes the new salary, given

the current salary and the number of years of service. If the number of years is more

than five, the salary is to be incremented by 8%, otherwise, the increment is 4%. The

program uses a function INCSAL to compute the new salary. There are several errors in

the program.

When the program is executed, the following error messages appear:

 Error #1: INCSAL is an unreferenced symbol. A function should return a single

result stored in the function name. But in function INCSAL, the function name

INCSAL is not assigned any value.

 Error #2: Function INCSAL referenced as an integer but defined to be real.

The type of the function name in the main program is, by default, integer but its

type in the function definition is real.

C FUNCTION SUBPROGRAM
 REAL FUNCTION INCSAL(SALARY, YEARS)
 REAL SALARY, NSAL
 INTEGER YEARS
 IF (YEARS .GT. 5) THEN
 NSAL = SALARY * 8 / 100 + SALARY
 ELSE
 NSAL = SALARY * 4 / 100 + SALARY
 ENDIF
 END
C MAIN PROGRAM
 REAL SALARY, YEARS
 READ*, SALARY, YEARS
 PRINT*, INCSAL(SALARY, YEARS)
 END

 Error #3: Argument number 2 in call to INCSAL - real argument was passed

but integer argument expected. The type of argument number 2 in the calling

statement does not match with its type in function subprogram. Mismatch of

arguments is a common error in calls to both subroutines and functions.

 Error #4: RETURN statement is missing. The RETURN statement is missing

in function INCSAL. This error may not be reported by many compilers.

4.7 Exercises

1. (a) Which of the following statement(s) is (are) FALSE?

1. A function may contain more than one RETURN statement.

2. A subroutine may return one value, many values, or no value.

fifth Exercises 66

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3. A subroutine cannot call itself in FORTRAN.

4. The statement function is a non-executable statement.

5. A function may return more than one value.

6. A program may contain more than one subprogram.

7. A subroutine cannot call another subroutine.

8. The order and type of arguments in a subroutine call and the corresponding

subroutine statement must be the same.

9. Use of subroutines increases the complexity of programming.

10.A function transfers results back to the calling program in the argument lists only.

2. What is printed by the following programs ?

1. INTEGER A, B, X, Y, Z, F
 A = 2
 B = 3

 X = F(4, A)
 Y = B * 3
 Z = F(Y, X)
 PRINT*, X, Y, B, Z
 END
 INTEGER FUNCTION F(X,Y)
 INTEGER X, Y, Z
 Z = 2*Y
 F = X+Z
 RETURN
 END

2. INTEGER OP
 REAL X, Y, CALC
 READ*, X, OP, Y
 PRINT*, CALC(X, OP, Y)
 READ*, X, OP, Y
 PRINT*, CALC(X, OP, Y)
 END
 REAL FUNCTION CALC(ARG1,OP,ARG2)
 INTEGER OP
 REAL ARG1, ARG2
 IF (OP .EQ. 1) THEN
 CALC = ARG1 + ARG2
 ELSEIF (OP .EQ. 2) THEN
 CALC = ARG1 - ARG2
 ELSE
 CALC = 0
 ENDIF
 RETURN
 END

Assume the input is
1.0,5,7.0

5.0,2,4.0

fifth Exercises 67

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3. LOGICAL DIV
 INTEGER N, J
 READ*, N, J
 IF (DIV(N, J))THEN
 PRINT*,'YES'
 ELSE
 PRINT*,'NO'
 ENDIF
 END
 LOGICAL FUNCTION DIV(N, J)
 INTEGER N, J
 DIV = N - N / J * J .EQ. 0
 RETURN
 END

Assume the input is
18 4

4. INTEGER K , EVL
 K = 1
 PRINT*, EVL (K), K
 END
 INTEGER FUNCTION EVL (M)
 INTEGER M, K
 K = 2

 EVL = M * K
 RETURN
 END

5. INTEGER A, B
 REAL FUN
 READ*, A, B
 A = FUN(A, B)

 B = FUN(B, A)
 PRINT*, FUN(A, B)
 END
 REAL FUNCTION FUN(X, Y)
 INTEGER X, Y
 FUN = X ** 2 + 2 * Y
 RETURN
 END

Assume the input is
1, 2

6. INTEGER A, B, C, G
 G(A,B,C) = A * B-4 * C
 READ*, A, B, C
 PRINT*, G(A + B, B + C, C + A)
 END

Assume the input is
4 5 3

7. LOGICAL F
 INTEGER X, Y, Z
 F(X, Y, Z) = X .GT. Y .AND. X .GT. Z
 READ*, X, Y, Z
 IF (F(X, Y, Z)) PRINT*, X
 IF (F(Y, X, Z)) PRINT*, Y
 IF (F(Z, X, Y)) PRINT*, Z
 END

fifth Exercises 68

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Assume the input is
10 30 5

8. INTEGER A,B,P,Q, G
 G(A,B) = A*A + B
 READ*, P, Q
 A = 1

 B = 2
 PRINT*, G(P,Q), G(Q,P), G(P+2, Q+2)*G(B,A)
 END

Assume the input is
 2 3

9. LOGICAL FUNC
 INTEGER K, L
 FUNC(K,L) = K .GE. L
 READ*, K, L
 IF (FUNC(K,L)) THEN
 PRINT*, K
 ELSE
 PRINT*,L
 ENDIF
 END

Assume the input is
80 90

10. INTEGER K, L
 K = -9

 L = 10
 PRINT*, MOD(ABS(K),L)
 END

11. REAL A, B, DIST, X, Y
 DIST(X,Y) = SQRT(X ** 2 + Y ** 2)
 READ*, A, B
 PRINT*, DIST(A - 3.0, DIST(A, B) - 6.0)
 END

12. INTEGER FUNCTION FUN(J, K, M)
 REAL SUM
 SUM = J + K + M
 FUN = SUM /3.0
 RETURN
 END
 INTEGER FUN,FUS, J, K
 FUS(J, K) = J * K / 2
 PRINT*, FUS(FUN(2, 3, 4), FUN(5, 6, 7))
 PRINT*, FUN(FUS(2, 3), FUS(4, 5), FUS(6, 7))
 END

Assume the input is
 6.0 8.0

13. REAL F, G, A, B, X, Y
 F(A , B) = A + B

 G(X) = X ** 2
 READ*, Y
 PRINT*, G(Y), G(F(Y, Y + 2))
 END

fifth Exercises 69

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Assume the input is
3.0

14. LOGICAL COMP
 REAL X, Y, Z, A, B, C
 COMP(A, B, C) = A. GE. B .AND. A .GE. C
 READ*, X, Y, Z
 IF (COMP(X, Y, Z)) PRINT*, X
 IF (COMP(Y, X, Z)) PRINT*, Y
 IF (COMP(Z, X, Y)) PRINT*, Z
 END

Assume the input is
35.0 90.0 65.0

15. INTEGER A,B,C
 A = 1
 B = 2
 C = 3
 PRINT*, A, B, C
 CALL CHANGE(A,B)
 PRINT*, A, B, C
 END
 SUBROUTINE CHANGE(A,B)
 INTEGER A,B,C
 C = B

 B = A + B
 A = C
 RETURN
 END

16. INTEGER TOT
 REAL A, B
 A = 5.5
 B = 4.5
 CALL ADD(A,B,TOT)
 PRINT*, TOT
 END
 SUBROUTINE ADD(X,Y,SUM)
 INTEGER SUM
 REAL X, Y
 IF (X.LT.Y) THEN
 SUM = X + Y
 ELSE
 SUM = X - Y
 ENDIF
 RETURN
 END

17. INTEGER JJ
 JJ = 1
 CALL TRY1(JJ,3)
 CALL TRY1(JJ,4)
 CALL TRY1(JJ,5)
 PRINT*, JJ
 END
 SUBROUTINE TRY1(X,Y)
 INTEGER X,Y,TRY2, N
 TRY2(N) = N-3

 X = TRY2(Y)+2*X
 RETURN
 END

fifth Exercises 70

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

18. INTEGER X, Y, H
 H = 2
 CALL K(X,Y)
 PRINT*, H, Y, X
 END
 SUBROUTINE K(H,Y)
 INTEGER H,Y
 REAL X
 READ*, H, Y
 H = H / (Y+H)

 Y = H+3
 X = Y+2/3
 PRINT*, H, Y, X
 RETURN
 END

Assume the input is
 5 3 2

19. REAL X,Y
 X = 3.0
 Y = 1.0
 CALL F(X,Y)
 PRINT*, X, Y
 END
 SUBROUTINE F(A,B)
 REAL A, B
 CALL G(B,A)
 B = A + B

 A = A - B
 RETURN
 END
 SUBROUTINE G(C,D)
 REAL C, D
 C = C + D
 D = C - D
 RETURN
 END

20. INTEGER JJ
 JJ = 1
 CALL TEST1
 PRINT*, JJ
 END
 SUBROUTINE TEST1
 INTEGER JJ
 JJ = 2
 CALL TEST2
 RETURN
 END
 SUBROUTINE TEST2
 INTEGER JJ
 JJ = 3
 RETURN
 END

fifth Exercises 71

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

21. REAL A, C

 A = 5
 CALL SUBPRO(A,C)
 PRINT*, A, C
 END
 SUBROUTINE SUBPRO(A,B)
 REAL A, B, C, X
 C(X) = X*2-2

 B = C(A)
 RETURN
 END

22. SUBROUTINE CHANGE (W,X,Y,Z)
 INTEGER W,X,Y,Z
 W = X
 X = Y

 Y = Z
 Z = W
 RETURN
 END
 INTEGER A,B
 READ*, A, B
 CALL CHANGE(A * 2, B * 3, A, B)
 PRINT*, A * 2, B * 3
 END

Assume the input is
3 4

23. INTEGER X, Y
 X = 3

 Y = X*3
 PRINT*, X, Y
 CALL CHANGE(X,Y)
 PRINT*, X, Y
 END
 SUBROUTINE CHANGE(X,Y)
 INTEGER X, Y
 X = X + 1
 Y = X - 1
 PRINT*, X, Y
 RETURN
 END

24. LOGICAL FLAG
 REAL X, Y
 FLAG = .TRUE.
 READ*, X, Y
 CALL LOGIC (X, Y, FLAG)
 PRINT*, X, Y, FLAG
 END
 SUBROUTINE LOGIC (FLAG, X, Y)
 LOGICAL Y
 REAL X, Y
 IF (.NOT. Y) THEN
 FLAG = X**2+FLAG**2
 Y = .NOT. Y
 ELSE
 FLAG = (FLAG + X)
 ENDIF
 RETURN
 END

fifth Exercises 72

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Assume the input is
4 5

25. REAL A, B, C
 READ*, A,B
 CALL FIRST(A,B,C)
 PRINT*, A,B,C
 END
 SUBROUTINE FIRST (X,Y,Z)
 REAL X, Y, Z
 X = X + Y
 Y = Y - X
 CALL SECOND(X,Y,Z)
 RETURN
 END
 SUBROUTINE SECOND(N,M,L)
 REAL N,M,L
 L = THIRD(N,M)
 RETURN
 END
 REAL FUNCTION THIRD(J,K)
 REAL J,K
 THIRD = J - K
 RETURN
 END

Assume the input is
1 1

26. INTEGER A, B
 LOGICAL FLAG
 READ*, A, B
 FLAG = A .GT. B

 CALL SUB(A, B)
 PRINT*, A, B, FLAG
 END
 SUBROUTINE SUB(A, B)
 INTEGER A, B, T
 LOGICAL FLAG
 T = A

 A = B
 B = T
 FLAG = A .GT. B
 RETURN
 END

Assume the input is
6 3

27. SUBROUTINE COMP (M , N)
 INTEGER M, N
 M = M + N

 N = M + N
 RETURN
 END
 INTEGER M, N
 READ*, M, N
 CALL COMP (M , N)
 PRINT*, M, N
 END

Assume the input is
1 2

fifth Exercises 73

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

28. SUBROUTINE MIDTERM (A, B)
 INTEGER A, B, C
 IF (A . LT. B) THEN
 C = A

 A = B
 B = C
 ENDIF
 RETURN
 END
 INTEGER A, B, C
 READ*, A, B, C
 PRINT*, A, B, C
 CALL MIDTERM (B, A)
 PRINT*, A, B, C
 END

Assume the input is
17 23 31

29. INTEGER B, C
 REAL A
 READ*, A, C
 CALL BEST (A, REAL(C), B)
 PRINT*, A, B, C
 CALL BEST (A, B + 2.0 , C)
 PRINT*, A, B, C
 END
 SUBROUTINE BEST (ONE, TWO, THREE)
 REAL ONE, TWO
 INTEGER THREE
 THREE = ONE + TWO
 RETURN
 END

Assume the input is
9.5, 4

30. REAL X, Y, A, B
 F(A, B) = A / B * 2
 CALL MYSUB(F(4.0, 1.0), X, Y)
 PRINT*, X, Y, F(X, X)
 END
 SUBROUTINE MYSUB (X, Y, Z)
 REAL X, Y, Z
 IF (X .LT. 0.0) THEN
 Z = X
 ELSEIF (X .EQ. 0.0) THEN
 Z = X + 2.0
 ELSE
 Z = X / 2.0
 ENDIF
 Y = Z * X
 RETURN
 END

fifth Exercises 74

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

31. INTEGER NUM1, NUM2
 READ*, NUM1, NUM2
 CALL EXCHNG (NUM1, NUM2)
 PRINT*, NUM1, NUM2
 END
 SUBROUTINE EXCHNG (NUM1, NUM2)
 INTEGER NUM1, NUM2, TEMP
 LOGICAL COND
 IF (.NOT. COND(NUM1, NUM2)) THEN
 TEMP = NUM1
 NUM1 = NUM2

 NUM2 = TEMP
 ENDIF
 RETURN
 END
 LOGICAL FUNCTION COND(X, Y)
 INTEGER X, Y
 COND =X .GE. 0 .AND. Y .GT. X
 RETURN
 END

Assume the input is
3, -2

3. Which of the following functions may be used to find the maximum of two integer

numbers K and M?

A. INTEGER FUNCTION MAXA(K,M)
 INTEGER K, M
 MAXA = K
 IF (K.GT.M) MAXA = K
 RETURN
 END

B. INTEGER FUNCTION MAXC(K,M)
 INTEGER K, M
 IF (M.GE.K) THEN
 MAXC = M
 ELSE
 MAXC = K
 ENDIF
 RETURN
 END

C. INTEGER FUNCTION MAXB(K,M)
 INTEGER K, M
 MAXB = K
 IF (M.GT.K) MAXB = M
 RETURN
 END

4. Write a logical function subprogram FACTOR that takes two arguments and checks

if the first argument is a factor of the second argument. Write a main program to test

the function.

5. Write a function subprogram to reverse a three digit number. For example, if the

number is 243, the function returns 342. Write a main program to test the function.

6. Write a function subprogram called AREA to compute the area of a circle. The

argument to the function is the diameter of the circle. Write a main program to test

the function.

fifth Exercises 75

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7. Write a logical function subprogram that checks whether all its three arguments are

non-zero. Write a main program to test the function.

8. Write the functions in problems 4, 5, 6, and 7 as statement functions.

9. Consider the following statement function IXX (J,K) = J-J/K*K. Which one of the

following intrinsic (built-in) functions is the same as the function IXX ?

i) MOD

ii) MAX

iii) MIN

iv) SQRT

10. Rewrite the following function as a STATEMENT FUNCTION.

A. REAL FUNCTION AREA(CIRCUM)
 REAL CIRCUM, RADIUS, PI
 PI = 3.14159
 RADIUS = CIRCUM/(2.0*PI)
 AREA = RADIUS **2*PI
 RETURN
 END

B. REAL FUNCTION X (A, B, C, D)
 Y = A ** 2 - B ** 2
 Z = C ** 3 + 1 / D ** 2
 X = Y / Z
 RETURN
 END

C. REAL FUNCTION AREA (R)
 AREA = 2 * 3.14 * R ** 2
 RETURN
 END

11. Write a function subprogram COST that computes the cost of postage according to

the following: SR 0.50 for weight of less than an ounce, SR 0.10 for each additional

ounce, plus a SR 50 extra charge if the customer wants fast delivery. The arguments

to the function are the weight of the package and a logical variable FAST indicating

fast delivery. Write a main program to test the function.

12. Write an function subprogram that takes the three sides of a triangle and returns the

type of the triangle. For a right triangle, then the function returns an integer value 1;

for an isosceles triangle, the value returned is 2; for an equilateral triangle, the

function returns a value 3; otherwise, a value 0 is returned.

13. Which of the following functions return the maximum of the integers K, L and M?

I. INTEGER FUNCTION F1(K,L,M)
 INTEGER K, L, M
 F = K
 IF (F .LT. L) F = L
 IF (F .LT. M) F = M
 F1 = F
 RETURN
 END

fifth Exercises 76

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

II. INTEGER FUNCTION F2(K,L,M)
 INTEGER K, L, M
 IF (K .GE. L .AND. K .GE. M) THEN
 F2 = K
 ELSEIF (L .GE. M) THEN
 F2 = L
 ELSE
 F2 = M
 ENDIF
 RETURN
 END

III. INTEGER FUNCTION F3(K,L,M)
 LOGICAL F4
 INTEGER K, L, M
 F4(K,L,M) = K .GE. L .AND. K .GE. M

 IF (F4(K,L,M)) F3 = K
 IF (F4(L,K,M)) F3 = L
 IF (F4(M,L,K)) F3 = M
 RETURN
 END

14. Given the following program which has some errors.

 INTEGER FUNCTION TEST (A, B)
 X = (A + B) ** 2
 Y = B * 2
 RETURN
 END
 REAL TEST
 PRINT*, TEST(1, 2, 3)
 END

Which of the following statements is correct?

I. Function name TEST is of type integer in function description but is a real in the

calling program.

II. Function name TEST is not assigned a value in the function description.

III. Argument types do not match.

IV. The number of actual arguments is more than the number of dummy arguments.

15. Rewrite the following subroutine as a function subprogram.

 SUBROUTINE DIVIDE (M, N, FACTOR)
 LOGICAL FACTOR
 INTEGER M, N
 IF (N / M * M .EQ. N) THEN
 FACTOR = .TRUE.
 ELSE
 FACTOR = .FALSE.
 ENDIF
 RETURN
 END

16. Rewrite the following function subprogram as a subroutine. (Hint: The statement

function is part of the function subprogram).

fifth Solutions to Exercises 77

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 REAL FUNCTION SO (A, B, C)
 REAL A, B, C, FUN
 FUN (A, B, C) = A / B + C
 SO = FUN (A, B, C) / FUN (C, B, A)
 RETURN
 END

17. Write a subroutine that takes three arguments A, B, C and returns the arguments in

increasing order. Write a main program to test the subroutine.

18. Write a subroutine that takes a numeric grade of a student and prints the letter grade

based on the following policy:

numeric grade letter grade

above 90 A

above 80 B

above 70 C

above 60 D

below 61 F

19. Write a subroutine that computes and returns the diameter, area, and the

circumference of a circle given its radius.

20. Write the functions in problems 4, 5, 6, and 7 as subroutines.

21. Write a subroutine subprogram that takes the three sides of a triangle and prints one

of the following types of the triangle: right triangle, isosceles triangle, or equilateral

triangle.

4.8 Solutions to Exercises

Ans 1.

Statements 5, 7, 9 and 10 are FALSE.

Ans 2.

 8 9 3 25

 0.0

 1.0

 NO

 2 1

 53.0000000

 44

 30

 7 11 21 5

 90

 9

 5.0000000

fifth Solutions to Exercises 78

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 9

 11

 9.0000000 64.0000000

 90

 1 2 3

 2 3 3

 1

 12

 0 3 3.0

 2 3 0

 -4.0 5.0

 1

 5.0 8.0

 8 36

 3 9

 4 3

 4 3

 9.0 5.0 T

 2.0 -1.0 3.0

 3 6 T

 3 5

 17 23 31

 17 23 31

 9.5000000 13 4

 9.5000000 13 24

 32.0000000 4.0000000 2.0000000

 -2 3

Ans 3.

b and c

fifth Solutions to Exercises 79

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 4.

 LOGICAL FUNCTION FACTOR(AR1, AR2)
 INTEGER AR1, AR2
 IF (AR2 / AR1 * AR1 .EQ. AR2)THEN
 FACTOR = .TRUE.
 ELSE
 FACTOR = .FALSE.
 ENDIF
 RETURN
 END
C MAIN PROGRAM
 LOGICAL FACTOR
 INTEGER AR1, AR2
 READ*, AR1, AR2
 PRINT*, FACTOR(AR1, AR2)
 END

Ans 5.

 INTEGER N, REV
 READ*, N
 IF (N .GE. 100 .AND. N .LT. 1000)THEN
 PRINT*, REV (N)
 ELSE
 PRINT*, 'OUT OF RANGE'
 ENDIF
 END

 INTEGER FUNCTION REV(N)
 INTEGER N, K, J, M
 K = N / 100
 N = N - K * 100
 J = N / 10

 M = N - J * 100
 REV = M * 100 + J * 10 + K
 RETURN
 END

Ans 6.

 REAL FUNCTION AREA (D)
 REAL D, R
 R = D / 2
 AREA = R ** 2 * 3.14
 RETURN
 END
 REAL D
 READ*, D
 PRINT*, AREA(D)
 END

fifth Solutions to Exercises 80

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 7.

 LOGICAL FUNCTION TEST(A, B, C)
 REAL A, B, C
 TEST = A .NE.0 .AND. B .NE. 0 .AND. C .NE. 0
 RETURN
 END
C MAIN PROGRAM
 LOGICAL TEST
 REAL A, B, C
 READ*, A, B, C
 IF (TEST(A, B, C)) THEN
 PRINT*, 'ALL NUMBERS ARE NON-ZERO'
 ELSE
 PRINT*, 'NOT ALL NUMBERS ARE NON-ZERO'
 ENDIF
 END

Ans 8.

 INTEGER AR1, AR2, REV
 LOGICAL FACTOR
 REAL AREA
 FACTOR(AR1, AR2) = AR2 / AR1 * AR1 .EQ.AR2
 REV(N) = (N - N / 10 * 10) * 100 +

 *(N - N / 100 * 100) / 10 * 10 + N / 100

 AREA (D) = (D / 2) ** 2 * 3.14
 TEST (A, B, C) = A.NE.0 .AND. B.NE.0 .AND. C.NE.0

Ans 9.

i

Ans 10.

A. REAL AREA
 AREA(CIRCUM) = 3.14159 * (CIRCUM/(2.0 * 3.14159)) ** 2

B. REAL X

 X(A, B, C, D) = (A ** 2 - B ** 2) / (C ** 3 + 1 / D ** 2)

C. REAL AREA

 AREA(R) = 2 * 3.14 * R ** 2

Ans 11.

 REAL FUNCTION COST (WEIGHT, FAST)
 LOGICAL FAST
 IF (WEIGHT .LT. 1) THEN
 COST = 0.5
 ELSE
 COST = 0.5 + (WEIGHT - 1) * 0.10
 ENDIF
 IF (FAST) COST = COST + 50
 RETURN
 END
 LOGICAL FAST
 READ* , WEIGHT, FAST
 PRINT*, COST(WEIGHT, FAST)
 END

fifth Solutions to Exercises 81

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 12.

 INTEGER FUNCTION TTYPE(A, B, C)
 REAL A, B, C
C ASSUMING C IS THE LARGEST SIDE
 IF(SQRT(C) .EQ. SQRT(A + B)) THEN
 TTYPE = 1
 ELSEIF(A .EQ. B .AND. A .EQ. C) THEN
 TTYPE = 3
 ELSEIF(A .EQ. B .OR. B .EQ. C .OR. C .EQ. A) THEN
 TTYPE = 2
 ELSE
 TTYPE = 0
 ENDIF
 RETURN
 END

Ans 13.

 I, II and III.

Ans 14.

I, II, III and IV.

Ans 15.

 LOGICAL FUNCTION FACTOR (M, N)
 INTEGER M, N
 IF (N / M * M .EQ. N) THEN
 FACTOR = .TRUE.
 ELSE
 FACTOR = .FALSE.
 ENDIF
 RETURN
 END

Ans 16.

 SUBROUTINE ANS(A,B,C,SO)
 REAL A, B, C, SO, FUN
 FUN (A, B, C) = A / B + C

 SO = FUN (A, B, C) / FUN (C, B, A)
 RETURN
 END

fifth Solutions to Exercises 82

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 17.

 SUBROUTINE ORDER (A, B, C)
 INTEGER A, B, C, T
 IF (A .GT. B) THEN
 T = A

 A = B
 B = T
 ENDIF
 IF (A .GT. C) THEN
 T = A

 A = C
 C = T
 ENDIF
 IF (B .GT. C) THEN
 T = B

 B = C

 C = T
 ENDIF
 RETURN
 END
 INTEGER A, B, C
 READ* , A, B, C
 CALL ORDER (A, B, C)
 PRINT*, A, B, C
 END

Ans 18.

 SUBROUTINE LGRADE(MARK)
 REAL MARK
 IF(MARK .GE. 0 .AND. MARK .LE. 100) THEN
 IF(MARK .GT. 90) THEN
 PRINT*, 'A'
 ELSEIF(MARK .GT. 80) THEN
 PRINT*, 'B'
 ELSEIF(MARK .GT. 70) THEN
 PRINT*, 'C'
 ELSEIF(MARK .GT. 60) THEN
 PRINT*, 'D'
 ELSE
 PRINT*, 'F'
 ENDIF
 ELSE
 PRINT*, 'MARK OUT OF RANGE'
 ENDIF
 RETURN
 END

Ans 19.

 SUBROUTINE CIRCLE(R, D, A, C)
 REAL R, D, A, C
 D = R / 2
 A = 22.0 / 7.0 * R ** 2
 C = 2 * 22.0 / 7.0 * R
 RETURN
 END

fifth Solutions to Exercises 83

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 20.

of problem 4

 SUBROUTINE FACTOR (AR1, AR2, FLAG)
 INTEGER AR1, AR2
 LOGICAL FLAG
 FLAG = AR2 / AR1 * AR1 .EQ. AR2
 RETURN
 END

of problem 5.

 SUBROUTINE FIND (N, REV)
 INTEGER N, REV
 M = N / 100
 N = N - M * 100

 J = N / 10

 K = N - J * 10
 REV = K * 100 + J * 10 + M
 RETURN
 END

of problem 6.

 SUBROUTINE CIRCLE(D, AREA)
 R = D / 2
 AREA = 22.0 / 7.0 * R ** 2
 RETURN
 END

of problem 7.

 SUBROUTINE CHECK (A, B, C, TEST)
 LOGICAL TEST
 TEST = A .NE. 0 .AND. B .NE. 0 .AND. C .NE. 0
 RETURN
 END

Ans 21.

 SUBROUTINE TTYPE (A, B, C)
 REAL A, B, C
C ASSUMING C IS THE LARGEST SIDE
 IF(SQRT(C) .EQ. SQRT(A + B)) THEN
 PRINT* , 'RIGHT TRIANGLE'
 ELSEIF(A .EQ. B .AND. A .EQ. C) THEN
 PRINT* , 'EQUILATERAL TRIANGLE'
 ELSEIF(A.EQ.B .OR. B.EQ.C .OR. C.EQ.A)THEN
 PRINT* , 'ISOSCELES TRIANGLE'
 ELSE
 PRINT* , 'NONE OF THE OTHER TYPES'
 ENDIF
 RETURN
 END

84

fifth Solutions to Exercises 85

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

5 REPETITION

While writing a program, it may be necessary to execute a statement or a group of

statements repeatedly. Repetition is supported in FORTRAN through two repetition

constructs, namely, the DO and the WHILE constructs. A repetition construct is also

known as a loop.

In a repetition construct, a group of statements, which are executed repeatedly, is

called the loop body. A single execution of the loop is called an iteration. Every

repetition construct must terminate after a finite number of iterations. The termination

of the loop is decided through what is known as the termination condition. A decision is

made whether to execute the loop for another iteration through the termination

condition. In the case of a DO loop, the number of iterations is known before the loop is

executed; the termination condition checks whether this number of iterations have been

executed. In the case of a WHILE loop, such a decision is made in every iteration.

Repetition constructs are very useful and extensively used in solving a significant

number of programming problems. Let us consider the following example as an

illustration of such constructs.

Example : Average Computation: Assume that we were asked to write a FORTRAN

program that reads the grades of 8 students in an exam. The program is to compute and

print the average of the grades. Without repetition, the following program may be

considered as a solution:

Solution:

 REAL X1, X2, X3, X4, X5, X6, X7, X8
 REAL SUM, AVG
 READ*, X1
 READ*, X2
 READ*, X3
 READ*, X4
 READ*, X5
 READ*, X6
 READ*, X7
 READ*, X8
 SUM = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8
 AVG = SUM / 8.0
 PRINT*, AVG
 END

The variable SUM is a real variable in which we store the summation of the grades. The

statements are considerably long for just 8 students. Imagine the size of such statements

fifth The DO Loop 86

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

when the number of students is 100. It is highly inefficient to use 100 different variable

names.

From the example above, let us try to extract the statements where repetition occurs.

The reading and assignment statements are clearly such statements. We can do the

reading and addition in these statements, individually, for each grade. The following

repetitive segment can be used instead of the long read and assignment statements :

 SUM = 0

 REPEAT THE FOLLOWING STATEMENTS 8 TIMES
 READ*, X
 SUM = SUM + X

In each iteration, one grade is read and then added to the previous grades. In the first

iteration, however, there are no previous grades. Therefore, SUM is initialized to zero,

meaning that the summation of the grades is zero, before any grade is read.

This repetitive solution is more efficient since it can be used for any number of

students. By reading the number of students N, the repetition construct above, can be

changed, to find the sum of the grades of N students, as follows :

 SUM = 0
 READ*, N
 REPEAT THE FOLLOWING STATEMENTS N TIMES
 READ*, X
 SUM = SUM + X

The repetition construct above is not written in the FORTRAN language. To implement

this construct in FORTRAN, we can use two types of loops: the DO Loop and the

WHILE loop.

5.1 The DO Loop

One very basic feature of the DO loop repetitive construct is that the number of

iterations (the number of times the loop is executed) is known (computed) before the

loop execution begins. The general form of the DO loop is:

 DO N index = initial, limit, increment
 BLOCK OF FORTRAN STATEMENTS
N CONTINUE

The CONTINUE statement indicates the end of the DO loop.

The number of times (iterations) the loop is executed is computed as follows :

Number of times a Do loop is Executed

limit initial

increment
1

The detailed logic of the DO loop is as follows:

 If the increment is positive, the value of the initial must be less than or equal to

the value of the limit. If the increment is negative, the value of the initial must

be greater than or equal to the value of the limit. Otherwise, the loop will not be

executed. If the values of the initial and the limit are equal, the loop executes

only once.

 In the first iteration, the index of the loop has the value of initial .

 Once the CONTINUE statement is reached, the index is increased or decreased

by the increment and the execution of the next iteration starts. Before each

fifth The DO Loop 87

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

iteration, the index is checked to see if it has reached the limit. If the index

reaches the limit, the loop iterations stop. Otherwise, the next iteration begins.

Consider the following example as an illustration of the DO loop :

 DO 15 K = 1, 5, 2
 PRINT*, K
15 CONTINUE

The loop above is executed
5 1

2
1 3

 times. Thus, the values index K takes during

the execution of the loop are 1, 3, and 5. Note that the value of K increments by 2 in

each iteration. In the beginning, we make sure that the initial is less than the limit since

the value of the increment is positive. The execution of the loop begins and the value of

K, which is 1, is printed. The CONTINUE statement returns the control to the DO

statement and the execution of the loop takes place for the second time with the value of

K as 3. This continues for the third time with K as 5. Once this iteration is over, the

control goes back and the index K gets incremented again to 7, which is more than the

limit. The execution of the loop stops and control transfers to the statement following

the CONTINUE statement. Note that the value of K outside the loop is 7.

The following rules apply to DO loops:

 The index of a DO loop must be a variable of either INTEGER or REAL

types.

 The parameters of the loop, namely, initial, limit, and increment can be

expressions of either INTEGER or REAL types. Although it depends on the

nature of the problem being solved, it is recommended that the type of the

parameters match the type of the index.

 The value of the DO loop index cannot be modified inside the loop. Any

attempt to modify the index within the loop will cause an error.

 The increment must not be zero, otherwise an error occurs.

 If the index is an integer variable then the values of the parameters of the DO

loop will be truncated to integer values before execution starts.

 The value of the index after the execution of the loop is either the value that has

been incremented and found to exceed the limit (for a positive increment) or the

value that has been decremented and found to be less than the limit (for a

negative increment).

 It is not allowed to branch into a DO loop. Entering the DO loop has to be

through its DO statement. It is possible to branch out of a DO loop before all

the iterations are completed. This type of branching must not be used unless

necessary.

 It is possible to have a DO loop without the CONTINUE statement. The

statement number, which is given to the CONTINUE statement, can be given

to the last FORTRAN statement in the loop, except in the case when the last

statement is either an IF, GOTO, RETURN, STOP or another DO statement.

 In the DO loop construct, in the absence of the increment, the default increment

is +1 or +1.0 depending on the type of the index.

fifth The DO Loop 88

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 In the case when the increment is positive but the initial is greater than the limit,

a zero-trip DO loop occurs. That is, the loop executes zero times. The same

happens when the increment is negative and the initial is less than the limit.

Note that a zero-trip DO loop is not an error.

 The same continue statement number can be used in both a subprogram and the

main program invoking the subprogram. This is allowed because subprograms

are considered separate programs.

 The parameters of the loop are evaluated before the loop execution begins.

Once evaluated, changing their values will not affect the executing of the loop.

For an example, consider the following segment. Changing DO loop parameters

inside the loop should be avoided while writing application programs.

 REAL X, Y
 Y = 4.0
 DO 43 X = 0.0, Y, 1.5
 PRINT*, X
 Y = Y + 1.0
 PRINT*, Y
43 CONTINUE

In the above loop, the value of Y which corresponds to the limit in the DO loop,

starts with 4. Therefore, and according to the rule we defined earlier, this loop is

executed
4 0 0 0

15
1 3

. .

.

 times. The values of the parameters (initial, limit, and

increment) are set at the beginning of the loop and they never change for any iteration of

the loop. Although the value of Y changes in each iteration within the loop, the value of

the limit does not change. The following examples illustrate the ideas explained above:

5.1.1 Examples on DO loops

Example 1: Consider the following program.

 DO 124 M = 1, 100, 0.5
 PRINT*, M
124 CONTINUE
 PRINT*, M
 END

In the above program, the value of the increment is 0.5. When this value is added and

assigned to the index M, which is an integer, the fraction part gets truncated. This

means that the increment is 0 which causes an error.

Example 2: The Factorial: Write a FORTRAN program that reads an integer number

M. The program then computes and prints the factorial of M.

fifth Nested DO Loops 89

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER M, TERM, FACT
 READ*, M
 IF (M.GE.0) THEN
 FACT = 1

 TERM = M
 DO 100 M = TERM, 2, -1
 IF (TERM.GT.1) THEN
 FACT = FACT * TERM
100 CONTINUE
 PRINT*,'FACTORIAL OF ', M, ' IS ', FACT
 ELSE
 PRINT*, 'NO FACTORIAL FOR NEGATIVES'
 ENDIF
 END

To compute the factorial of 3, for example, we have to perform the following

multiplication: 3 * 2 * 1. Notice that the terms decrease by 1 and stop when the value

reaches 1. Therefore, the header of the DO loop forces the repetition to stop when

TERM, which represents the number of terms, reaches the value 1.

5.2 Nested DO Loops

DO loops can be nested, that is you may have a DO loop inside another DO loop.

However, one must start the inner loop after starting the outer loop and end the inner

loop before ending the outer loop. It is allowed to have as many levels of nesting as one

wishes. The constraint here is that inner loops must finish before outer ones and the

indexes of the nested loops must be different. The following section presents some

examples of nested DO loops.

5.2.1 Example on Nested DO loops

Example 1: Nested DO Loops: Consider the following program.

 DO 111 M = 1, 2
 DO 122 J = 1, 6 , 2
 PRINT*, M, J
122 CONTINUE
111 CONTINUE
 END

The output of the above program is:
1 1
1 3
1 5
2 1
2 3
2 5

Example 2: The above program can be rewritten using one CONTINUE statement as

follows:.

 DO 111 M = 1, 2
 DO 111 J = 1, 6 , 2
 PRINT*, M, J
111 CONTINUE
 END

fifth The WHILE Loop 90

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice that both do loops has the same label number and the same CONTINUE

statement.

Example 3: The above program can be rewritten without any CONTINUE statement as

follows:

 DO 111 M = 1, 2
 DO 111 J = 1, 6 , 2
111 PRINT*, M, J
 END

Notice that the label of the do loop will be attached to the last statement in the do loop.

5.3 The WHILE Loop

The informal representation of the WHILE loop is as follows :
 WHILE condition EXECUTE THE FOLLOWING

 block of statementS.

In this construct, the condition is checked before executing the block of statements. The

block of statements is executed only if the condition, which is a logical expression,

evaluates to a true value. At the end of each iteration, the control returns to the

beginning of the loop where the condition is checked again. Depending on the value of

the condition, the decision to continue for another iteration is made. This means that the

number of iterations the WHILE loop makes depends on the condition of the loop and

could not always be computed before the execution of the loop starts. This is the main

difference between WHILE and DO repetition constructs.

Unlike other programming languages such as PASCAL and C, standard FORTRAN

does not have an explicit WHILE statement for repetition. Instead, it is built from the

IF and the GOTO statements.

In FORTRAN, the IF-THEN construct is used to perform the test at the beginning of

the loop. Consider an IF statement, which has the following structure :

 IF (condition) THEN

 block of statements
 ENDIF

If the condition is .TRUE., the block of statements is executed once. For the next

iteration, since we need to go to the beginning of the IF statement, we require the

GOTO statement. It has the following general form :
 GOTO statement number

A GOTO statement transfers control to the statement that has the given statement

number. Using the IF and the GOTO statements, the general form of the WHILE loop

is as follows :

n IF (condition) THEN
 block of statements
 GOTO n
 ENDIF

n is a positive integer constant up to 5 digits and therefore, ranges from 1 to 99999. It is

the label of the IF statement and must be placed in columns 1 through 5.

The execution of the loop starts if the condition evaluates to a .TRUE. value. Once

the loop iterations begin, the condition must be ultimately changed to a .FALSE. value,

fifth The WHILE Loop 91

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

so that the loop stops after a finite number of iterations. Otherwise, the loop never stops

resulting in what is known as the infinite loop. In the following section, we elaborate

more on the WHILE loop.

5.3.1 Examples on WHILE Loops

Example 1: Computation of the Average: Write a FORTRAN program that reads the

grades of 100 students in a course. The program then computes and prints the average

of the grades.

Solution:

 REAL X, AVG, SUM
 INTEGER K
 K = 0
 SUM = 0.0

25 IF (K.LT.100) THEN
 READ*, X
 K = K + 1
 SUM = SUM + X
 GOTO 25
 ENDIF
 AVG = SUM / K
 PRINT*, AVG
 END

Note that the variable K starts at 0. The value of K is incremented after the reading of a

grade. The IF condition presents the loop from reading any new grades once the 100th

grade is read. Reading the 100th grade causes K to be incremented to the value of 100

as well. Therefore, when the condition is checked in the next iteration, it becomes

.FALSE. and the loop stops.

In each iteration, the value of the variable GRADE is added to the variable SUM.

After the loop, the average is computed by dividing the variable SUM by the variable K.

Example 2: The Factorial: The problem is the same as the one discussed in Example 2

of Section 5.2. In this context, however, we will solve it using a WHILE loop.

Solution:

 INTEGER M, TERM, FACT
 READ*, M
 IF (M.GE.0) THEN
 FACT = 1
 TERM = M
3 IF (TERM.GT.1) THEN
 FACT = FACT *TERM
 TERM =TERM - 1

 GOTO 3
 ENDIF
 PRINT*,'FACTORIAL OF ', M, ' IS ', FACT
 ELSE
 PRINT*, 'NO FACTORIAL FOR NEGATIVES'
 ENDIF
 END

Note the similarities between both solutions. The WHILE loop starts from M (the value

we would like to compute the factorial of) and the condition of the loop makes sure that

the loop will only stop when TERM reaches the value 1.

fifth Nested WHILE Loops 92

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 3: Classification of Boxers: Write a FORTRAN program that reads the

weights of boxers. Each weight is given on a separate line of input. The boxer is

classified according to the following criteria: if the weight is less than or equal to 65

kilograms, the boxer is light-weight; if the weight is between 65 and 85 kilograms, the

boxer is middle-weight and if the weight is more than or equal to 85, the boxer is a

heavy-weight. The program prints a proper message according to this classification for

a number of boxers by reading their weights repeatedly from the input. This repetitive

process of reading and classification stops when a weight of -1.0 is read.

Solution:

 REAL WEIGHT
 READ*, WEIGHT
11 IF (WEIGHT.NE.-1.0) THEN
 IF (WEIGHT.LT.0.OR.WEIGHT.GE.400) THEN
 PRINT*, ' WEIGHT IS OUT OF RANGE '
 ELSEIF (WEIGHT.LE.65) THEN
 PRINT*, ' LIGHT-WEIGHT '
 ELSEIF (WEIGHT.LT.85) THEN
 PRINT*, ' MIDDLE-WEIGHT '
 ELSE
 PRINT*, ' HEAVY-WEIGHT '
 ENDIF
 READ*, WEIGHT
 GOTO 11
 ENDIF
 END

Note that in this example, the condition that stops the iterations of the loop depends on

the READ statement. The execution of the loop stops when a value of -1.0 is read. This

value is called the end marker or the sentinel, since it marks the end of the input. A

sentinel must be chosen from outside the range of the possible input values.

5.4 Nested WHILE Loops

WHILE loops may be nested, that is you can put a WHILE loop inside another

WHILE loop. However, one must start the inner loop after starting the outer loop and

end the inner loop before ending the outer loop for a logically correct nesting. (The

following example is equivalent to the nested DO loop example given earlier.)

Example: Consider the following program.

 M = 1
22 IF(M .LE. 2) THEN
 J = 1
11 IF (J .LE. 6) THEN
 PRINT*, M, J
 J = J + 2
 GOTO 11
 ENDIF
 M = M + 1
 GOTO 22
 ENDIF
 END

The output of the above program is:
1 1
1 3
1 5

sixth Examples on DO and WHILE Loops 93

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2 1
2 3
2 5

There are two nested WHILE loops in the above program. The outer loop is controlled

by the variable M. The inner loop is controlled by the variable J. For each value of the

variable M, the inner loop variable J takes the values 1, 3 and 5.

5.5 Examples on DO and WHILE Loops

Example 1: Evaluation of Series: Write a FORTRAN program that evaluates the

following series to the 7th term.

i

i

N

3
1

(Summation of base 3 to the powers from 1 to N. Assume N has the value 7)

Solution:

 INTEGER SUM
 SUM = 0
 DO 11 K = 1, 7
 SUM = SUM + 3 ** K
11 CONTINUE
 PRINT*, SUM
 END

Example 2: Alternating Sequences/ Series: Alternating sequences, or series, are those

which have terms alternating their signs from positive to negative. In this example, we

find the sum of an alternating series.

 Question: Write a FORTRAN program that evaluates the following series to the 100th

term.

1 - 3 + 5 - 7 + 9 - 11 + 13 - 15 + 17 - 19 + ...

Solution:

It is obvious that the terms differ by 2 and start at the value of 1.
 INTEGER SUM, TERM,NTERM
 SUM = 0
 TERM = 1
 DO 10 NTERM = 1, 100
 SUM = SUM + (-1) ** (NTERM + 1) * TERM

 TERM = TERM + 2
10 CONTINUE
 PRINT*, SUM
 END

Notice the summation statement inside the loop. The expression (-1) ** (NTERM + 1)

is positive when NTERM equals 1, that is for the first term. Then, it becomes negative

for the second term since NTERM + 1 is 3 and so on.

Example 3: Series Summation using a WHILE loop: Question: Write a FORTRAN

program which calculates the sum of the following series :

1

2

2

3

3

4

4

5

99

100
 L

sixth Examples on DO and WHILE Loops 94

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 REAL N, SUM
 N = 1
 SUM = 0
10 IF (N.LE.99) THEN
 SUM = SUM + N / (N + 1)

 N = N + 1
 GOTO 10
 ENDIF
 PRINT*, SUM
 END

In the above program, if N is not declared as REAL, the expression N/(N+1), in the

summation inside the loop, will always compute to zero.

Example 4: Conversion of a WHILE loop to a DO loop: Convert the following WHILE

loop into a DO loop.

 REAL X, AVG, SUM
 INTEGER K
 K = 0

 SUM = 0.0
25 IF (K.LT.100) THEN
 READ*, X
 K = K + 1

 SUM = SUM + X
 GOTO 25
 ENDIF
 AVG = SUM / K
 PRINT*, AVG
 END

In the WHILE loop, K starts with the value of 0, and within the loop it is incremented

by 1 in each iteration. The termination condition is that the value of K must exceed 99.

In the equivalent program using a DO loop, K starts at 0 and stops at 99 and gets

incremented by 1 in each iteration.

Solution:

The equivalent program using a DO loop is as follows:

 REAL X, AVG, SUM

 INTEGER K
 SUM = 0.0
 DO 25 K = 0, 99, 1
 READ*, X
 SUM = SUM + X
 25 CONTINUE
 AVG = SUM / 100

 PRINT*, AVG
 END

An important point to note in this example is the way the average is computed. The

statement that computes the average divides the summation of the grades SUM by 100.

Note that the value of the K is 100 because the loop stops when the value of K exceeds

99. Keeping in mind that the increment is 1, the value of K after the loop terminates is

100. However, it is not recommended to use the value of the index outside the DO loop.

It is also important to note that any other parameters such as:

sixth Implied Loops 95

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 DO 25 K = 200, 101, -1

would also have the same effect. Note that the variable K exits the loop with the value

100 in this case as well.

It is not always possible to convert a WHILE loop into a DO loop. As an example,

consider the WHILE loop in the Classification of Boxers example. There, we cannot

accomplish the conversion because the number of times the WHILE loop gets executed

is not known. It depends on the number of data values before the end marker.

5.6 Implied Loops

Implied loops are only used in READ and PRINT statements. The implied loop is

written in the following manner :
 READ*,(list of variables, index = initial, limit, increment)
 PRINT*,(list of expressions, index = initial, limit, increment)

As in the case of explicit DO loops, the index must be either an integer or real

expression. The variables in the READ statement can be of any type including array

elements. The expressions in the PRINT statement can be of any type as well. All the

rules that apply to DO loop parameters also apply to implied loop parameters. Usage of

implied loops is given in the following examples :

Example 1: Printing values from 100 to 87: The following segment prints the integer

values from 100 down to 87 in a single line.

 PRINT*, (K, K = 100 , 87 , -1)

Output:
100 99 98 97 96 95 94 93 92 91 90 89 88 87

Notice that the increment is -1, which means that the value of K decreases from 100 to

87. In each iteration, the value of K is printed. The value of K is printed
87 100

1
1 14

 times. Since K is the index of the loop, the value printed here is the

value of the index, which varies in each iteration. Consider the following explicit DO

loop version of the implied loop :

 DO 60 K = 100, 87 , -1
 PRINT*, K
60 CONTINUE

Output:
100

 99
 98

...

...

...
 87

The two loops are equivalent except in terms of the shape of the output. In the implied

loop version, the output will be printed on one line. In the explicit DO loop version, the

output will be printed as one value on each line.

Example 2: Printing more than one value in each iteration of an implied loop: The

following segment prints a percentage sign followed by a + sign three times :

sixth Repetition Constructs in Subprograms 96

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 PRINT*, ('%' , '+' , M = 1 , 3)

This produces the following output:
%+%+%+

Notice that the parenthesis encloses both the % and the + signs, which means they both

have to be printed in every iteration the loop makes.

Example 3: Nested Implied Loops: An implied loop may be nested either in another

implied loop or in an explicit DO loop. There is no restriction on the number of levels of

nesting. The following segment shows nested implied loops.

 PRINT*, ((K, K = 1 , 5 , 2), L = 1 , 2)

Nested implied loops work in a similar manner as the nested DO loops. One very

important point to note here is the double parenthesis before the K in the implied

version. It means that the inner loop with index variable K is enclosed within the outer

one with index variable L. The L loop is executed
2 1

1
1 2

 times. The K loop forces

the value of K to be printed
5 1

2
1 3

 iterations. However, since the K loop is nested

inside the L loop, the K loop is executed 3 times in each iteration of the L loop. Thus, K

is printed 6 times. Therefore, the output of the implied version is:
1 3 5 1 3 5

5.7 Repetition Constructs in Subprograms

Subprograms in FORTRAN are considered separate programs during compilation.

Therefore, repetition constructs in subprograms are given the same treatment as in

programs. The following is an example that shows how repetition is used in

subprograms.

Example: Count of Integers in some Range that are Divisible by a given Value: Write a

function subprogram that receives three integers as input. The first and second input

integers make the range of values in which the function will conduct the search. The

function searches for the integers in that range that are divisible by the third input

integer. The function returns the count of such integers to the main program. The main

program reads five lines of input. Each line consists of three integers. After each read,

the main program calls the function, passes the three integers to it and receives the

output from it and prints that output with a proper message :

sixth Exercises 97

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER K, L, M, COUNT, J, N
 DO 10 J = 1 , 5
 READ*, K, L, M
 N = COUNT(K , L , M)
 PRINT*, 'COUNT OF INTEGERS BETWEEN',K,'AND', L
 PRINT*, 'THAT ARE DIVISIBLE BY', M, 'IS', N
 PRINT*
10 CONTINUE
 END
 INTEGER FUNCTION COUNT(K , L , M)
 INTEGER K, L, M, INCR, NUM, J
 INCR = 1

 NUM = 0
 IF (L .LT. K) INCR = -1
 DO 10 J = K, L, INCR
 IF (MOD(J , M) .EQ. 0) NUM = NUM + 1
10 CONTINUE
 COUNT = NUM
 RETURN
 END

If we use the following input:
2 34 2

-15 -30 5
70 32 7

0 20 4
-10 10 10

The typical output would be as follows:
COUNT OF INTEGERS BETWEEN 2 AND 34

THAT ARE DIVISIBLE BY 2 IS 12

COUNT OF INTEGERS BETWEEN -15 AND -30
THAT ARE DIVISIBLE BY 5 IS 4

COUNT OF INTEGERS BETWEEN 70 AND 32
THAT ARE DIVISIBLE BY 7 IS 6

COUNT OF INTEGERS BETWEEN 0 AND 20
THAT ARE DIVISIBLE BY 4 IS 6

COUNT OF INTEGERS BETWEEN -10 AND 10
THAT ARE DIVISIBLE BY 10 IS 3

Remember what we said about the subprogram being a separate entity from the main

program invoking it. Accordingly, note the following in the above example:

 It is allowed to use the same statement number in the main program and

subprograms of the same file. Notice the statement number 10 in both the main

program and the function subprogram

 It is also allowed to use the same variable name as index of DO loops in the

main program and the subprogram. Notice the variable J in the above

5.8 Exercises

1. What will be printed by the following programs?

sixth Exercises 98

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

1. LOGICAL FUNCTION PRIME(K)
 INTEGER N, K

 PRIME = .TRUE.

 DO 10 N = 2, K / 2
 IF (MOD(K , N) .EQ. 0) THEN
 PRIME = .FALSE.

 ENDIF

10 CONTINUE

 RETURN

 END

 LOGICAL PRIME

 PRINT*, PRIME(5), PRIME(8)
 END

2. INTEGER FUNCTION FACT(K)
 INTEGER K,L
 FACT = 1
 DO 10 L = 2 , K
 FACT = FACT * L
10 CONTINUE
 RETURN
 END
 INTEGER FUNCTION COMB(N , M)
 INTEGER FACT
 IF (N .GT.M) THEN
 COMB = FACT(N) / (FACT(M) * FACT(N-M))
 ELSE
 COMB = 0
 ENDIF
 RETURN
 END
 INTEGER COMB
 PRINT*, COMB(4 , 2)
 END

3. INTEGER K, M, N
 N = 0

 DO 10 K = -5 , 5

 N = N + 2

 DO 20 M = 3 , 1

 N = N + 3

20 CONTINUE

 N = N + 1

10 CONTINUE

 PRINT*, N
 END

sixth Exercises 99

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4. INTEGER ITOT, N
 READ*, N

 ITOT = 1

10 IF (N .NE. 0) THEN

 ITOT = ITOT * N

 READ*, N

 GOTO 10

 ENDIF

 READ*, N

20 IF (N .NE. 0) THEN

 ITOT = ITOT * N

 READ*, N

 GOTO 20

 ENDIF

 PRINT*,ITOT
 END

Assume the input is
2

0
3

0
4

5. INTEGER FUNCTION CALC(A,B)
 INTEGER A,B,R, K

 R = 1

 DO 10 K=1,B

 R = R*A

10 CONTINUE

 CALC = R

 RETURN

 END

 INTEGER CALC

 READ*,M,N

 PRINT*,CALC(M,N)
 END

Assume the input is
2 5

6. INTEGER KK, J, K
 KK = 0

2 IF (KK.LE.0) THEN
 READ*, J , K
 KK = J - K
 GOTO 2
 ENDIF
 PRINT*,KK,J,K
 END

Assume the input is
2 3

-1 2
3 3

sixth Exercises 100

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4 -3

2 5
4 3

7. INTEGER K, J

 K = 2
25 IF (K.GT.0) THEN
 DO 15 J = K, 3, 2
 PRINT*, K, J
15 CONTINUE
 K = K - 1
 GOTO 25
 ENDIF
 END

8. INTEGER N, C
 LOGICAL FLAG
 READ*, N
 FLAG = .TRUE.

 C = N ** 2
22 IF (FLAG) THEN
 C = (C + N) / 2
 FLAG = C.NE.N
 PRINT*, C
 GOTO 22
 ENDIF
 END

Assume the input is
4

9. INTEGER N, K
 READ*, N
 K = SQRT(REAL(N))
33 IF (K*K .LT. N) THEN
 K = K + 1
 GOTO 33
 ENDIF
 PRINT*, K*K
 END

Assume the input is
 6

10. INTEGER J, K
 DO 10 K = 1,2
 PRINT*, K
 DO 10 J = 1,3
10 PRINT*,K,J
 END

11. INTEGER X, K, M
 M = 4
 DO 100 K = M ,M+2
 X = M + 2
 IF (K.LT.6) THEN
 PRINT*,'HELLO'
 ENDIF
100 CONTINUE
 END

sixth Exercises 101

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

12. INTEGER SUM, K, J, M
 SUM = 0
 DO 1 K = 1,5,2
 DO 2 J = 7,-2,-3
 DO 3 M = 1980,1989,2
 SUM = SUM + 1
3 CONTINUE
2 CONTINUE
1 CONTINUE
 PRINT*,SUM
 END

13. LOGICAL T, F
 INTEGER BACK, FUTURE, K
 BACK = 1
 FUTURE = 100

 T = .TRUE.
 F = .FALSE.
 DO 99 K = BACK,FUTURE,5
 T = (T.AND..NOT.T) .OR. (F.OR..NOT.F)
 F = .NOT.T

 FUTURE = FUTURE*BACK*(-1)
99 CONTINUE
 IF (T) PRINT*, 'DONE'
 IF (F) PRINT*, 'UNDONE'
 END

2. Find the number of iterations of the WHILE-LOOPS in each of the following

programs:

1. INTEGER K, M, J
 K = 80
 M = 5

 J = M-M/K*K
10 IF (J.NE.0) THEN
 PRINT*, J
 J = M-M/K*K

 M = M + 1
 GOTO 10
 ENDIF
 END

2. REAL W
 INTEGER L
 W = 2.0
 L = 5 * W
100 IF (L/W.EQ.((L/4.0)*W)) THEN
 PRINT*, L
 L = L + 10
 GOTO 100
 ENDIF
 END

3. Which of the following program segments causes an infinite loop?

(I) J = 0
25 IF (J.LT.5) THEN
 J = J + 1
 GOTO 25
 ENDIF
 PRINT*, J

sixth Exercises 102

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

II. J = 0
25 IF (J.LT.5) THEN
 J = J + 1
 ENDIF
 GOTO 25
 PRINT*, J

III. X = 2.0

5 X = X + 1
 IF (X.GT.4) X = X + 1
 GOTO 5
 PRINT*, X

IV. M = 2

 K = 1
10 IF (K.LE. M) THEN
20 M = M + 1
 K = K + 2
 GOTO 20
 ENDIF
 GOTO 10

V. X = 1
4 IF (X.GE.1) GOTO 5
5 IF (X.LE.1) GOTO 4

VI. J = 1
33 IF (J.GT.5) THEN
 GOTO 22
 ENDIF
 PRINT*, J
 J = J + 1
 GOTO 33
22 STOP

 4. Convert the following WHILE loops to DO loops :

I. ID = N
10 IF (ID.LE.891234) THEN
 PRINT*, ID
 ID = ID + 10
 GOTO 10
 ENDIF

II. L = 1

 SUM =0
3 IF (L.LE.15) THEN
 J = -L
2 IF (J.LE.0) THEN
 SUM =SUM+J

 J = J + 1
 GOTO 2
 ENDIF
 L = L+3
 GOTO 3
 ENDIF
 PRINT*,SUM

5. What will be printed by the following program :

sixth Exercises 103

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 INTEGER ISUM, K, N
 ISUM = 0
 READ*, N
 DO 6 K = 1,N
 ISUM = ISUM +(-1)**(K-1)
6 CONTINUE
 PRINT*, ISUM
 END

If the input is:

a.
9

b.
8

 c.
51

d.
98

6. The following program segments may or may not have errors. Identify the errors (if

any).

1. INTEGER K, J
 DO 6 K = 1,4
 DO 7 J = K-1,K
 PRINT*, K
6 CONTINUE
7 CONTINUE
 END

2. INTEGER K, J
 K = 10
 J = 20
1 IF (J.GT. K) THEN
 K = K/2
 GOTO 1
 ENDIF
 END

7. Write a FORTRAN 77 program to calculate the following summation:

 1
5

1
1

200
k

k

k

k

8. Write a program that reads the values of two integers M and then prints all the odd

numbers between the two integers.(Note: M may be less than or equal to N or vice-

versa).

9. Write a program that prints all the numbers between two integers M and N which are

divisible by an integer K. The program reads the values of M, N and K.

10. Write a program that prints all the perfect squares between two integers M and N.

Your program should read the values of M and N. (Note: A perfect square is a square

of an integer, example 25 = 5 5)

11. Using nested WHILE loops, print the multiplication table of integers from 1 to 10.

Each multiplication table goes from 1 to 20. Your output should be in the form :

sixth Solutions to Exercises 104

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

1 * 1 = 1

1 * 2 = 2
:
1 * 20 = 20

:
10 * 1 = 10
10 * 2 = 20

:
10 * 20 = 200

12. Rewrite the program in the previous question using nested DO loops.

13. Complete the PRINT statement in the following program to produce the indicated

output.

 DO 1 K = 1,5
 PRINT*,
1 CONTINUE
 END

OUTPUT:
=****

*=***

=
***=*
****=

14. Complete the following program in order to get the required output.

 DO 10 K = 10,___(1)____ ,___(2)___
 PRINT*,(__(3)__, L = __(4)__, K)
10 CONTINUE
 END

The required output is :
5 6 7 8 9 10

5 6 7 8 9
5 6 7 8
5 6 7

5 6
5

5.9 Solutions to Exercises

Ans 1.

 T F

 12

 33

 6

 25

 7 4 -3

 1 0 50

 10

 7

 5

 4

sixth Solutions to Exercises 105

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 9

 1

 1 1

 1 2

 1 3

 2

 2 1

 2 2

 2 3

 HELLO

 HELLO

 60

 DONE

Ans 2.

 1. 76

 2. INFINITE LOOP

Ans 3.

II , III , IV , V

Ans 4.

I)

 DO 10 ID = N , 891234 , 10
 PRINT*, ID
10 CONTINUE

II)

 SUM = 0
 DO 3 L = 1 , 15 , 3
 DO 2 J = -L , 0 , 1
 SUM = SUM + J
2 CONTINUE
3 CONTINUE

Ans 5.

A) 1 B) 0 C) 1 D) 0

Ans 6

1) IMPROPER NESTING OF DO LOOPS

2) INFINITE LOOP

sixth Solutions to Exercises 106

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 7.

 REAL SUM

 INTEGER K

 SUM = 0
 DO 10 K = 1 , 200
 SUM = SUM + (-1) ** K * (REAL(5*K) / (K+1))
10 CONTINUE
 PRINT*, SUM
 END

Ans 8.

 INTEGER M , N , TEMP
 READ*, M , N
 IF(M .LT. N) THEN
 TEMP = N
 N = M
 M = TEMP
 ENDIF
 DO 5 L = M , N
 IF(L/2 * 2 .NE. L) PRINT*,L
5 CONTINUE
 END

Ans 9.

 INTEGER M , N , K , TEMP
 READ*, M , N , K
 IF(M .LT. N) THEN
 TEMP = N
 N = M
 M = TEMP
 ENDIF
 DO 5 L = M , N
 IF(L/K * K .EQ. L) PRINT*,L
5 CONTINUE
 END

Ans 10.

 INTEGER M , N , TEMP
 READ*, M , N
 IF(M .LT. N) THEN
 TEMP = N

 N = M
 M = TEMP
 ENDIF
 DO 5 L = M , N
 IF(INT(SQRT(REAL(L)) ** 2 .EQ. L)) PRINT*,L
5 CONTINUE
 END

sixth Solutions to Exercises 107

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 11.

 INTEGER I, J
 I = 1
10 IF(I .LE. 10) THEN
 J = 1
5 IF(J .LE. 20) THEN
 PRINT*, I, ' * ', J, ' = ', I*J
 J = J + 1
 GO TO 5
 ENDIF
 I = I + 1
 GO TO 10
 ENDIF
 END

Ans 12.

 INTEGER I, J
 DO 10 I = 1 , 10
 DO 10 J = 1 , 20
 PRINT*, I, ' * ', J, ' = ', I*J
10 CONTINUE
 END

Ans 13.

PRINT*, ('*', J = 1, K-1), '=' , ('*', M = 1 , 5-K)

Ans 14.

1) 5 2) -1 3) L 4) 5

108

sixth One-Dimensional Array Declaration 109

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

6 ONE-DIMENSIONAL ARRAYS

It is fairly common in programs to read a large quantity of input data, process the data

and produce the computations as output. Such large amounts of input data cannot be

stored in simple variables. We need bigger data structures to store such data in memory.

For example, consider a problem to compute the average, given the grades of a number

of students as input, and list the grades of those students below average. The grades

must be stored in the memory while reading because, after the average is computed,

they have to be processed again (to list those below average). For a large number of

students, simple variables cannot be used to store the grades. We require structures such

as arrays. In this and the following chapter, we introduce data structures that allow

storage of large amounts of data.

In the previous chapters, we learnt that a variable represents a single location in the

memory. Unlike variables, a one-dimensional array (1-D array) represents a group of

memory locations. Each member of an array is called an element. An element in an

array is accessed by the array name followed by a subscript (also called an index)

enclosed in parentheses. Subscripts are integer constants or expressions that indicate the

location of the element within the array. All elements of an array store the same type of

data. Thus all elements in an integer array will contain integer values. In FORTRAN,

arrays must be declared at the beginning of a program or a subprogram.

6.1 One-Dimensional Array Declaration

Arrays must be declared using a declaration statement. If an integer array is to be

declared, then the INTEGER declaration statement is used. Similarly, for declaring

real, logical or character arrays, the respective declaration statement is used. Before

executing a program, a computer should know the total memory space required by the

program. Each array declaration informs the computer of the amount of memory space

required by that array. Therefore, all arrays must be declared.

Example 1: Declaration of an integer array LIST consisting of 20 elements.

 INTEGER LIST (20)

Example 2: Declaration of a logical array FLAG that consists of 30 elements.

 LOGICAL FLAG (30)

Example 3: Declaration of a character array NAMES that consists of 15 elements with

each element of size 20.

sixth One-Dimensional Array Initialization 110

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 CHARACTER NAMES (15)*20

Example 1, declares an array LIST consisting of 20 elements. The first element has the

subscript 1 and the last element has the subscript 20. We may also declare arrays with

subscript beginning from any integer, positive or negative, other than 1.

Example 4: Declaration of a real array YEAR used to represent rainfall in years 1983

to 1994.

 REAL YEAR (1983 : 1994)

The array YEAR has 12 elements. If an array is declared in the format array_name

(m:n), we have to ensure that n must be greater than m. Also note that both m and n can

be either positive or negative integer as long as n is greater than m.

Example 5 : Declaration of a real array TEMP with subscript ranging from -20 to 20.

 REAL TEMP (-20:20)

A total of 41 elements in this array can be found using the formula n - m + 1 where n is

20 and m is -20.

The declaration statement DIMENSION is also used to declare arrays. This

statement assumes that the type of the array is implicitly defined. The DIMENSION

statement can be combined with an explicit type statement declaring the type of the

array. If an array is declared using the DIMENSION statement, and if the type of the

array is not mentioned, it is decided implicitly by the first character of the array name,

as in the case of undeclared variables.

Example 6 : Declaration of arrays using the DIMENSION statement.

 DIMENSION ALIST(100), KIT(-3:5), XYZ(15)
 INTEGER XYZ
 REAL BLIST(12), KIT

In this example, arrays ALIST, BLIST, and KIT are of type REAL. Array XYZ is of

type INTEGER. Since the type of array ALIST is not specified, it is treated as a real

variable using the default rule for implicit variables.

6.2 One-Dimensional Array Initialization

The purpose of declaring arrays is to specify the number of elements in each array. By

declaring an array, the memory space required by the array is only reserved and not

initialized. Arrays can be filled with data using either the assignment statement or the

READ statement.

6.2.1 Initialization Using the Assignment Statement

The following statements illustrate the initialization of arrays using the assignment

statement, in different ways:

Example 1: Declare a real array LIST consisting of 3 elements. Also initialize each

element of LIST with the value zero.

Solution:

 REAL LIST(3)
 DO 5 K = 1, 3
 LIST(K) = 0.0
5 CONTINUE

sixth One-Dimensional Array Initialization 111

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 2: Declare an integer array POWER2 with subscript ranging from 0 up to 10

and store the powers of 2 from 0 to 10 in the array.

Solution:

 INTEGER POWER2(0:10)
 DO 7 K = 0, 10
 POWER2(K) = 2 ** K
7 CONTINUE

6.2.2 Initialization Using the READ Statement

An array can be read as a whole or in part. To read the whole array, we may use the

name of the array without subscripts. We can read part of an array by specifying

specific elements of the array in the READ statement. We may also use the implied

loop in reading arrays. Implied loops provide an elegant approach to reading arrays of

varying lengths.

The rules that apply in reading simple variables also apply in reading arrays. Each

READ statement requires a new line of input data. If the data in the input line is not

enough, the READ statement ensures that the data is read from the immediately

following input line or lines, until all the elements of the READ statement are read.

Example 1: Read all the elements of an integer array X of size 4. The four input data

values are in a single input data line as follows
10, 20, 30, 40

Solution 1: (Without Array Subscript)

 INTEGER X(4)
 READ*, X

Solution 2: (Using an Implied Loop)

 INTEGER X(4), K
 READ*, (X(K), K = 1, 4)

Both READ statements read all four elements of the array X. However, in both

solutions, only one READ statement is executed. Ideally, the four input data values may

be placed in one input line. If the four values of the input data appear in more than one

input line, then reading continues until all four values are read. The two solutions are

equivalent with a subtle difference. The READ statement in Solution 2 may be used to

read all four elements of the array or fewer than four elements by modifying the implied

loop. In the next example, we will read one input data value per line.

Example 2: Read all the elements of an integer array X of size 4. The four input data

values appear in four input data lines as follows
10

20
30

40

Solution:

 INTEGER X(4), J
 DO 22 J = 1, 4
 READ*, X(J)
22 CONTINUE

sixth One-Dimensional Array Initialization 112

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice the layout of the input data. Since four READ statements are executed in the DO

loop, four input data lines are required each with one data value. The input data for this

example can also be used for the previous example (Example 1) but the input of the

previous example cannot be used for the current one. The next three examples further

illustrate reading of one-dimensional arrays.

Example 3: Read an integer one-dimensional array of size 100.

Solution 1: (Using a WHILE Loop)

 INTEGER A(100), K
 K = 0
66 IF (K.LT.100) THEN
 K = K + 1
 READ*, A(K)
 GOTO 66
 ENDIF

Note that we require 100 lines of input with one data value per line since the READ

statement is executed 100 times.

Solution 2: (Using a DO Loop)

 INTEGER A(100), K
 DO 77 K = 1, 100
 READ*, A(K)
77 CONTINUE

Note again that we require 100 lines of input with one data value per line since the

READ statement is executed 100 times.

Solution 3: (Using an implied Loop)

 INTEGER A(100), K
 READ*, (A(K), K = 1, 100)

Note that we require one line with 100 data values since the READ statement is

executed only once. Even if the input is given in 100 lines with one data value per line,

the implied loop will correctly read the input.

Example 4: Read the first five elements of a logical array PASS of size 20. The input is:
T, F, T, F, F

Solution:

 LOGICAL PASS(20)
 INTEGER K
 READ*, (PASS(K), K = 1, 5)

Example 5: Read the grades of N students into an array SCORE. The value of N is the

first input data value followed by N data values in the next input line. Assume the input

is:
6

55, 45, 37, 99, 67, 58

Solution:

 INTEGER SCORE(100), K, N
 READ*, N
 READ*, (SCORE(K), K = 1, N)

In this example, the value of N is 6 and the six grades in the second input line are stored

as the first six elements of the array SCORE. The rest of the array SCORE is not

sixth Printing One-Dimensional Arrays 113

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

initialized. Note that the value of N may range from 1 to 100 depending on the first data

value in the input. If the input data were given as follows:
4

42, 77, 89, 70

the value of N will be 4 and only four elements of the array SCORE are initialized. We

assume here that the value of N will never go beyond 100 and that there will k+1 data

values in the input where k represents the first data value.

6.3 Printing One-Dimensional Arrays

Just as in the case of reading an array, printing an array without subscripts will produce

the whole array as output. If some elements of the array are not initialized before

printing, question marks appear in the output indicating elements that do not have a

value. Each PRINT statement starts printing in a new line. If the line is not long enough

to print the array, the output is printed in more than one line.

Example : Read an integer array X of size 4 and print:

i. the entire array X in one line;

ii. one element of array X per line; and

iii. array elements greater than 0.

Solution:

 INTEGER X(4), K
 READ*, X
C PRINTING THE ENTIRE ARRAY IN ONE LINE
 PRINT*, 'PRINTING THE ENTIRE ARRAY'
 PRINT*, X
C PRINTING ONE ARRAY ELEMENT PER LINE
 PRINT*, 'PRINTING ONE ARRAY ELEMENT PER LINE'
 DO 33 K = 1, 4
 PRINT*, X(K)
33 CONTINUE
C PRINTING ARRAY ELEMENTS GREATER THAN 0
 PRINT*, 'PRINTING ARRAY ELEMENTS GREATER THAN 0'
 DO 44 K = 1, 4
 IF(X(K) .GT. 0) PRINT*, X(K)
44 CONTINUE
 END

If the input is given as
7, 0, 2, -4

the output of the program is as follows:
PRINTING THE ENTIRE ARRAY

7 0 2 -4

PRINTING ONE ARRAY ELEMENT PER LINE
7
0

2
-4
PRINTING ARRAY ELEMENTS GREATER THAN 0

7
2

seventh Complete Examples on One-Dimensional Arrays 114

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

6.4 Errors in Using One-Dimensional Arrays

There are many errors that may occur in the use of arrays. These errors may appear, if

the following rules are not followed:

 Array subscripts must not go beyond the array boundaries.

 Array subscripts must always appear as integer expressions.

 The value assigned to an array element, either using the READ statement or the

assignment statement, must match in type with the array type. This rule, as in

the case of simple variables, does not hold for integer and real variables.

 Arrays must be declared before its elements are initialized.

We will now illustrate a few errors through examples. Assume the following

declarations:

 INTEGER GRADE(25), LIST(3)
 LOGICAL MEM(20)
 CHARACTER TEXT(5) * 3

The following statements illustrate incorrect initializations of arrays:

Initialization Type of Error
GRADE(26) = 0.0 array subscript 26 is out of range
LIST(2.0) = X * 3 array subscript 2.0 is not an integer
TEXT(4) = 100 array TEXT is a character array
MEM(3) = 'WRONG' array MEM is a logical array
READ*, (GRADE(K), K = 1, 100) array GRADE has only 25 elements
ARR(2) = 3 ARR is not declared as an array

6.5 Complete Examples on One-Dimensional Arrays

In this section, we illustrate the use of one-dimensional arrays through complete

examples.

Example 1: Counting Odd Numbers: Read an integer N and then read N data values

into an array. Print the count of those elements in the array that are odd.

Solution:

 INTEGER A(50), COUNT, N , K
 READ*, N, (A(K), K = 1, N)
 COUNT = 0
 DO 44 K = 1, N
 IF (MOD (A(K), 2) .EQ. 1) COUNT = COUNT + 1
44 CONTINUE
 PRINT 'COUNT OF ODD ELEMENTS = ', COUNT
 END

If the input is:
7, 35, 66, 83, 22, 33, 1, 89

The value of variable N in this example is 7. The next seven input data values are placed

in the array. There are 5 odd values among the seven elements of the array. For the

given input, the output is as follows:
COUNT OF ODD ELEMENTS = 5

seventh Complete Examples on One-Dimensional Arrays 115

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 2: Reversing a One-Dimensional Array: Write a FORTRAN program that

reads an integer one-dimensional array of size N. The program then reverses the

elements of the array and stores them in reverse order in the same array. For example,

if the elements of the array are:

33 20 2 88 97 5 71

the elements of the array after reversal should be:

71 5 97 88 2 20 33

The program prints the array, one element per line.

Solution:

 INTEGER NUM(100), TEMP
 READ*, N, (NUM(L), L = 1, N)
 DO 41 K = 1, N / 2
 TEMP = NUM(K)

 NUM(K) = NUM(N + 1 - K)
 NUM(N + 1 - K) = TEMP
41 CONTINUE
 DO 22 L = 1, N
 PRINT*, NUM(L)
22 CONTINUE
 END

Note that we used an implied loop to read the array and a DO loop to print the array.

Since the problem asks for an array of size N to be read, we first read N and then use an

implied loop to read N elements into the array. One common mistake here is to declare

an array of size N. This is not allowed since the size of an array in a declaration

statement must be an integer constant (except in the case of subprograms where it may

be a dummy argument as we shall see in an example later in this chapter). The array is

reversed by exchanging the elements of the array. The expression N+1-K gives the

index of the element corresponding to K from the end of the array. Thus, using this

expression, the first element is exchanged with the last, the second element is

exchanged with the second last and so on. This operation is called swapping. The

swapping of elements in the array stops at the middle element.

Example 3: Manipulating One-Dimensional Arrays: Write a FORTRAN program that

reads a one-dimensional integer array X of size 10 elements and prints the maximum

element and its index in the array.

Solution:

 INTEGER X(10), MAX, INDEX, K
 READ*, X
 MAX = X(1)
 INDEX = 1
 DO 1 K = 2, 10
 IF (X(K) .GT. MAX) THEN
 INDEX = K
 MAX = X(K)
 ENDIF
1 CONTINUE
 PRINT*, 'MAXIMUM:', MAX, ' INDEX:',INDEX
 END

In the above program, we need to keep track of the position of the maximum element

within the array. The variable MAX stores the current maximum and the variable

seventh One-Dimensional Arrays and Subprograms 116

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

INDEX represents the position of the maximum element in the array. Whenever a new

maximum is found by the IF statement condition, we update both variables MAX and

INDEX.

Example 4: Printing Perfect Squares: Read 4 data values into an array LIST (of size

10) and print those values that are perfect squares (1, 4, 9, 25 .. are perfect squares).

Assume that the input is:
81, 25, 10, 169

Solution:

 INTEGER LIST(10), N, K
 LOGICAL PSQR
C STATEMENT FUNCTION TO CHECK FOR PERFECT SQUARES
 PSQR(N) = INT(SQRT(REAL(N))) ** 2 .EQ. N

 READ*, (LIST(K), K = 1, 4)
 K = 0
55 IF (K .LE. 4) THEN
 IF(PSQR(LIST(K))) PRINT*, LIST(K)
 K = K + 1
 GOTO 55
 ENDIF
 END

In this example, only four elements of the array LIST are initialized by the READ

statement. The other six elements are not initialized. Notice the use of the logical

statement function PSQR that checks whether its argument N is a perfect square. The

simple IF statements check if the four elements of the array LIST are perfect squares.

For the given input, the output is as follows:
81

25

169

6.6 One-Dimensional Arrays and Subprograms

One-dimensional arrays can be passed to a subprogram or can be used locally within a

subprogram. In both the cases, the array must be declared within the subprogram. The

size of such an array can be declared as a constant or as a variable. Variable-sized

declaration of one-dimensional arrays in a subprogram is allowed only if both the

variable size is a dummy argument and the array itself is a dummy argument. The

following examples illustrate the use of one-dimensional arrays in a subprogram.

Example 1: Summation of Array Elements: Read 4 data values into an array LIST (of

size 10) and print the sum of all the elements of array LIST using a function SUM.

seventh One-Dimensional Arrays and Subprograms 117

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER LIST(10), SUM, K
 READ*, (LIST(K), K = 1, 4)
 PRINT*, SUM(LIST, 4)
 END
 INTEGER FUNCTION SUM(MARK, N)
 INTEGER N, MARK(N)
 SUM = 0
 DO 13 J = 1, N
 SUM = SUM + MARK(J)
13 CONTINUE
 RETURN
 END

In this example, four elements of the array LIST are read by the READ statement. The

function SUM is called and the sum of the first four elements of array LIST is printed.

The first argument to the function is the one-dimensional array LIST. The second

argument is passed as the size of the array. In function SUM, the argument N is used in

the declaration of the array MARK. The declaration INTEGER MARK(N) implies that

the size of the array MARK is the value of N. This type of declaration is allowed in

functions and subroutines only. The elements of the array MARK are added and the

result is returned as the function value.

If the input to this program is as follows:
19, 25, 10, 82

the output would be as follows:
136

Example 2: A Function to Compare One-Dimensional Arrays: Write a program that

has a logical function COMPAR. The function gets A, B, and N as arguments. A and B

are integer one-dimensional arrays of equal size. N is an integer that represents the size

of arrays A and B. The function compares the elements of A and B. If all elements of A

are equal to the corresponding elements of B, the function returns the value .TRUE..

Otherwise, it returns a .FALSE. value. In the main program, N is read. The program

also reads two one-dimensional arrays (each of maximum size 100). Only N elements of

each array are read. The program then calls the function COMPAR. If the value

returned is .TRUE., it prints one of the arrays. Otherwise, it prints the two arrays.

seventh One-Dimensional Arrays and Subprograms 118

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 LOGICAL FUNCTION COMPAR(A, B, N)
 INTEGER N, A(N), B(N), K
 COMPAR = .TRUE.
 DO 10 K = 1, N
 IF (A(K).NE.B(K)) THEN
 COMPAR = .FALSE.
 RETURN
 ENDIF
10 CONTINUE
 RETURN
 END
 LOGICAL COMPAR
 INTEGER A(100), B(100), K, N
 READ*, N, (A(K), K=1,N), (B(K), K=1,N)
 IF (COMPAR(A,B,N)) THEN
 PRINT*, 'A = B = ', (A(K), K=1,N)
 ELSE
 PRINT*, 'A = ', (A(K), K=1,N)
 PRINT*, 'B = ', (B(K), K=1,N)
 ENDIF
 END

Notice how the array declarations are different in the main program from the

subprogram. Array A is declared as A(100) in the main program while it is declared

with variable size as A(N) in the subprogram.

Example 3: Counting Negative Numbers within a One-Dimensional Array: Write a

subroutine FIND that takes a one-dimensional array and its size as two input

arguments. It returns the count of the negative and non-negative elements of the array.

Solution:

 SUBROUTINE FIND(A, N, COUNT1, COUNT2)
 INTEGER N, A(N), COUNT1, COUNT2, K
 COUNT1 = 0
 COUNT2 = 0
 DO 13 K = 1,N
 IF (A(K).LT.0) THEN
 COUNT1= COUNT1 + 1
 ELSE
 COUNT2= COUNT2 + 1
 ENDIF
13 CONTINUE
 RETURN
 END

The variable COUNT1 counts the negative numbers in the array. The variable COUNT2

counts the non-negative integers in the array.

Example 4: Updating the Values in a One-Dimensional Array: The two input

arguments to a certain subroutine UPDATE is an array A of real numbers and its size

N. The subroutine replaces the value of every element in A with its absolute value.

Write the subroutine UPDATE and a main program which will invoke (call) the

subroutine. The maximum size of the array is 100.

seventh Exercises 119

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:
 SUBROUTINE UPDATE(A,N)
 INTEGER K, N
 REAL A(N)
 DO 44 K = 1,N
 A(K) = ABS(A(K))
44 CONTINUE
 RETURN
 END
 INTEGER J, N
 REAL A(100)
 READ*, N, (A(J),J=1,N)
 PRINT*, 'THE ORIGINAL ARRAY: ', (A(J),J=1,N)
 CALL UPDATE(A,N)
 PRINT*, 'THE NEW ARRAY: ', (A(J),J=1,N)
 END

6.7 Exercises

1. What is printed by the following programs?

1. INTEGER A(3), J
 A(1) = 1
 DO 30 J = 2, 3
 A(J) = 3 * A(J - 1)
30 CONTINUE
 PRINT*, A
 END

2. INTEGER X(3), Y(3), K
 LOGICAL Z(3)
 READ*, X
 READ*, Y
 DO 80 K = 1, 3
 Z(K) = X(K) .EQ. Y(K)
80 CONTINUE
 IF(Z(1) .AND. Z(2) .AND. Z(3)) THEN
 PRINT*, 'EQUAL ARRAYS '
 ELSE
 PRINT*, 'DIFFERENT ARRAYS'
 ENDIF
 END

Assume the input for the program is:
1, 5, 7

7, 5, 1

3. INTEGER A(4), B(4), G, K, N

 G(K) = K ** 2

 READ*, A
 DO 60 N = 1, 4
 B(N) = G(A(5 - N))
60 CONTINUE
 PRINT*, B
 END

Assume the input for the program is:
10, 20, 30, 40

seventh Exercises 120

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4. SUBROUTINE FUN(A)
 INTEGER A(4), TEMP
 TEMP = A(1)
 A(1) = A(2)
 A(2) = A(3)

 A(3) = A(4)
 A(4) = TEMP
 RETURN
 END
 INTEGER LIST(4)
 READ*, LIST
 CALL FUN (LIST)
 PRINT*, LIST
 END

Assume the input for the program is:
3, 6, 9, 2

5. INTEGER X(3), Y(3)
 LOGICAL EQUAL
 READ*, X
 READ*, Y
 IF (EQUAL (X, Y))THEN
 PRINT*, 'EQUAL ARRAYS '
 ELSE
 PRINT*, 'DIFFERENT ARRAYS'
 ENDIF
 END
 LOGICAL FUNCTION EQUAL(X, Y)
 INTEGER X(3), Y(3), K
 LOGICAL Z(3)
 DO 45 K = 1, 3
 Z(K) = X(K) .EQ. Y(K)
 45 CONTINUE
 EQUAL = Z(1) .AND. Z(2) .AND. Z(3)
 RETURN
 END

Assume the input for the program is:
1, 5, 7
7, 5, 1

6. INTEGER A(2), B(3), C(4), D(3)
 READ*, A, D(1)
 READ*, B, D(2)
 READ*, C, D(3)
 PRINT*, A
 PRINT*, B
 PRINT*, C
 PRINT*, D
 END

Assume the input for the program is:
1,2,3,4,5

6,7,8,9,10
11,12,13,14,15

16,17,18,19,20

seventh Exercises 121

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7. INTEGER A(3), K
 READ*, A
 DO 10 K = 1,3
 A(3) = A(3) + A(K)
10 CONTINUE
 PRINT*, A(3)
 END

Assume the input for the program is:
10,20,30

8. INTEGER X(5), Y(5), N, K
 READ*, N, (X(K),Y(K),K=1,N)
 DO 5 K=X(N),Y(N)
 PRINT*, ('X',J=X(K),Y(K))
5 CONTINUE
 END

Assume the input for the program is:
4,1,2,3,3,3,4,2,4

9. NTEGER A(0:4), K
 DO 10 K = 1,2
 READ*, A
10 CONTINUE
 READ*,(A(K), K = 0,2)
 DO 30 K = 1,20,3
 A(MOD(K,4)) = A(MOD(K,5))
30 CONTINUE
 PRINT*, A
 END

Assume the input for the program is:
1,2,3,4,5,6,7,8

9,10,11

12,13,14,15
18,19,20

10. LOGICAL X(0:4)
 INTEGER J, K
 X(0) = .TRUE.
 DO 30 J = 0,4
 K = MOD(J+1,5)
 X(K) = .NOT. X(J)
30 CONTINUE
 PRINT*, X
 END

seventh Exercises 122

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

11. INTEGER A(5), B(5), K
 REAL F, Z
 READ*, (A(K),K=1,4), (B(K),K=1,4)
 Z = F(A,B)
 PRINT*, Z
 END
 REAL FUNCTION F(L,M)
 INTEGER L(5), M(5), K
 F = 0
 DO 10 K = 1,4
 IF (L(K).EQ.M(L(K))) THEN
 F = M(K) + K
 ELSE
 RETURN
 ENDIF
10 CONTINUE
 F = F + K
 RETURN
 END

Assume the input for the program is:
3,1,2,4,1,2,3,4

12. INTEGER A(100), I, J, N
 REAL ENDAVE
 DO 2 I=1,4
 READ*, N, (A(J),J=1,N)
 PRINT*, ENDAVE(A,N)
2 CONTINUE
 END
 FUNCTION ENDAVE(X,V)
 INTEGER V, X(V)
 REAL ENDAVE
 ENDAVE = (X(1)+X(V)) / 2.0
 END

Assume the input for the program is:
4 5 7 3 1

5 7 3 1 4 5
3 1 5 4

1 2

13. INTEGER FUNCTION SUM(X,N)
 INTEGER J, N
 REAL X(N), Z
 Z = 0
 DO 10 J = 1,N
 Z = Z +X(J)
10 CONTINUE
 SUM = Z
 RETURN
 END
 INTEGER SUM
 REAL A(4), B(4)
 READ*, A, B
 PRINT*, SUM (A,2)/SUM(B,3)
 END

Assume the input for the program is:
4 5 3 4 2 1 1 0

seventh Exercises 123

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

14. SUBROUTINE EXCESS(RESULT, OPA, OPB, N)
 INTEGER OPA(10), OPB(10), RESULT(10), CARRY
 CARRY = 0
 DO 10 K = N,1,-1
 RESULT(K+1) = MOD(OPA(K)+OPB(K)+CARRY,10)
 CARRY = (OPA(K)+OPB(K)+CARRY) / 10
10 CONTINUE
 RESULT(1) = CARRY
 RETURN
 END
 INTEGER A(10), B(10), C(10)
 READ*, N
 READ*, (A(K),K=1,N)
 READ*, (B(K),K=1,N)
 CALL EXCESS(C,A,B,N)
 PRINT*,(C(K), K=1,N+1)
 END

Assume the input for the program is:
7

4 5 6 7 0 9 4
8 3 7 5 2 0 8

15. SUBROUTINE INTER(A, NA, B, NB, C, NC)
 INTEGER NA, NB, A(NA), B(NB), C(NA), K, M, NC
 NC = 0
 DO 10 K = 1, NA
 DO 20 M = 1, NB
 IF (A(K).EQ. B(M)) THEN
 NC = NC + 1
 C(NC) = A(K)
 GOTO 10
 ENDIF
20 CONTINUE
10 CONTINUE
 RETURN
 END
 INTEGER X(9), Y(9), Z(9), L, NX, NY, NZ
 READ*, NX, (X(L), L = 1,NX)
 READ*, NY, (Y(L), L = 1,NY)
 CALL INTER (X,NX,Y,NY,Z,NZ)
 PRINT*, (Z(J), J = 1,NZ)
 END

Assume the input for the program is:
5 12 23 45 65 67 84

4 84 64 12 21

2. The following program segments may or may not have errors. For each one of the

segments, identify the errors(if any). Assume the following declarations :

 INTEGER M(4)
 LOGICAL L

a. DO 5 K = 2,5,2
 READ*, M(K-1)
5 CONTINUE

Assume the input for the program is:
20,40,50,30,60

seventh Exercises 124

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

b. DO 10 K = 1,4
 M(K+1) = -K
10 CONTINUE
 END

3. Consider the following subroutine :

 SUBROUTINE CHECK(A,B,C,N)
 INTEGER A(10), B(5)
 C = 0
 DO 10 M = 1,N
 C = C + A(M)*B(M)
10 CONTINUE
 RETURN
 END

If the only declaration and assignment statement in the main program are the

following:

 INTEGER X(5), M(10), A
 A = 3

Which of the following CALL statements is correct assuming that X and M have

some value ?
A) CALL CHECK(M,X,C)

B) CALL CHECK(M(10),X(5),C,5)

C) CALL CHECK(M,X,B,A+2)

D) CALL CHECK(M,X,N,A)

E) CALL CHECK

4. The following function returns TRUE if the integer number X is found in an integer

array A which has N elements. It returns FALSE otherwise. Complete the missing

line.

 LOGICAL FUNCTION FOUND(A, X, N)
 INTEGER N, A(N), X, K
 DO 20 K=1,N
 IF(A(K) .EQ. X) THEN
 FOUND = .TRUE.

 ENDIF
20 CONTINUE
 FOUND = .FALSE.

 RETURN
 END

5. The following subroutine has 4 parameters: A, N, X and Y, where A is an integer

array of size N and X and Y are integer numbers. The subroutine changes each

element of A that has the value X by the value Y. Complete the missing line.

 SUBROUTINE CHANGE(A, N, X, Y)
 INTEGER N, A(N), X, Y, K
 DO 20 K=1,N
 IF(A(K) .EQ. X) THEN

 ENDIF
20 CONTINUE
 RETURN
 END

seventh Solutions to Exercises 125

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

6. Write a program to initialize a real 1-D array SERIES with the first 8 terms of the

series 1, 4, 16, 64,

7. Write a logical function subprogram ZERO that takes a 1-D integer array LIST of

size 5 and checks if all the elements of array LIST are zero. Write a main program to

test the function.

8. Write a program to read a 1-D integer array X and check if all the elements of array X

are in increasing order. Print a proper message.

9. Write a subroutine REVRSE to reverse a 1-D real array DAT with 5 elements. Write

a main program to test the subroutine.

10. Write a program which reads the elements of three 1-Dimensional arrays A, B and

C each of size N (where N<10). The program stores these elements in an array D

of size M (where M = 3N) such that the elements of D array will be as follows :

A(1) B(1) C(1) A(2) B(2) C(2) ... A(N) B(N) C(N)

11. Write a program that reads a 1-D integer array of 10 elements and prints the

element that appears the maximum number of times. (If there is more than one

element, it prints the first one only).

12. Write a program to read a 1-D array AR1 of size 15 and another 1-D array AR2 of

size 75. The program then finds and prints the number of occurrences of the array

AR1 in the array AR2.

13. Write a program that reads ten integers and stores them into a one-dimensional

array X.. The main program then calls a subroutine SUMS passing it the one-

dimensional array. The subroutine computes the sum S of all the ten elements and

the sum of the square of these ten values. Finally the main program prints the sum

S and the sum of the squares S2.

6.8 Solutions to Exercises

Ans 1.

1. 1 3 9

2. DIFFERENT ARRAYS

3. 1600 900 400 100

4. 6 9 2 3

5. DIFFERENT ARRAYS

6. 1 2

 6 7 8

 11 12 13 14

 3 9 15

7. 120

8. X

 XX

 XXX

9. 20 20 13 13 13

seventh Solutions to Exercises 126

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

10. F F T F T

11. 13.0

12. 3.0

 6.0

 2.5

 2.0

13. 2

14. 1 2 9 4 2 3 0 2

15. 12

Ans 2.

a) End of file encountered (The program needs 2 lines of input)

b) Subscript out of range; m(5) is undefined

Ans 3.

C

Ans 4.

 RETURN

Ans 5.
 A(K) = Y

Ans 6.

 REAL SERIES(8)
 INTEGER K
 DO 12 K = 1, 8
 SERIES(K) = 4**(K-1)
12 CONTINUE
 END

Ans 7.

 LOGICAL FUNCTION ZERO(LIST, N)
 INTEGER N, LIST(N), K
 ZERO = .TRUE.
 K = 0
18 IF (K .LE. N .AND. ZERO) THEN
 IF(LIST(K) .NE. 0) ZERO = .FALSE.
 K = K + 1
 GOTO 18
 ENDIF
 RETURN
 END
 LOGICAL ZERO
 INTEGER LIST(5)
 IF (ZERO(LIST, 5)) THEN
 PRINT*, 'ALL ELEMENTS ARE ZEROS'
 ELSE
 PRINT*, 'NOT ALL ELEMENTS ARE ZEROS'
 ENDIF
 END

seventh Solutions to Exercises 127

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 8.

 INTEGER X(3)
 READ*, X
 IF(X(1) .LT. X(2) .AND. X(2) .LT. X(3)) THEN
 PRINT*, 'INCREASING ORDER'
 ELSE
 PRINT*, 'NOT INCREASING ORDER'
 ENDIF
 END

Ans 9.

 SUBROUTINE REVERSE (DAT)
 REAL DAT(5), TEMP
 TEMP = DAT(5)
 DAT(5) = DAT(1)

 DAT(1) = TEMP
 TEMP = DAT(2)
 DAT(2) = DAT(4)

 DAT(4) = TEMP
 RETURN
 END
 REAL DAT(5)
 READ*, DAT
 CALL REVERSE(DAT)
 PRINT*, DAT
 END

Ans 10.

 INTEGER A(10) , B(10) , C(10) , D(30), N, M, K, J
 READ*, N
 M = 3 * N

 J = 1
 READ*, (A(K), K= 1 ,N),(B(K),K=1,N),(C(K),K=1,N)
 DO 10 K = 1 , N
 D(J) = A(K)

 D(J+1) = B(K)
 D(J+2) = C(K)
 J = J + 3
10 CONTINUE
 PRINT*, (D(K) , K = 1 ,M)
 END

seventh Solutions to Exercises 128

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 11.

 INTEGER A(10) , FREQ(10) , MAXFRQ , LOC, I, J
 READ*, A
 DO 10 I = 1 ,10
 FREQ(I) = 0
10 CONTINUE
 DO 20 I = 1 ,10
 DO 30 J = 1 ,10
 IF(A(J) .EQ. A(I)) FREQ(I) = FREQ(I) + 1
30 CONTINUE
20 CONTINUE
 MAXFRQ = FREQ(1)
 LOC = 1
 DO 40 J = 1 ,10
 IF(MAXFRQ .LT. FREQ(J)) THEN
 MAXFRQ = FREQ(J)

 LOC = J
 ENDIF
40 CONTINUE
 PRINT*, ' THE ELEMENT WITH IS MAX APPEARANCE IS ',A(LOC)
 END

Ans 12.

 INTEGER COUNT , AR1(15),AR2(75), K, COUNT, M
 LOGICAL FOUND
 READ*,AR1
 READ*,AR2
 COUNT = 0
 DO 10 K=1,61
 FOUND = .TRUE.
 DO 20 M = K,K+14
 IF(AR1(M-K+1).NE. AR2(M)) FOUND=.FALSE.
20 CONTINUE
 IF(FOUND) COUNT = COUNT+1
10 CONTINUE
 PRINT*,'COUNT = ' , COUNT
 END

Ans 13.

 INTEGER X(10) , S , S2, J
 READ*, (X(J), J =1,10)
 CALL SUMS(X , S ,S2)
 PRINT*, ' THE SUM OF VALUES =', S
 PRINT*, ' THE SUM OF THE SQUARE OF VALUES =', S2
 END
 SUBROUTINE SUMS (X , S ,S2)
 INTEGER X(10) , S , S2, K
 S = 0

 S2 = 0
 DO 20 K = 1 ,10
 S = S + X(K)

 S2 = S2 + X(K) ** 2
20 CONTINUE
 RETURN
 END

129

seventh Two-Dimensional Array Declaration 130

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7 TWO-DIMENSIONAL ARRAYS

A two-dimensional array (2-D array) is a tabular representation of data consisting of

rows and columns. A two-dimensional array of size m n represents a matrix consisting

of m rows and n columns. Figure 1 shows a two-dimensional array X of size 2 3. An

element in a two-dimensional array is addressed by its row and column; for example,

X(2,1) refers to the element in row 2 and column 1 which has a value 6.

4 2 5

6 7 3

 Figure 1 : A two-dimensional array X of size 23

Two-dimensional arrays can be pictured as a group of one-dimensional arrays. If we

consider a one-dimensional array as a column, then a two-dimensional array X of size 2

 3 can be considered as consisting of three one-dimensional arrays; each one-

dimensional array containing 2 elements. In fact, since each location in the memory has

a single address, the computer stores a two-dimensional array as a one-dimensional

array with column 1 first, followed by column 2 and so on. Figure 2 shows the storage

of array X (Figure 1) in the memory.

 Memory

 4

 6

 2

 7

 5

 3

 Figure 2 : Storage of the Two-Dimensional Array X in Memory

7.1 Two-Dimensional Array Declaration

Two-dimensional arrays must be declared using declaration statements like INTEGER,

REAL etc. or the DIMENSION statement. The array declaration consists of the name

of the array followed by the number of rows and columns in parentheses. This

information in the declaration statements is required in order to reserve memory space.

Column 1

Column 2

Column 3

seventh Two-Dimensional Array Initialization 131

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

For example, if an array X is declared with 2 rows and 3 columns, there are six elements

in the array. Therefore, six memory locations must be reserved for such an array.

Example 1 : Declaration of an integer array MAT consisting of 3 rows and 5 column.

 INTEGER MAT(3,5)

Example 2 : Declaration of a character array CITIES that consists of 9 elements in 3

rows and 3 columns and each element is of size 15.

 CHARACTER CITIES (3,3) * 15

Example 3 : Declaration of arrays using the DIMENSION statement.

DIMENSION X(10,10), M(5,7), Y(4,4)
INTEGER X
REAL M

In this example, arrays M and Y are of type REAL. Array X is of type INTEGER.

Note that the type of arrays M and Y is specified in the two declaration statements. The

type of Y is not specified and is taken as REAL by default.

Example 4 : More array declarations: Consider the following declarations :

 DIMENSION C(10,10), NUM(0:2, -2:1), VOL(4,2)
 INTEGER ID(3,3)
 REAL MSR(100,100), Z(4:7,8)
 CHARACTER WORD(5,5)*3, C
 LOGICAL TF(5,7)

Arrays ID, NUM are integer arrays. Arrays MSR, VOL, Z are real arrays. Array ID has

a total of 9 elements in its 3 rows and 3 columns. The starting subscript value of row

and column of each array is assumed to be 1 unless it is specified otherwise. In the

declaration of arrays NUM and Z, the starting subscript is different than 1. Array NUM

has 12 elements with rows numbered as 0, 1, 2; and columns numbered as -2, -1, 0, 1.

Array Z has 32 elements with rows numbered from 4 up to 7 and columns numbered

from 1 up to 8. Array WORD is a character array that has 5 rows and 5 columns, and

stores 3 characters in each element. Array C is a character array and can store 1

character in each of its 100 elements (10 rows and 10 columns). Array TF is a logical

array with 35 elements in 5 rows and 7 columns; each can store either a .TRUE. or a

.FALSE. value.

7.2 Two-Dimensional Array Initialization

A two-dimensional array can be initialized in two possible ways. We can initialize

either by rows or by columns. Initializing row after row is known as row-wise

initialization. Similarly, initializing column after column is known as column-wise

initialization. Remember, a two-dimensional array is always stored in the memory as a

one-dimensional array column by column. The initialization may be done using

assignment statements or READ statements.

7.2.1 Initialization Using the Assignment Statement

Example 1: Declare an integer array ID consisting of 3 rows and 3 columns and

initialize array ID row-wise as an identity matrix (i.e. all elements of the main diagonal

must be 1 and the rest of the elements must be 0).

seventh Initialization Using the READ statement 132

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER ID(3,3), ROW, COL
C INITIALIZING ROW-WISE
 DO 17 ROW = 1, 3
 DO 17 COL = 1, 3
 IF (ROW .EQ. COL) THEN
 ID(ROW, COL) = 1
 ELSE
 ID(ROW, COL) = 0
 ENDIF
17 CONTINUE

In this example, nested do loops are used. In fact, we need the nested loops to go to each

element of a two-dimensional array. Note here that the index of the outer do loop is

ROW which is also the row subscript of array ID. The inner loop index COL

corresponds to the columns (the use of the variables ROW and COL has no

significance; we could have used any other INTEGER variables). Notice how the value

of COL varies within each iteration of the outer loop. When the value of ROW is 1,

COL changes its value in the following sequence : 1, 2, 3, and 4. This means the first

row has been initialized. Similarly, the next two rows are initialized. Since we

initialized row after row, the array ID is initialized row-wise.

In general, if the outer loop index is the row subscript, then we are moving row-wise

inside the array. Similarly, if the outer loop index is the column subscript, then we are

moving column-wise inside the array.

Example 2 : Declare a real array X consisting of 2 rows and 3 columns and initialize

array X column-wise. Each element of array X should be initialized to its row number.

Solution:

 REAL X(2,3)
 INTEGER J, K
C INITIALIZING COLUMN-WISE
 DO 27 J = 1, 3
 DO 27 K = 1, 2
 X(K, J) = K

27 CONTINUE

7.3 Initialization Using the READ statement

As was the case in one-dimensional arrays, a two-dimensional array can be read as a

whole or in part. To read the entire array, we may just use the name of the array without

subscripts. In such case, the array is read column-wise. We can read part of an array by

specifying specific elements of the array in the READ statement. We can either read

row-wise or column-wise. Remember that each READ statement requires a new line of

input data. If the data in the input line is not enough, the READ statement ensures that

the data is read from the immediately following input line or lines, until all the elements

of the READ statement are read

Example 1: Read all the elements of an integer array MATRIX of size 33 column-

wise (i.e. the first element of input data is the first element of the first column of

MATRIX, the second element of input data is the second element of the first column,

the third element of input is the third element of the first column, the fourth element of

input is the first element of the second column, and so on).

seventh Initialization Using the READ statement 133

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

The input data is given as follows:
3 4 8

5 9 2
1 6 0

The contents of array MATRIX after reading the input data is as follows:

3 5 1

4 9 6

8 2 0

Solution 1: (Without Array Subscripts)

 INTEGER MATRIX(3, 3)
C READING COLUMN-WISE
 READ*, MATRIX

Solution 2: (Using Implied Loops)

 INTEGER MATRIX(3, 3), J, K
C READING COLUMN-WISE

 READ*,((MATRIX(K,J), K = 1, 3), J =1, 3)

Solution 3: (Using DO and Implied Loop)

 INTEGER MATRIX(3, 3), J, K
C READING COLUMN-WISE
 DO 28 J = 1, 3
 READ*, (MATRIX(K,J), K = 1, 3)
28 CONTINUE

In all the three solutions, the array MATRIX is read column-wise. In Solution 1, the

array MATRIX is read without any subscripts. In such cases, the computer reads the

array column-wise, since all arrays are stored in the memory column-wise. In Solution

2, the outer loop index is J which corresponds with the column. Hence, the array is read

column-wise. In Solution 3, the outer loop index is also J and, therefore, the array is

read column-wise. The difference between the three solutions is that in Solution 1 and 2,

only one READ statement is executed and, therefore, only one input line of data is

required. If the input data is not given in one line, then data is read from the next line or

the one after, until all data is read. In Solution 3, since three READ statements are

executed, a minimum of three lines of input data is required.

Example 2: Read all the elements of an integer array X of size 35 row-wise (i.e. the

first element of input data is the first element of the first row of array X, the second

element of input is the second element of the first row, the third element of input is the

third element of the first row, the fourth element of input is the fourth element of the

first row, the fifth element of input is the fifth element of the first row, the sixth element

of input is the first element of the second row and so on).

The input data is given as follows:
7 5 9 3 2

4 6 5 9 2

1 2 7 6 0

The contents of array X after reading the input data is as follows:

7 5 9 3 2

4 6 5 9 2

1 2 7 6 0

seventh Printing Two-Dimensional Arrays 134

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution 1 : (Using Implied Loops)

 INTEGER X(3, 5), J, K
 READ*, ((X(K, J) , J = 1, 5), K = 1, 3)

Solution 2 : (Using DO and an implied Loop)

 INTEGER X(3, 5), J, K
C READING COLUMN-WISE
 DO 33 K = 1, 3
 READ*, (X(K,J), J = 1, 5)
33 CONTINUE

In both solutions, the array X is read row-wise, since the outer loop index is K which

corresponds to the row of array X. The difference between the two solutions is that in

Solution 1, only one READ statement is executed and, therefore, only one input line of

data is required. If the input data is not given in one line, then data is read from the next

line or the one after, until all data is read. In Solution 2, since three READ statements

are executed, a minimum of three lines of input data is required.

7.4 Printing Two-Dimensional Arrays

Just as in the case of reading a two-dimensional array, printing an array without

subscripts will produce the whole array as output. In such a case, the array is printed

column-wise. If some elements of the array are not initialized before printing, question

marks appear in the output indicating elements that do not have a value. Each PRINT

statement starts printing in a new line. If the line is not long enough to print the array,

the output is printed in more than one line.

Example: Read a 3 3 integer array WHT column-wise and print:

i. the entire array row-wise in one line;

ii the entire array column-wise in one line;

iii. one row per line;

iv. one column per line ;

v. the sum of column 3 ;

eighth Complete Examples on Two-Dimensional Arrays 135

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER WHT(3, 3), SUM, J, K
C READING WHT COLUMN-WISE
 READ*, WHT
C PRINTING THE ENTIRE ARRAY WHT ROW-WISE
 PRINT*, 'PRINTING THE ENTIRE ARRAY ROW-WISE'
 PRINT*, (WHT(K, J), J = 1, 3), K = 1, 3)
C PRINTING THE ENTIRE ARRAY WHT COLUMN-WISE
 PRINT*, 'PRINTING THE ENTIRE ARRAY COLUMN-WISE'
 PRINT*, WHT
C PRINTING ONE ROW OF WHT PER OUTPUT LINE
 PRINT*,'PRINTING ONE ROW PER LINE'
 DO 35 K = 1, 3
 PRINT*, (WHT(K,J), J = 1, 3)
35 CONTINUE
C PRINTING ONE COLUMN OF WHT PER OUTPUT LINE

 PRINT*, 'PRINTING ONE COLUMN PER LINE'
 DO 45 J = 1, 3
 PRINT*, (WHT(K,J), K = 1, 3)
45 CONTINUE
C PRINTING THE SUM OF COLUMN 3

 SUM = 0
 DO 55 K = 1, 3
 SUM = SUM + WHT (K , 3)
55 CONTINUE
 PRINT*, 'SUM OF COLUMN 3 IS', SUM
 END

If the input is
5, 2, 0

3, 1, 8
4, 6, 7

The contents of WHT after reading are as follows:

5 3 4

2 1 6

0 8 7

The output of the program is as follows :
PRINTING THE ENTIRE ARRAY ROW-WISE

 5 3 4 2 1 6 0 8 7

PRINTING THE ENTIRE ARRAY COLUMN-WISE
 5 2 0 3 1 8 4 6 7
PRINTING ONE ROW PER LINE

 5 3 4
 2 1 6
 0 8 7

PRINTING ONE COLUMN PER LINE

 5 2 0
 3 1 8

 4 6 7
SUM OF COLUMN 3 IS 17

7.5 Complete Examples on Two-Dimensional Arrays

In this section, we illustrate the use of two-dimensional arrays through complete

examples.

Example 1: More on Reading Two-Dimensional Arrays: Write a FORTRAN program

that reads a two dimensional array of size 5 4 row-wise. Each value is read from a

eighth Complete Examples on Two-Dimensional Arrays 136

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

separate line of input. The program then prints the same array column-wise such that

the elements of the first column are printed on the first line of output and the elements of

the second column are printed on the second line of output and so on.

Solution :

 INTEGER TDIM(5 , 4) , ROW , COL
 DO 10 ROW = 1, 5
 DO 12 COL = 1, 4
 READ*, TDIM(ROW , COL)
12 CONTINUE
10 CONTINUE
 DO 30 COL = 1, 4
 PRINT*, (TDIM(ROW , COL), ROW = 1 , 5)
30 CONTINUE
 END

Let us first consider the reading segment. Reading is done using two nested loops. The

outer loop index corresponds to the rows of the two-dimensional array. The inner one

corresponds to the columns. Hence, the array TDIM is read row-wise. Note that the

READ statement is executed 20 times and therefore 20 input lines are required with one

data value per line.

In the printing segment, we used an implied loop inside a DO loop. Remember that

we were asked to print each column on one line of output. This tells us that each column

must be printed using one and only one PRINT statement. Using two nested DO loops

will cause each element to be printed on a separate line. Therefore, we used an implied

loop for the elements of the columns. Consider the case of the first column. The value of

COL is fixed to 1 by the DO loop whereas the value of ROW in the implied loop varies

from 1 to 5 covering all the elements of the first column. The same logic applies to the

rest of the columns.

Consider next the following segment as a substitute for the reading segment in the

above program.

 READ*, ((TDIM(ROW,COL), COL= 1, 4), ROW= 1, 5)

In the previous reading segment, we used nested DO loops and the data values were

given one in each line. Here, we use nested implied loops. When using nested implied

loops, the values can be provided either on one line or on multiple lines. This results

from the fact that in the nested DO loops, we execute 5 4 = 20 READ statements and

each statement takes input from a different line. In the nested implied loops, we execute

only one READ statement.

In general, the index of the outer loop indicates the way the array is read or printed.

If the outer loop index represents the row, the array is read or printed row-wise. If the

outer loop index represents the column, the array is read or printed column-wise.

Example 2: Summation of Even Numbers in a Two-Dimensional Array: Write a

FORTRAN program that reads a two-dimensional array of size 3 4 column-wise. It

then computes and prints the sum of all even numbers in the array.

eighth Two-Dimensional Arrays and Subprograms 137

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER A(3,4), SUM, J, K
 READ*, ((A(K,J), K = 1, 3), J = 1, 4)
 SUM = 0
 DO 1 K = 1, 3
 DO 2 J = 1, 4
 IF (MOD(A(K,J), 2) .EQ. 0) THEN
 SUM = SUM + A(K,J)
 ENDIF
2 CONTINUE
1 CONTINUE
 PRINT*, SUM
 END

In this example, after reading the array column-wise, we go to each element of the array

A using the nested DO loops. The intrinsic function MOD is used to check if the

remainder is zero when each element is divided by two. Only those elements in the

array which return a zero value for the function MOD are added to the variable SUM.

Example 3 : Manipulating Two-Dimensional Arrays: Write a FORTRAN program that

reads a two-dimensional array of size 3 3 row-wise. The program finds the minimum

element in the array and changes each element of the array by subtracting the minimum

from each element. Print the updated array row-wise in one output line.

Solution:

 INTEGER A(3,3), MIN, J, K
 READ*, ((A(K,J), J = 1, 3), K = 1, 3)
 MIN = A(1,1)
 DO 3 K = 1, 3
 DO 3 J = 1, 3
 IF (A(K,J) .LT. MIN) THEN
 MIN = A(K,J)
 ENDIF
3 CONTINUE
 DO 4 K = 1, 3
 DO 4 J = 1, 3
 A(K,J) = A(K, J) - MIN
4 CONTINUE
 PRINT*, ((A(K,J), J = 1, 3), K = 1, 3)
 END

The array A cannot be changed unless the minimum element in the array is found. All

the elements in the array are checked for the minimum element in the first nested DO

loop. The array is updated in the second nested DO loop by replacing each element of

the array by subtracting the minimum from that element.

7.6 Two-Dimensional Arrays and Subprograms

Two-dimensional arrays can be passed to a subprogram or can be used locally within

the subprogram. Unlike one-dimensional arrays, it is not recommended to pass a

variable-sized two-dimensional array to a subprogram (even though this does not

produce an error, it may give wrong results). Whenever a two-dimensional array is

passed to a subprogram, the row and column size of the array may be declared using a

constant in both the main and the subprogram.

eighth Common Errors in Array Usage 138

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 1: Counting Zero Elements: Read a 3 2 integer array MAT row-wise. Using

a function COUNT, count the number of elements in MAT with the value equal to 0.

Solution:

 INTEGER MAT(3,2), COUNT, J, K
 READ*, (MAT (K, J), J = 1, 2), K =1, 3)
 PRINT*, 'COUNT OF ELEMENTS WITH VALUE 0 IS ', COUNT (MAT)
 END
 INTEGER FUNCTION COUNT(MAT)
 INTEGER MAT(3,2), J, K
 COUNT = 0
 DO 77 K = 1, 3
 DO 77 J = 1, 2

 IF(MAT(K, J) .EQ. 0) COUNT = COUNT + 1
77 CONTINUE
 RETURN
 END

The input of the program is
12, 0, 1, 9, 2, 0

The output of the program is as follows:
COUNT OF ELEMENTS WITH VALUE 0 IS 2

In this example, another possibility is to call the function COUNT by passing three

arguments: MAT, M and N where M and N are the variables representing the row and

the column size of array MAT. The declaration of MAT within the function COUNT

may then be given as follows: INTEGER MAT(M,N). This type of variable-sized two-

dimensional array declaration is allowed in a subprogram. However, the use of such

declarations is not recommended due to reasons beyond the scope of this book.

Example 2: Addition of Matrices: Write a subroutine CALC(A, B, C, N) that receives 2

two-dimensional arrays A and B of size 10 10. It returns the result of adding the two

arrays (matrices) in another array C of the same size.

Solution:

 SUBROUTINE CALC(A, B, C, N)
 INTEGER A(10,10), B(10,10), C(10,10), N
 DO 10 K = 1,N
 DO 15 J = 1,N
 C(K,J) = A(K,J) + B(K,J)
15 CONTINUE
10 CONTINUE
 RETURN
 END

7.7 Common Errors in Array Usage

We have already seen errors that may occur in the use of one-dimensional arrays in the

previous chapter. Such errors can occur in using two-dimensional arrays as well. The

following errors are commonly seen while using arrays :

1. Array declaration is missing: All arrays must be declared. Otherwise, a message

would appear as 'FUNCTION array name IS NOT DEFINED.' Since the array

declaration is missing, the computer assumes it to be a function. Therefore, the

misleading message appears.

eighth Exercises 139

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2. Array subscript is out-of-bounds: This error occurs when an array subscript is

outside the range of the array elements. For example, for a one-dimensional

array X declared as INTEGER X(10), the expression X(12) would produce an

error. Similarly, in a 2-D array Y declared as INTEGER Y (-3:2, 5), the

expression Y(-5,1) would produce an error.

3. Array subscript is not an integer: All array subscripts must be integers. This

error occurs when an array subscript is real. For example, for a one-dimensional

array X declared as INTEGER X(10), the expression X(2.0) would produce an

error. Similarly, in a 2-D array Y of size 32, an expression Y(1,3.0) would

produce an error.

4. Array size is a variable in the main program: All array sizes must be integer

constants, if the array is declared in the main program. This error occurs when

an array subscript is a variable. For example, a one-dimensional array X

declared in a main program as INTEGER X(N) would produce an error. In a

subprogram, a declaration such as INTEGER X(N) is valid as long as both X

and N are dummy arguments. Similar declarations can be made for two-

dimensional arrays as long as the array name, its column-size and its row-size

are dummy arguments. Such declarations (for example INTEGER Y(M,N)) are

valid in a subprogram but may not be used due to reasons beyond the scope of

this book.

7.8 Exercises

1. What is printed by the following programs ?

1. INTEGER X(3,3), J
 READ*, X
 PRINT*, X
 PRINT*, (X(J,J), J = 1, 3)
 PRINT*, (X(J,3), J = 1, 3)
 END

Assume the input is:
1, 5, 7

7, 5, 1
3, 8, 9

2. REAL B(2,3), F
 INTEGER J, K
 F(X, Y) = X + Y * 2
 READ*, ((B(J,K), K = 1, 2), J = 1, 2)
 DO 2 J = 1, 2
 B(J,3) = F(B(J,1), B(J,2))
2 CONTINUE
 PRINT*, B
 END

Assume the input is:
10, 20, 30, 40

eighth Exercises 140

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3. SUBROUTINE ADD(A, B, C)
 INTEGER A(2,2), B(2,2), C(2,2) , J, K
 DO 33 J = 1, 2
 DO 22 K = 1, 2
 C(J,K) = A(J,K) + B(J,K)
22 CONTINUE
33 CONTINUE
 RETURN
 END
 INTEGER X(2,2), Y(2,2), Z(2,2)
 READ*, X, Y
 CALL ADD (X, Y, Z)
 PRINT*, Z
 CALL ADD (Z, Y, X)
 PRINT*, X
 END

Assume the input is:
3, 6, 9, 2

7, 4, 5, 1

4. INTEGER A(3,3) , J, K
 READ*, ((A(K,J),K=1,3),J=1,3)
 PRINT*, A
 PRINT*, ((A(K,J),J=1,2),K=1,3)
 PRINT*, A(3,2)
 PRINT*, (A(K,2),K=3,1,-2)
 END

Assume the input is:
1 2 3
4

5 6 7 8
9

5. INTEGER A(2,2) , J, K
 READ*, A
 DO 3 J = 1,2
 PRINT*, (A(J,K), K=1,2)
3 CONTINUE
 END

Assume the input is:
1 2 3 4

6. INTEGER TDAR(3,3), ODAR(10), ROW, COL, J, K, M, N
 NUM(M,N) = M + N - 1
 READ*, TDAR
 READ*,ROW,COL
 DO 10 J = 1,3
 DO 10 K = 1,3
 ODAR(NUM(J,K)) = TDAR(J,K)
10 CONTINUE
 PRINT*, ODAR(NUM(ROW,COL)), ODAR(NUM(COL,ROW))
 END

Assume the input is:
9 6 4 3 2 1 8 5 7

2 3

eighth Exercises 141

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7. INTEGER A(2,2), B(2,2), C(2,2), X, Y, K, M

 D(M,N) = M + N
 READ*, A, B
 DO 35 K = 1,2
 DO 35 M = 1,2
 X = A(K,M)

 Y = B(K,M)
 C(M,K) = D(X,Y)
35 CONTINUE
 DO 22 K = 1,2
 PRINT*, (C(K,M), M=1,2)
22 CONTINUE
 END

Assume the input is:
3 7 2 6

5 8 4 1

8. INTEGER A(10,10), B(10), L, K, N
 READ*, N, ((A(K,L),K=1,N),L=1,N), (B(K),K=1,N)
 PRINT*, C(A,B,N)
 END
 REAL FUNCTION C(A,B,N)
 INTEGER A(10,10),B(10), L, N
 C = 0.0
 DO 44 L = 1,N
 IF (L/3*3 .NE.L) B(L) = A(L,L)
 C = B(L) * A(L,L)
44 CONTINUE
 RETURN
 END

Assume the input is:
3 1 1 1 2 2 2 3 3 3 4 4 4

9. INTEGER A(5,5), J, K, M, N
 READ*, N, ((A(K,J),J=1,N),K=1,N)
 CALL TEST(A,N,M)
 PRINT*, M
 END
 SUBROUTINE TEST (X,Y,Z)
 INTEGER X(5,5), Y, Z, J, K
 Z = X(1,1)
 DO 10 K = 1,Y
 DO 10 J = 1, Y
 IF (Z.GT.X(K,J))Z=X(K,J)
10 CONTINUE
 RETURN
 END

Assume the input is:
3 1 3 6 -3 0 4 5 9 -1

2. Assume the array declaration :

 INTEGER Z(10,10)

is given. Which of the following READ statements will read the array column-wise

if the data is given one value per line ? :

I. READ*, Z

eighth Exercises 142

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

II DO 20 J = 1,10
 READ*, (Z(K,J),K=1,10)
20 CONTINUE

III. DO 10 K = 1,10
 DO 10 J = 1,10
 READ*, Z(J,K)
10 CONTINUE

3. Complete the missing parts in the program given below to construct the following

matrix :

A

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 INTEGER A(4,4), K, L
 DO 10 K =1,4
 DO 10 ______(1)______
 IF (______(2)______) THEN
 A(K,L) = __(3)__
 ELSE
 A(K,L) = __(4)__
 ENDIF
10 CONTINUE
 END

4. Write a program to initialize row-wise each element of a real 2-D array PRD of size 3

 4 with the product of its row and column numbers. Print this array column-wise.

5. Write a function subprogram IDINIT that takes a 2-D integer array IMAT of size 3

3 and initializes the array as an identity matrix. Write a main program to test the

function.

6. Write a program to read a 2-D integer array X of size 3 4. Store the sum of each

row in a 1-D array ROW and the sum of each column in a 1-D array COL. Print

arrays ROW and COL.

7. Write a FORTRAN program that reads an (810) 2-D REAL array TAB row-wise

and finds the percentage of elements in array TAB that are perfect squares. (Hint: 25

is a perfect square since 25 = 5 5).

8. Write a FORTRAN program that reads an integer N and then reads a two dimensional

(N N) array MAT row-wise. The program prints the column in an array MAT

whose sum is the maximum. Assume N is less than or equal to 10. For example, if N

is 3 and if MAT is as follows:

2 1 4

3 5 7

8 2 9

then the output should be:
4 7 9

eighth Solutions to Exercises 143

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7.9 Solutions to Exercises

Ans 1.

1. 1 5 7 7 5 1 3 8 9

 1 5 9

 3 8 9

2. 10.0 30.0 20.0 40.0 50.0 110.0

3. 10 10 14 3

 17 14 19 4

4. 1 2 3 4 5 6 7 8 9

 1 4 2 5 3 6

 6

 6 4

5 1 3

 2 4

6. 1 1

7. 8 15

 6 7

8. 12.0

9. -3

Ans 2.

I , II , III

Ans 3

1) L = 1 , 4 2) K + L .EQ. 5 3) 1 4) 0

Ans 4.

 REAL PRD(3,4)
 INTEGER J, K
 DO 10 K = 1, 3
 DO 20 J = 1, 4
 PRD(K, J) = K * J
20 CONTINUE
10 CONTINUE
 PRINT*, PRD
 END

eighth Solutions to Exercises 144

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 5.

 SUBROUTINE IDINIT(IMAT)
 INTEGER IMAT(3,3), J, K
 DO 77 K = 1, 3
 DO 77 J = 1, 3
 IMAT(K, J) = 0
 IF (K .EQ. J) IMAT(K, J) = 1
77 CONTINUE
 RETURN
 END
 INTEGER IMAT(3,3), K
 READ*, IMAT
 CALL IDINIT(IMAT)
 DO 77 K = 1, 3
 PRINT*, IMAT(K,1),IMAT(K,2),IMAT(K,3)
77 CONTINUE
 END

Ans 6.

 INTEGER X(3,4) , ROW(3) , COL(4), J, K
 READ*, X
 DO 55 K = 1, 3
 ROW(K) = 0
 DO 55 J = 1, 4
 ROW (K) = ROW(K) + X(K, J)
55 CONTINUE
 DO 66 J = 1, 4
 COL(J) = 0
 DO 66 K = 1, 3
 COL (J) = COL(J) + X(K, J)
66 CONTINUE
 PRINT*, ROW
 PRINT*, COL
 END

Ans 7.

 INTEGER CNT, I, J
 REAL TAB(8,10)
 DO 10 I = 1 ,8
 READ*, (TAB(I,J), J =1,10)
10 CONTINUE
 CNT = 0
 DO 20 I = 1 ,8
 DO 30 J = 1 ,10
 IF(INT(SQRT(TAB(I,J)))**2.EQ.TAB(I,J)))CNT=CNT+1
30 CONTINUE
20 CONTINUE
 PER = CNT / 80.0 * 100

 PRINT*, ' THE PERCENTAGE = ' , PER
 END

eighth Solutions to Exercises 145

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 8.

 INTEGER MAT(10,10) , N , SUM , MAXSUM , COL, I, J
 READ*, N
 DO 10 I = 1 ,N
 READ*, (MAT(I,J), J =1,N)
10 CONTINUE
 SUM = 0
 COL = 1
 DO 20 K = 1 ,N
 SUM = SUM + MAT(K,I)
20 CONTINUE
 MAXSUM = SUM
 DO 30 J = 2 , N
 SUM = 0
 DO 40 K = 1 , N
 SUM = SUM + MAT(K,J)
40 CONTINUE
 IF(SUM .GT. MAXSUM) THEN
 MAXSUM = SUM
 COL = J
 ENDIF
30 CONTINUE
 PRINT*,(MAT(K,COL),K = 1, N)
 END

146

eighth Output Formatting 147

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8 OUTPUT DESIGN AND FILE

PROCESSING

8.1 Output Formatting

The print statement we have been using in the previous chapters is a list-directed output

statement. In list-directed output, the output list determines the precise appearance of

printed output. In other words, we have no control over the format of the output. To

control the manner in which the output is printed or to produce an output in a more

readable form, we use FORMAT statements. To use a FORMAT statement, we must

modify the PRINT statement by replacing the '*' with a FORMAT statement label. The

general form of a formatted PRINT statement is

 PRINT K, expression list

The FORMAT statement number k identifies a format to be used by the print

statement. The statement number can be any positive INTEGER constant up to five

digits. Recall that statement numbers are placed in columns 1 through 5. The expression

list specifies the value(s) to be printed. The general form of the FORMAT statement is

K FORMAT(specification list)

A FORMAT statement is a non-executable statement. It can appear anywhere in the

program before or after the associated print statement. The specification list in the

FORMAT statement specifies both the vertical spacing and the horizontal spacing to be

used when printing an output. The first character of the specification list, called the

carriage control character, is used to control the vertical spacing. The rest of the

specification list consists of various format specifications and controls the horizontal

spacing.

FORTRAN provides format specifications for blank spaces, integer, real, character

and logical types. Commas are used to separate specifications in the specification list.

Before printing the line, the computer constructs each output line internally in a memory

area called the output buffer. The length of each line in the buffer is 133 characters. The

first character is used to control the vertical spacing and the remaining 132 characters

represent the line to be printed. The buffer is filled with blanks before it is used to

construct an output line.

The following are some of the carriage control characters used to control the vertical

spacing:

 ' ': single spacing (start printing at the next line)

 '0': double spacing (skip one line then start printing)

eighth Output Formatting 148

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 '-': triple spacing (skip 2 lines then start printing)

 '1': new page (move to the top of the next page before printing)

 '+': no vertical spacing (start printing at the beginning of the current line

irrespective of what was printed before)

The six format specifications presented below allow the control of horizontal spacing.

In the following sections we will use

....+....1....+....2....+....3....+....4.

as a header to the output to indicate the horizontal spacing, Notes that the above line is

not part of the output.

8.1.1 I Specification

The I specification is used to print integer expressions. The general form of I

specification is {Iw}, where w is a positive integer representing the number of positions

to be used to print the integer value. To find the minimum number of positions

necessary to print a number, we count the number of digits in the integer including the

minus sign. For example, if we want to print -25, the value of w should be at least 3. In

the case where the value of w is more than 3, the number -25 is printed right-justified. If

the value of w is less than 3, the number -25 cannot be printed and asterisk (*)

characters appear in the output. In this case, the number of asterisks is equal to w.

In other words, to print an integer number using I specification, we start filling the

positions from right to left. The extra positions to the left of the integer (if any) will be

filled with blanks. If the positions are not enough to represent the number, the positions

are filled with asterisks indicating that the specification is not enough to print the integer

number.

Example 1: What is the minimum I specification needed to print each of the following

integers?

345, 67, -57, 1000, 123456

Solution:

Number I specification

345 I3

67 I2

-57 I3

1000 I4

123456 I6

Example 2: What will be printed by the following program?

 INTEGER M
 M = -356
 PRINT 10, M
10 FORMAT(' ', I4)
 END

Solution:
....+....1....+....2

-356

eighth Output Formatting 149

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice that the carriage control character ' ' did not appear in the output. This characters

indicates that the output line is single spacing.

Example 3: If the FORMAT statement in the previous example is modified as follows:

 FORMAT('1', I6)

What will be printed?

Solution:

The printed output in this case will start on a new page, because of the carriage control

character '1':

(new page)

....+....1....+....2....+....3....+....4.

-356

Example 4: If the FORMAT statement in the previous example is modified as follows:

 FORMAT('-', I3)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

Notice that the printed output in this case has two empty lines before the data. The

reason is the carriage control character '-' which means triple spacing. Moreover, the

data is printed as three asterisks because the format specification I3 is not enough for

the number -356.

Example 5: Assume K = -244 and M = 12. The following PRINT statements will

produce the shown outputs.

a. PRINT 10, K
10 FORMAT(' ', I4)

....+....1....+....2....+....3....+....4.

-244

b. PRINT 20, K, M
20 FORMAT(' ', I5, I6)

....+....1....+....2....+....3....+....4.

 -244 12

c. PRINT 30, K
 PRINT 35, M
30 FORMAT(' ', I3)
35 FORMAT('0', I2)

....+....1....+....2....+....3....+....4.

12

d. PRINT 40, K + M
40 FORMAT(' ', I5)

eighth Output Formatting 150

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

....+....1....+....2....+....3....+....4.

 -232

e. PRINT 50, K / M
50 FORMAT(' ', I3)

....+....1....+....2....+....3....+....4.

-20

f. PRINT 60, M + 1.0
60 FORMAT(' ', I3)

ERROR MESSAGE: TYPE MISMATCH

g. PRINT 70, -345
70 FORMAT(' ', I7)

....+....1....+....2....+....3....+....4.

 -345

h. PRINT 80, -39 / 3 * 2
80 FORMAT(' ', I3)

....+....1....+....2....+....3....+....4.

-26

i. PRINT 90, K
 PRINT 95, M
90 FORMAT(' ', I4)
95 FORMAT('+', I8)

....+....1....+....2....+....3....+....4.

-244 12

j. PRINT 98, K
 PRINT 98, M
98 FORMAT(' ', I4)

....+....1....+....2....+....3....+....4.

-244

 12

8.1.2 F Specification

The F specification is used to print real values. The general form of the F specification

is {Fw.d}, where w is a positive integer representing the total number of positions to be

used to print the real number and d represents the number of positions to be used to

print the fractional part of the real number. Note that w must satisfy the relation w d +

1.

To find the number of positions needed to print a real number, we count the number

of significant digits in the real number including the decimal point and the minus sign.

For example, if we want to print -91.35, we need a total of six positions, two of them to

the right of the decimal point, so the specification should be at least F6.2. To print the

real number, we count from right to left d positions and place the decimal point at

position d+1. We start placing the integer part of the real number from right to left and

the fractional part of the real number from left to right. The extra positions to the left of

the decimal point (if any) are filled with blanks, while the extra positions to the right of

the decimal point (if any) are filled with zeros. If the number of positions to the left of

the decimal point is not enough to represent the integer part of the real number, all w

positions are filled with asterisks. If the number of positions to the right of the decimal

eighth Output Formatting 151

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

point is not enough to represent the fractional part of the real number, the number will

be rounded to just fill the specified number of decimal positions.

Example 1: What is the minimum F specification needed to print the following real

numbers?:

823.67509, 0.002, .05, -.05, -0.0008

Solution:

Number F specification

823.67509 F9.5

0.002 F5.3

.05 F3.2

-.05 F4.2

98. F3.0

98.0 F4.1

-0.0008 F7.4

Example 2: What will be printed by the following program?

 REAL X
 X = 31.286
 PRINT 10, X
10 FORMAT('1', F6.3)
 END

Solution:

The printed output on a new page is as follows:

....+....1....+....2....+....3....+....4.

31.286

Example 3: If the FORMAT statement in the previous example is modified as follows:

 FORMAT(' ', F8.3)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

 31.286

Example 4: If the FORMAT statement in the previous example is modified as follows:

 FORMAT(' ', F8.4)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

 31.2860

Example 5: If the FORMAT statement in the previous example is modified as follows:

 FORMAT(' ', F5.3)

What will be printed?

eighth Output Formatting 152

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

....+....1....+....2....+....3....+....4.

Example 6: If the FORMAT statement in the previous example is modified as follows:
 FORMAT(' ', F6.2)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

31.29

Example 7: Assume X = -366.126, Y = 6.0 and Z = 20.97. The following PRINT

statements will produce the shown outputs.

a. PRINT 10, X
10 FORMAT(' ', F11.5)

....+....1....+....2....+....3....+....4.

 -366.12600

b. PRINT 20, X
20 FORMAT(' ', F8.3)

....+....1....+....2....+....3....+....4.

-366.126

c. PRINT 30, Z
 PRINT 35, Y
30 FORMAT(' ', F4.1)
35 FORMAT('0', F4.2)

....+....1....+....2....+....3....+....4.

21.0

6.00

d. PRINT 40, X / Y
40 FORMAT(' ', F7.3)

....+....1....+....2....+....3....+....4.

-61.210

e. PRINT 50, Y + 0.00001
50 FORMAT(' ', F7.5)

....+....1....+....2....+....3....+....4.

6.00001

f. PRINT 60, Z - 5
60 FORMAT(' ', F5.2)

....+....1....+....2....+....3....+....4.

15.97

g. PRINT 70, Z
70 FORMAT('+', I5)

ERROR MESSAGE: TYPE MISMATCH

h. PRINT 80, -144 / 24 + 35.2
80 FORMAT(' ', F4.1)

....+....1....+....2....+....3....+....4.

eighth Output Formatting 153

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

29.2

i. PRINT 85, Y
 PRINT 85, Z
85 FORMAT(' ', F6.2)

....+....1....+....2....+....3....+....4.

 6.00

 20.97

j. PRINT 90, Y
 PRINT 95, Z
90 FORMAT(' ', F6.2)
95 FORMAT('-', F6.2)

....+....1....+....2....+....3....+....4.

 6.00

 20.97

8.1.3 X Specification

The X specification is used to insert blanks between the values we intend to print. The

general form of this specification is nX, where n is a positive integer representing the

number of blanks.

Example 1: The following program:

 REAL A, B
 A = -3.62
 B = 12.5
 PRINT 5, A, B
5 FORMAT(' ', F5.2, F4.1)
 END

prints the following output:

....+....1....+....2....+....3....+....4.

-3.6212.5

The output is not readable because the two printed values are not separated by blanks. If

we modify the format statement using X specification as follows:

 FORMAT(' ', F5.2, 3X, F4.1)

the output becomes:

....+....1....+....2....+....3....+....4.

-3.62 12.5

The X specification can be used as a carriage control character. The following pairs of

FORMAT statements print the same output.

10 FORMAT(' ', I2)

is equivalent to

10 FORMAT(1X, I2)

and
20 FORMAT(' ', 2X, F4.1)

is equivalent to

eighth Output Formatting 154

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

20 FORMAT(3X, F4.1)

8.1.4 Literal Specification

The literal specification is used to place character strings in a FORMAT statement as

part of the specification list. The character string must be enclosed between two single

quotation marks.

Example 1: What will be printed by the following program?

 REAL AVG
 AVG = 65.2
 PRINT 5, AVG
5 FORMAT(' ' ,'THE AVERAGE IS = ', F4.1)
 END

Solution:

....+....1....+....2....+....3....+....4.

THE AVERAGE IS = 65.2

Example 2: The following program prints the message FORTRAN77 on top of a new

page.

 PRINT 30
30 FORMAT('1', 'FORTRAN77')
 END

The output printed at the a new page is:

....+....1....+....2....+....3....+....4.

FORTRAN77

8.1.5 A Specification

The A specification is used to print character expressions. The general form of the A

specification is Aw, where w represents the length of the character string. If the string

has more than w characters, only the left-most w characters will appear in the output

line. On the other hand, if the string has fewer than w characters, its characters are right-

justified in the output line with blanks to the left. The integer w may be omitted. If w is

omitted, the number of characters is determined by the length of the character string.

Example 1: What will be printed by the following program?

 PRINT 55, 'ICS-101'
55 FORMAT(' ',A7)
 END

Solution:

....+....1....+....2....+....3....+....4.
ICS-101

Example 2: What will be printed by the following program?

 CHARACTER TEXT*5
 TEXT = 'KFUPM'
 PRINT 55, TEXT, TEXT, TEXT
55 FORMAT(' ', A, 3X, A3, 3X, A9)
 END

eighth Specification Repetition: Another Format Feature 155

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

....+....1....+....2....+....3....+....4.

KFUPM KFU KFUPM

8.1.6 L Specification

The L specification is used to print logical expressions. The general form of L

specification is Lw. The letter T or F is printed if the logical expression is true or false

respectively. The printed letter is right-justified.

Example 1: What will be printed by the following program?

 PRINT 5, .TRUE.
5 FORMAT(' ',L1)
 END

Solution:

....+....1....+....2....+....3....+....4.

T

Example 2: What will be printed by the following program?

 LOGICAL X, Y
 X = .TRUE.
 Y = .FALSE.
 PRINT 15, X, X
15 FORMAT(' ', L1, 2X, L5)
 PRINT 20, Y, Y
20 FORMAT(' ', L1, 2X, L7)
 END

Solution:

....+....1....+....2....+....3....+....4.

T T
F F

8.2 Specification Repetition: Another Format Feature

If we have consecutive identical specifications, we can replace them by an integer

constant followed by the identical specification(s) to indicate repetition. For example,

the specifications: I4, I4, I4 can be replaced by 3I4. Also, the specifications: I2, 3X, I2,

3X, I2, 3X, I2, 3X can be replaced by 4(I2, 3X). The following pairs of FORMAT

statements illustrate the use of repetition constants:

10 FORMAT('0', 3X, I2, 3X, I2)

is equivalent to

10 FORMAT('0', 2(3X, I2))

and

20 FORMAT(' ',F5.1, F5.1, F5.1, 5X, I3, 5X, I3, 5X, I3, 5X, I3)

is equivalent to

eighth File Processing 156

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

20 FORMAT(' ',3F5.1,4(5X, I3))

8.3 Carriage Control Specification

The carriage control character is normally specified as the first character in the format

specification list. It can be specified as a blank or the characters 0,1,-, +. But in the case

where it is not specified as part of the specification list, the first character in the buffer

output is taken as the carriage control character. If the first character of the buffer output

is one of the carriage control characters (a blank, 0, 1, +, -), then the proper action is

taken. If the first character is not among the carriage control characters, then the output

is system dependent. The following example illustrates a specification list where

carriage control character is missing:

Example:

 PRINT 10
10 FORMAT('1995')
 END

The output, on a new page, would be as follows:

....+....1....+....2....+....3....+....4.

995

Notice that the first character '1' was considered as a new page carriage control

character.

8.4 File Processing

In many applications, the amount of data read and/ or produced is huge. Providing data

interactively is not efficient, thus a different way to handle data is needed, namely, files.

Another reason for using files comes from the repetitive use of the same data every time

the program is run; making the data entry task very tedious. The third reason is that data

in many real applications is taken or recorded by instruments or devices then used for

analysis and computations.

8.4.1 Opening Files

Before using a file for input or output, it must be prepared for that operation. Files that

are used for input must exist prior to their usage. To prepare a file for input, the

following OPEN statement must precede any read statement from that file:

 OPEN(UNIT = INTEGER EXPR, FILE = FILENAME, STATUS = 'OLD')

where UNIT equals an integer expression in the range of 0 to 99. Avoid using 5 and 6 as

unit numbers since they are already assigned for the keyboard and the screen. The

filename is a character string containing the actual name of the file followed by the file

extension. In the IBM mainframe, the file name is separated from the file extension by a

space and if the extension is omitted, it is assumed to be FILE. Upon opening a file for

reading, the reading will take place from the beginning of the file.

Files that are used for output may not exist before being used. If the file does not

exist, it will be created whereas if it exists its contents will be erased. To prepare a file

for output, the following statement must precede any write statement to that file:

eighth File Processing 157

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 OPEN(UNIT = INTEGER EXPR, FILE = FILENAME, STATUS = 'NEW')

or

 OPEN(UNIT = INTEGER EXPR, FILE = FILENAME, STATUS ='UNKNOWN')

The second statement is preferred in our system because the first one assumes that the

file does not exist and, therefore, if it exists an error occurs.

Example 1: Assume that you want to use file POINTS DATA as an input file. The

following statement will then appear before any read statement from the file:

 OPEN(UNIT = 1, FILE = 'POINTS DATA', STATUS = 'OLD')

Example 2: Assume that you want to use file RESULT DATA as an output file. The

following statement will then appear before any write statement to the file:

 OPEN(UNIT = 1, FILE = 'RESULT DATA', STATUS = 'UNKNOWN')

8.4.2 Reading from Files

To read from a file, the file must have been opened. The READ statement will be in the

following form:

 READ(UNIT, *) VARIABLE LIST

where UNIT is the same value that is used in the open statement. The rules of reading

are exactly the same as the ones you have already seen, the only difference being that

data is taken from the file.

Example 1: Find the sum of three exam grades taken from file EXAM DATA.

Solution:

 INTEGER EXAM1, EXAM2, EXAM3, SUM
 OPEN(UNIT = 10, FILE = 'EXAM DATA', STATUS = 'OLD')
 READ(10, *) EXAM1, EXAM2, EXAM3
 SUM = EXAM1 + EXAM2 + EXAM3
 PRINT*, SUM
 END

In many cases, the number of data values in a file is not known and we would like to do

some calculations on the data values the file contains. For these cases, the read

statement will look as follows:

 READ(UNIT, *, END = NUMBER) VARIABLE LIST

where number is the label of the statement where control will be transferred after all the

data from the file is read.

Example 2: Find the average of real numbers that are stored in file NUMS DATA.

Assume that we do not know how many values are in the file and that every value is

stored on a separate line.

eighth File Processing 158

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 REAL NUM, SUM, AVG
 INTEGER COUNT
 OPEN(UNIT = 12, FILE = 'NUMS DATA', STATUS = 'OLD')
 SUM = 0.0

 COUNT = 0
333 READ(12, *, END = 999) NUM
 SUM = SUM + NUM
 COUNT = COUNT + 1
 GOTO 333
999 AVG = SUM / COUNT
 PRINT*, AVG
 END

8.4.3 Writing to Files

To write to a file, the file must have been opened using an OPEN statement and the

WRITE statement must be used in the following form:

 WRITE(UNIT, *) EXPRESSION LIST

where UNIT is the same value that is used in the OPEN statement. The rules of writing

to a file are exactly the same as those of the print statement. The * in the WRITE

statement indicates that the output is free formatted. If format is needed, the format

statement number is used instead.

Example: Create an output file CUBES DATA that contains the table of the cubes of

integers from 1 to 20 inclusive.

Solution:

 INTEGER NUM
 OPEN(UNIT = 20, FILE = 'CUBES DATA', STATUS = 'UNKNOWN')
 DO 22 NUM = 1, 20
 WRITE(20, *) NUM, NUM**3
22 CONTINUE
 END

Format statement could be used with the write statement in the same way it is used with

the print statement. The * in the write statement is replaced with the format statement

number.

8.4.4 Working with Multiple Files

In any program, more than one file may be open at the same time for either reading or

writing. The same unit number that is used in one file should not be used with any other

file in the same program. The number of the files that can be open at the same time is

limited by the number of units, which is dependent on the computer you are using.

Example: Create an output file THIRD that contains the values in file FIRST followed

by the values in file SECOND. Assume that every line contains one integer number and

we do not know how many values are stored in files FIRST and SECOND.

ninth Exercises 159

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER NUM
 OPEN(UNIT = 15, FILE = 'FIRST', STATUS = 'OLD')
 OPEN(UNIT = 17, FILE = 'SECOND', STATUS = 'OLD')
 OPEN(UNIT = 19, FILE = 'THIRD', STATUS = 'UNKNOWN')
123 READ(15, *, END = 456) NUM
 WRITE(19, *) NUM
 GOTO 123
456 READ(17, *, END = 789) NUM
 WRITE(19, *) NUM
 GOTO 456
789 STOP
 END

8.4.5 Closing Files

After using a file in our program, that file must be closed. The operating system of the

computer we are using normally closes all the files that are open at the end of the

program execution. But in some cases, we may need to read the data in the file more

than one time. This can be done by closing the file after we finish reading from it and

then re-opening the file to read the same data again. We may also need to read from

files that were created by our program. This is achieved by closing the file as an output

file then re-opening it as an input file. The CLOSE statement looks as follows:

 CLOSE(UNIT)

where unit is the same value that is used in the open statement. You can only close files

that are already open.

8.4.6 Rewinding Files

After reading from the file the reading head moves forward towards the end of the file.

In certain situations, we may need to restart reading from the beginning of the file which

is done by closing the file then re-opening it again. Another method of doing the same

thing is through the REWIND statement:

 REWIND(UNIT)

where unit is the same value that is used in the open statement. You can rewind files

that are open for reading only.

8.5 Exercises

8.5.1 Exercises on Output Design

1. What will be printed by each of the following programs?

1. REAL X
 X = 123.8367
 PRINT 10, X, X, X
10 FORMAT(' ', F7.2, 2X, F6.2, F9.5)
 END

ninth Exercises 160

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2. INTEGER J, K, N
 K = 123
 J = 456

 N = 789
 PRINT 10, K
 PRINT 11, J
 PRINT 12, N
10 FORMAT(' ', I3)
11 FORMAT('+', 3X, I3)
12 FORMAT('+', 6X, I3)
 END

3. REAL X1, X2
 INTEGER N1, N2
 READ*, X1, X2
 READ*, N1, N2
 PRINT 10, X1, X2
 PRINT 11, N1, N2
 PRINT 12, X1/X2
10 FORMAT('1',F5.2, 2X, F3.1)
11 FORMAT('0', I3, 2X, I2)
12 FORMAT('+', 12X, F6.2)
 END

Assume the input for the above program is:
81.6 9.2

-125 48

4. PRINT 20, -35, 0.0, 12 * 10.0, 125 / 5
20 FORMAT(1X, I3, „+‟, F3.1, „IS NOT EQUAL‟, F6.1,'-',I2)
 END

5. LOGICAL FLAG, P, Q
 READ*, P, Q
 FLAG = .NOT. P .AND. .NOT. Q
 PRINT 33, P, 'AND', Q
 PRINT 44, P .OR. Q, FLAG
33 FORMAT(' ', L2, 2X, A, L3)
44 FORMAT('-', L1, 2X, L1)
 END

Assume the input for the above program is:
T F

6. REAL X, Y
 INTEGER N
 X = 25.0

 Y = -35.0
 N = -35

 PRINT 40, X, SQRT(X)
 PRINT 50, Y, ABS(Y)
 PRINT 60, N, ABS(N)
40 FORMAT(' ', 'X=', 2X, F4.1, 2X, 'SQUARE ROOT = ', F4.1)
50 FORMAT(' ', 'Y=', 2X, F5.1, 2X, 'ABSOLUTE VALUE = ',F5.1)
60 FORMAT(' ', 'N=', 2X, I3, 2X, 'ABSOLUTE VALUE = ', I2)
 END

7. CHARACTER*6 CITY
 CITY = 'RIYADH'
 PRINT 1, 'THE CAPITAL IS', 2X, CITY
1 FORMAT(' ', A, 2X, A4)
 END

ninth Exercises 161

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8. INTEGER ARR(5), K
 READ*, (ARR(K), K = 1, 5)
 DO 70 K = 1, 5
 PRINT 10, ARR(K)
70 CONTINUE
10 FORMAT(' ', I4)
 END

Assume the input for the above program is:
10 20 30 40 50

9. INTEGER ARR(5), K
 READ*, (ARR(K), K = 1, 5)
 PRINT 10, (ARR(K), K = 1, 5)
10 FORMAT(' ', 5I2)
 END

Assume the input for the program is:
10 20 30 40 50

10. INTEGER ARR(5), K
 READ*, (ARR(K), K = 1, 5)
 PRINT 10, (ARR(K), K = 1, 5)
10 FORMAT(' ', 5(I2,2X))
 END

Assume the input for the program is:
10 20 30 40 50

11. REAL MAT(2,3), I, J
 READ*,((MAT(I, J), I=1,2),J=1,3)
 DO 10 I= 1, 2
 PRINT 55, (MAT(I, J), J=1,3)
10 CONTINUE
55 FORMAT(' ', 3(F4.1, 2X))
 END

Assume the input for the program is:
10 20 30 40 50 60

12. REAL A(30), B(30), DOT, Z
 INTEGER K, N
 READ*, N, (A(K), B(K), K=1, N)
 Z = DOT(N, A, B)
 PRINT 10, Z
10 FORMAT('1', 'DOT PRODUCT = ', F5.1)
 END
 REAL FUNCTION DOT(M, X, Y)
 INTEGER M, I
 REAL X(M),Y(M), SUM
 SUM = 0.0
 DO 123 I = 1, M
 SUM = SUM + X(I)* Y(I)
123 CONTINUE
 DOT = SUM
 RETURN
 END

Assume the input for the program is:
4 1 2 3 4 5 6 7 8

ninth Exercises 162

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

13. INTEGER N1, N2
 REAL S1, S2
 READ*, N1, N2
 READ*, S1
 READ*, S2
 READ*, N1
1 FORMAT('0', I4, '+', I2, 2X, '=', I4)
2 FORMAT(' ', A, 3X, F5.2)
3 FORMAT('+', 7X, F10.2)
 PRINT 1, N1, N2, N1+N2
 PRINT 2, 'S1', S1
 PRINT 3, S2
 END

Assume the input for the program is:
37

101 4113 25.0
-30.459 210.0

427.5 48
23

2. Indicate the validity of the following statements:

1. The FORMAT statement can be placed anywhere between the declaration

statements and the END statement of a FORTRAN77 program.

2. Two or more PRINT statements can refer to the same format statement. For

example, if X and Y are real variables then the following program segment:

 PRINT 5, X
 PRINT 5, Y
5 FORMAT(4X, F5.2)

is correct.

3. Complete the following programs in order to get the required outputs:

1. REAL X

 X = 5.98
 PRINT 1, X
 PRINT 2, X
1 FORMAT(__________________________)
2 FORMAT(__________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.

 X=5.980 X=6.0

2. INTEGER B
 REAL A, C
 A = 3.1
 B = 12.5

 C = 127.66
 PRINT 1520, A, B, C
1520 FORMAT(_____________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.

 3.10 12 127.7

ninth Exercises 163

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3. REAL A,
 INTEGER J
 A = -5.62705
 J = 23
 PRINT 5, A, J
5 FORMAT(________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.
 -5.63 23

4. INTEGER Z
 REAL X, Y
 X = 5.00

 Y = 59.996

 Z = 3125
 PRINT 5, X, Y, Z
5 FORMAT(________________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.
X= 5.00 Y= 60.00 Z= ***

5. PRINT 1, 'FORTRAN'
 PRINT 2, 'I LIKE'
1 FORMAT(_____________________________)
2 FORMAT(_____________________________)
 END

THE REQUIRED OUTPUT IS:

....+....1....+....2....+....3....+....4.

 I LIKE FORTRAN

6. INTEGER Y
 REAL X
 X = -20.2451
 Y = 25
 PRINT 6, X, 'AND', Y
6 FORMAT(____________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.
 -20.25 AND 25

4. Write a program segment to print the heading "FORTRAN-77--LANGUAGE"

centered at the top of a new page. assume the output line contains 80 characters.

5. Write a program that reads any real number, separates the integer and real parts of the

number and prints it in the format shown below. For example, if the input is as

follows:
123.45

your formatted output should be as follows:

....+....1....+....2....+....3....+....4.

123.450=123+0.450

6. Consider the following program

ninth Exercises 164

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 INTEGER X
 REAL Y
 X = 469
 Y = 17.38
 PRINT2, X, Y
2 FORMAT(__________________)
 END

Given the following format statements below:

a. 2 FORMAT(5X, I3, 2X, F4.1)

b. 2 FORMAT(6X, I3, 2X, F4.1)

c. 2 FORMAT(1X, I8, F6.1)

Which of the above FORMAT statements can be used in place of the FORMAT

statement in the program to print the output as follows?

....+....1....+....2....+....3....+....4.
 469 17.4

7. The output of the program given below is as follows

....+....1....+....2....+....3....+....4.

 TEST = -3.527 M=***

M = 2531 TEST = -3.5270
 M = -3.53 M=2531

Place the proper FORMAT statement numbers with the PRINT statements such that

the output is as given above.

 REAL TEST
 INTEGER M

 TEST = -3.527
 M = 2531
 PRINT___A___, TEST, M
 PRINT___B___, M, TEST
 PRINT___C___, TEST, M
10 FORMAT(2X, 'TEST = ',F6.3, 2X, 'M=', I3)
20 FORMAT(2X, 'M = ',F8.2, 2X, 'M=', I4)
30 FORMAT('0','M =',I5, 2X, 'TEST = ', F7.4)
 END

8.5.2 Exercises on FILES

1. Consider the following statement:

 READ(8, *, END = 10) A

Which of the following statements is (are) correct about the above statement?

1. The value of A will be read from the area after Assume the input for the program

is:.

2. At the end of the file, this read statement will transfer control to statement labeled

10.

3. The value of A will be read from the file linked to unit 8.

2. Which of the following statements is/are FALSE about files:

1. The statement that assigns unit number 9 to the input file "DATA" is:

ninth Exercises 165

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

OPEN (UNIT = 9, FILE = 'DATA', STATUS = 'OLD')

2. The OPEN statement for a data file must precede any READ or WRITE

statements that uses that file.

3. A statement that reads two numbers from a file may look like:

READ (9, *, END = 31) K, L

4. The OPEN statement for a file should be executed only once in the program.

5. A statement that writes two numbers into a file may look like:

PRINT(9, *) K, L

6. A file is a collection of data records.

7. A file is usually used only once.

8. A file can be opened at the same time with two different unit numbers.

9. Two files with the same unit number can not be opened at the same time.

10. We store data in files when we do not need them any more.

3. What will be printed by the following programs?

1. INTEGER M, K
 OPEN (UNIT = 10, FILE = 'INPUT DATA', STATUS = 'OLD')
 READ (10, *, END = 10) (M, K = 1,100)
10 PRINT*, M, K-1
 END

Assume that the file 'INPUT DATA' contains the following:
1 2 3

4 5

6 7 8 9

6

2. INTEGER J, K
 OPEN (UNIT = 3, FILE = 'FF1', STATUS = 'OLD')
 DO 50 J=1,100
 READ (3,*,END = 60) K
50 CONTINUE
60 PRINT*,'THE VALUES ARE:'
 PRINT*,K,J
 END

The contents of the file 'FF1' are:
20 50 67 45 18 -2 -20

88 66 77 105 55 300

3. INTEGER M
 OPEN (UNIT = 10, FILE = 'INPUT',STATUS = 'OLD')
 READ (10,*) M
20 IF (M.NE.-1) THEN
 PRINT*,M
 READ(10, *, END = 30) M
 GOTO 20
 ENDIF
 PRINT*, 'DONE'
30 PRINT*, 'FINISHED'
 END

Assume that the file 'INPUT' contains the following :
7

ninth Exercises 166

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3

9
4
-1

4. INTEGER N, K
 OPEN (UNIT = 12, FILE = 'INFILE', STATUS = 'OLD')
 READ*,N
 DO 10 K=1,N
 PRINT*, N
 READ(12,*,END = 15) N
10 CONTINUE
 PRINT*,N
15 CONTINUE
 END

Assume the input for the program is:
4

Given that the file 'INFILE' contains the following data
2

3

5 INTEGER A, B
 OPEN (UNIT = 10, FILE = 'INPUT DATA', STATUS = 'OLD')
 OPEN (UNIT = 11, FILE = 'OUTPUT DATA', STATUS = 'NEW')
 READ*,A,B
 READ(10,*) A,B,A
 WRITE(11,*) A, B
 READ(10, *, END = 10) A, B
10 WRITE(11,*) A, B
 END

Assume the input for the program is:
10 11

Assume that the file 'INPUT DATA' contains the following data
4 5

6 7

8

What will be written in the file 'OUTPUT DATA' file ?

6. INTEGER S, T, U
 OPEN (UNIT = 10, FILE = 'INPUT',STATUS = 'OLD')
10 READ(10, *, END = 30) S, T
 U = S
 T = U

 U = S
 IF (S.NE.T) THEN
 U = 1
 ELSE
 U = 0
 ENDIF
 GOTO 10
30 PRINT*, U, S, T
 END

Assume the file 'INPUT' contains the following data:
3

4

5
6
7

ninth Exercises 167

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8

7. INTEGER X(6), M, K
 OPEN (UNIT = 10, FILE = 'INPUT1', STATUS = 'OLD')
 OPEN (UNIT = 11, FILE = 'INPUT2', STATUS = 'OLD')
 M = 0
10 M = M + 1
 READ(10,*) X(M)
 IF (X(M).GT.0) GOTO 10
20 M = M + 1
 READ(11,*) X(M)
 IF (X(M).GT.0) GOTO 20
 PRINT 1, (X(K),K=1,M)
1 FORMAT(' ',I2,I2,I2,I2,I2,I2)
 END

Assume you have two files 'INPUT1' and 'INPUT2' with the following data:

INPUT1 INPUT2

3 6

8 0

0 7

5 0

8. INTEGER N, K
 OPEN(UNIT=22, FILE = 'INPUT', STATUS = 'OLD')
33 READ (22,*) N
 IF (N.EQ.0) GOTO 44
 PRINT*, ('*', K=1,N)
 GOTO 33
44 PRINT*, 'HISTOGRAM'
 END

Given that the file 'INPUT' contains the following data
5

2
4
0

4. A set of three real numbers are read from the file TEST and the number associated to

the file is 10. The output is then written to a new file called REST and the number

associated to the file is 12. Write a FORTRAN 77 program to do the above

operations.

5. Write a FORTRAN 77 program to copy an old file "TEST1" to a new "TEST2". It is

assumed that each line of "TEST1" contains a student ID and his garde out of 100.

The number of data lines in the old file is not known.

6. Write a FORTRAN 77 program which will read values from a data file, the file name

is: INPUT and its type is DATA.

1. Open the INPUT file.

2. Open a new output file called: ODD DATA.

3. open a new output file called: EVEN DATA. It is not known exactly how

many data there is in the INPUT file.

4. Use the read (... END =..) to read the values from the file one by one and

5. If the value is odd, write it in the file: ODD DATA.

6. If the value is even, write it in the file: EVEN DATA.

ninth Solutions to Exercises 168

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7. A file called INPUT is assumed to contain an unknown number of lines, however, we

know that every line contains exactly two numbers. Write a program that reads each

line from file INPUT and prints the smaller of the two numbers in a file called

SMALL and the larger in a file called BIG.

8. The following incomplete program was written to compare two files 'INFOR1' and

'INFOR2'. If the data in the files is the same then the program prints the message

'SAME FILES'. Otherwise the program prints 'DIFFERENT FILES'. Each line in

both files contain two integer numbers followed by one logical value. Assume both

files have the same number of records. Complete the program:
 INTEGER X1, X2, X3, X4
 LOGICAL __(1)__, __(2)__,FLAG
 OPEN (UNIT = 1, FILE = 'INFOR1', STATUS = 'OLD')
 _________________(3)_________________

 FLAG = __(4)__
10 READ (1,*,END = __(5)__) X1, X2, VAL1
 READ (2,*) X3, X4, VAL2
 IF (X1.EQ.X3 .AND. ________(6)__________) THEN
 GOTO 10
 ELSE
 FLAG = .FALSE.
 ENDIF
20 IF (FLAG) THEN
 PRINT*,____(7)____
 ELSE
 PRINT*,____(8)____
 ENDIF
 END

8.6 Solutions to Exercises

8.6.1 Solutions to Exercises on Output Design

Ans 1.

1.

....+....1....+....2....+....3....+....4.

 123.84 123.84123.83670

2.

....+....1....+....2....+....3....+....4.

123456789

3.

(new page)

....+....1....+....2....+....3....+....4.

81.60 9.2

*** 48 8.87

4.

....+....1....+....2....+....3....+....4.

 -35+0.0IS NOT EQUAL 120.0-25

ninth Solutions to Exercises 169

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

5.

....+....1....+....2....+....3....+....4.

 T AND F

T F

6.

....+....1....+....2....+....3....+....4.

X= 25.0 SQUARE ROOT = 5.0
Y= -35.0 ABSOLUTE VALUE = 35.0

N= -35 ABSOLUTE VALUE = 35

7.

....+....1....+....2....+....3....+....4.

THE CAPITAL IS RIYA

8.

....+....1....+....2....+....3....+....4.

 10
 20
 30

 40
 50

9.

....+....1....+....2....+....3....+....4.

1020304050

10.

....+....1....+....2....+....3....+....4.

10 20 30 40 50

11.

....+....1....+....2....+....3....+....4.

10.0 30.0 50.0
20.0 40.0 60.0

12.

(new page)

....+....1....+....2....+....3....+....4.

DOT PRODUCT = 100.0

13.

....+....1....+....2....+....3....+....4.

23+** = 124

S1 ***** 427.50

ninth Solutions to Exercises 170

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 2.

1. VALID

2. VALID

Ans 3.

1.

1 FORMAT (5X, 'X=',F5.3)
2 FORMAT ('+', 14X, 'X=', F3.1)

2.

1520 FORMAT (3X, F4.2, 2X, I2, 1X, F5.1)

3.

5 FORMAT (' ', 9X, F5.2, 5X, I2)

4.

5 FORMAT (3X, 'X= ', F4.2,1X, 'Y= ',2X,F5.2, 2X,'Z= ', I3)

5

1 FORMAT (' ', 8X, A)
2 FORMAT ('+', 1X, A)

6.

6 FORMAT (' ', 4X, F6.2, 3X, A, 3X, I2)

Ans 4.

 PRINT 10
10 FORMAT('1', 30X, 'FORTRAN-77--LANGUAGE')

Ans 5.

 REAL X, RPART
 INTEGER IPART
 READ*, X
 IPART = X
 RPART = X - IPART
 PRINT 5, X, IPART, RPART
5 FORMAT (' ', F7.3, '=', I3, '+', F5.3)
 END

Ans 6.

b or c

Ans 7.

(a) 10

(b) 30

(c) 20

8.6.2 Solutions to Exercises on Files

Ans 1.

 2 3

ninth Solutions to Exercises 171

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 2.

 4 5 7 8 10

Ans 3.

 6 10

 THE VALUES ARE:

 88 3

 7

 3

 9

 4

 DONE

 FINISHED

 4

 2

 3

 6 5

 8 5

 0 7 7

 3 8 0 6 0

 **

 HISTOGRAM

Ans 4.

 REAL RN1, RN2, RN3
 OPEN(UNIT = 10, FILE = 'TEST', STATUS = 'OLD')
 OPEN(UNIT = 12, FILE = 'REST', STATUS = 'UNKNOWN')
 READ(10, *) RN1, RN2, RN3
 WRITE(12, *) RN1, RN2, RN3
 END

Ans 5.

 INTEGER ID, GRD
 OPEN(UNIT = 1, FILE = 'TEST1', STATUS = 'OLD')
 OPEN(UNIT = 2, FILE = 'TEST2', STATUS = 'UNKNOWN')
5 READ(1, *, END = 10) ID, GRD
 WRITE(2, *) ID, GRD
 GOTO 5
10 PRINT*, 'DONE'
 END

ninth Solutions to Exercises 172

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 6.

 INTEGER NUM
 OPEN(UNIT = 20, FILE = 'INPUT DATA', STATUS = 'OLD')
 OPEN(UNIT = 30, FILE = 'ODD DATA', STATUS = 'UNKNOWN')
 OPEN(UNIT = 40, FILE = 'EVEN DATA', STATUS = 'UNKNOWN')
100 READ(20, *, END = 200) NUM
 IF (MOD(NUM, 2) .EQ. 1) THEN
 WRITE(30, *) NUM
 ELSE
 WRITE(40, *) NUM
 ENDIF
 GOTO 100
200 PRINT*, 'DONE'
 END

Ans 7.

 INTEGER N1, N2
 OPEN(UNIT = 11, FILE = 'INPUT', STATUS = 'OLD')
 OPEN(UNIT = 12, FILE = 'SMALL', STATUS = 'UNKNOWN')
 OPEN(UNIT = 13, FILE = 'BIG', STATUS = 'UNKNOWN')
20 READ(11, *, END = 25) N1, N2
 IF (N1 .LT. N2) THEN
 WRITE(12, *) N1
 WRITE(13, *) N2
 ELSE
 WRITE(12, *) N2
 WRITE(13, *) N1
 ENDIF
 GOTO 20
25 PRINT*, 'DONE'
 END

Ans 8.

1. VAL1

2. VAL2

3. OPEN(UNIT = 2, FILE = 'INFOR2', STATUS = 'OLD')

4. TRUE.

5. 20

6. X2 .EQ. X4 .AND. VAL1 .EQV. VAL2

7. 'SAME FILES'

8. 'DIFFERENT FILES'

173

ninth Sorting 174

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

9 APPLICATION

DEVELOPMENT: SORT &

SEARCH

In this chapter, we introduce a number of applications developed in FORTRAN. The

methodology we follow to develop these applications will be shown as we consider

each application in detail.

Sorting and Searching are two applications discussed in this chapter. When sorting,

we sort (order) elements of a list in either an increasing or a decreasing order.

Searching, on the other hand, is the process of finding an element within a list.

9.1 Sorting

Sorting is the process of ordering the elements of any list either in increasing (or

ascending) or decreasing (or descending) order. Here, we discuss a method for sorting a

list of elements (values) into order, according to their arithmetic values. It is also

possible to sort elements that have character values since each character has a certain

arithmetic value for its representation. This will be discussed in details in Chapter 10.

Sorting in increasing order means that the smallest element in value should be first in

the list. Then comes the next smallest element, followed by the next smallest and so on.

Figure 1 shows three lists: unsorted (unordered) list, the list sorted in increasing order,

and the same list sorted in decreasing order The exact reverse happens in sorting a list in

decreasing order. In the literature, one can find a number of well established techniques

for achieving this goal (sorting). Techniques such as insertion sort, bubble sort, quick

sort, selection sort, etc. differ in their complexity and speed. In the following section,

we introduce a simple sorting technique and its FORTRAN implementation.

Unsorted Increasing order Decreasing order

73 18 89

65 40 73

52 52 65

18 65 65

89 65 52

65 73 40

40 89 18

Figure 1: Unsorted and sorted lists

ninth Sorting 175

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

9.1.1 A Simple Sorting Technique

The idea of this sorting technique is to select the minimum (or the maximum depending

on whether the sorting is in increasing or decreasing order) value within the list and

assign it to be the first element of the list. Next, we take the remaining elements and

select the minimum among them and assign it to be the second element. This process is

repeated until the end of the list is reached. To select the minimum within a list of

elements, one has to compare all the elements and keep the minimum value updated.

In the following subroutine, this sorting technique is implemented. Two loops are

used in this procedure. The first moves through the elements of the array one after the

other and stops at the element before the last element in the array. For each of these

elements comparisons are conducted between that element and the rest of the array. So,

the second loop moves over the rest of the array elements starting at the element next to

the one being considered in the first loop. For example, if the first loop is at element

number 3, the second loop would move over the elements from 4 to the last. Within the

second loop, element 3 is compared with all the remaining elements starting from the

fourth element to the last to make sure that element 3 is less than all of them. If element

5, for example, was found to be less than element 3, we swap the two elements. As we

move ahead with the first loop, we are sure that the element we leave is the smallest

among the elements that follow it. The FORTRAN subroutine that implements this

sorting technique is as follows:

 SUBROUTINE SORT (A, N)
 INTEGER N, A(N), TEMP, K, L
 DO 11 K = 1, N - 1
 DO 22 L = K+1, N
 IF (A(K).GT.A(L)) THEN
 TEMP = A(K)
 A(K) = A(L)

 A(L) = TEMP
 ENDIF
22 CONTINUE
11 CONTINUE
 RETURN
 END

Let us now run the above subroutine when the value of N is 5 and the array A consists

of the following :

3 -2 4 9 0

After the first pass (the first iteration of the K-loop), the list becomes:

-2 3 4 9 0

After the second iteration of the K-loop, the list becomes:

-2 0 4 9 3

Notice that the 0, the smallest within the 4 remaining elements is the one swapped to the

second position. After the third iteration of the K-loop, the list becomes:

-2 0 3 9 4

After the fourth iteration of the K-loop, the list becomes:

ninth An Application: Maintaining student grades 176

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

-2 0 3 4 9

9.2 Searching

As part of any system, information or data might need to be stored in some kind of data

structure. One example is one-dimensional arrays. Assume that information about

students in some university is stored. Assume again that the IDs of students registered in

the current semester are stored in an array STUID. Suppose that an instructor asks the

registrar to check whether a student, who has an 882345 as his ID, is registered this

semester or not. For the registrar to conduct this check, he has to search within the array

STUID for the student who has the ID 882345.

A number of search techniques are well known in computer science. These

techniques locate a value within a set of values stored in some data structure. A simple

searching technique, namely sequential search, is introduced in the next section.

9.2.1 Sequential Search

Sequential search starts at the beginning of a list (array) and looks at each element

sequentially to see if it is the one being searched. This process continues until either the

element is found or the list ends, that is all the elements in the list have been checked.

The FORTRAN function that implements this algorithm follows. The function

SEARCH searches for the element K in the array A of size N. If the element is found,

the index of the element is returned. Otherwise, a zero value is returned.

 INTEGER FUNCTION SEARCH(A, N, K)
 INTEGER N, A(N), K, J
 LOGICAL FOUND
 SEARCH = 0
 J = 1

 FOUND = .FALSE.
10 IF (.NOT. FOUND .AND. J .LE. N) THEN
 IF (A(J) .EQ. K) THEN
 FOUND = .TRUE.

 SEARCH = J
 ELSE
 J = J + 1
 ENDIF
 GOTO 10
 ENDIF
 RETURN
 END

When the element K is found, the function returns with the position of K. Otherwise,

after all the elements have been checked, the function returns with the value zero.

9.3 An Application: Maintaining student grades

Question: Write a program that reads IDs of students together with their grades in some

exam. The number of students is read first. The input is given such that each line

contains the ID of the student and his grade. Assume the following input :
7

886767 94

878787 35
898982 82
867878 63

ninth An Application: Maintaining student grades 177

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

867676 55

898777 75
886788 22

After reading the IDs and the grades, the program must allow us to interactively do the

following:

1. SORT according to ID

2. SORT according to GRADES

3. CHANGE a GRADE

4. EXIT the program

Solution:

We will first write a subroutine MENU that gives us the various options listed in the

problem and also reads an option. The subroutine MENU is as follows :

 SUBROUTINE MENU (OPTION)
 INTEGER OPTION
 PRINT*, 'GRADES MAINTENANCE SYSTEM '
 PRINT*, ' 0. EXIT THIS PROGRAM'
 PRINT*, ' 1. SORT ACCORDING TO ID '
 PRINT*, ' 2. SORT ACCORDING TO GRADES '
 PRINT*, ' 3. CHANGE A GRADE '
 PRINT*, ' ENTER YOUR CHOICE :'
 READ*, OPTION
 RETURN
 END

We will now rewrite the subroutine SORT since we need to sort one array and also

make the corresponding changes to another array. For example, if we are sorting the

array of grades, the swapping of elements in this array must be reflected in the array of

IDs as well. Otherwise, the grade of one student would correspond to the ID of another.

After sorting, we will print the two arrays in the subroutine. The new subroutine

TSORT is as follows:

 SUBROUTINE TSORT (A, B, N)
 INTEGER N, A(N), B(N), TEMP, J, K, L
 DO 11 K = 1, N - 1
 DO 22 L = K+1, N
 IF (A(K).GT.A(L)) THEN
 TEMP = A(K)

 A(K) = A(L)
 A(L) = TEMP
 TEMP = B(K)

 B(K) = B(L)
 B(L) = TEMP
 ENDIF
22 CONTINUE
11 CONTINUE
 PRINT*, 'SORTED DATA : '
 DO 33 J = 1, N
 PRINT*, A(J), B(J)
33 CONTINUE
 RETURN
 END

Note that we are sorting array A but making all the corresponding changes in array B.

To this subroutine, we can pass the array of grades as array A and the array of IDs as

array B. The subroutine then returns the array of grades sorted but at the same time

ninth Exercises 178

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

makes the corresponding changes to the array of IDs. If to this subroutine, we pass the

array of IDs as array A and the array of grades as array B, the subroutine returns the

array of IDs sorted but at the same time makes the corresponding changes to the array of

grades.

To change a grade, we are given the ID of the student. We need to search the array of

IDs for the given ID. We can use the function SEARCH we developed in Section 9.2.

We can pass the array of IDs to the dummy array A and the ID to be searched to the

dummy argument K. Note that the function SEARCH returns a zero if the ID being

searched is not found.

Using the subroutines MENU and TSORT, and the function SEARCH, we develop

the main program as follows :

 INTEGER GRADES(20), ID(20)
 INTEGER SEARCH, SID, NGRADE, OPTION, K, N
 PRINT*, 'ENTER NUMBER OF STUDENTS'
 READ*, N
 DO 10 K = 1, N
 PRINT*, 'ENTER ID AND GRADE OF STUDENT ', K
 READ*, ID(K), GRADES(K)
10 CONTINUE
 CALL MENU (OPTION)
15 IF (OPTION .NE. 0) THEN
 IF (OPTION .EQ. 1) THEN
 CALL TSORT(ID, GRADES, N)
 ELSEIF (OPTION .EQ. 2) THEN
 CALL TSORT(GRADES, ID, N)
 ELSEIF (OPTION .EQ. 3) THEN
 PRINT*, 'ENTER ID \& THE NEW GRADE'
 READ*, SID, NGRADE
 K = SEARCH(ID, N, SID)
 IF (K.NE.0) THEN
 GRADES(K) = NGRADE
 ELSE
 PRINT*, 'ID : ' ,SID, ' NOT FOUND'
 ENDIF
 ELSE
 PRINT*, 'INPUT ERROR '
 ENDIF
 CALL MENU (OPTION)
 GOTO 15
 ENDIF
 END

The main program first reads the two arrays ID and GRADES each of size N. Then it

displays the menu and reads an option from the screen into the variable OPTION using

subroutine MENU. If the input option is 1, the subroutine TSORT is called in order to

sort IDs. If the input option is 2, the subroutine TSORT is called in order to sort the

grades. If the input option is 3, the ID to be searched (SID) and the new grade

(NGRADE) are read, and the function SEARCH is invoked. If the ID is found, the

corresponding grade in array GRADES is changed. Otherwise, a message indicating

that the SID is not found is printed. The main program runs until option 4 is chosen.

9.4 Exercises

1. Modify the application given in Section 9.3 as follows:

ninth Exercises 179

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

a. Add an option that will list the grade of a student given his ID.

b. Given a grade, list all IDs who scored more than the given grade.

c. Add an option to find the average of all the grades.

d. Add an option to find the maximum grade and the corresponding ID.

e. Add an option to find the minimum grade and the corresponding ID.

f. Add an option to list the IDs of all students above average.

2. The seating arrangement of a flight is stored in a data file FLIGHT containing six

lines. each line contains three integers. a value of 1 represents a reserved seat, and a

value of 0 represents an empty seat. the contents of flight are:
1 0 1

0 1 1

1 0 0
1 1 1

0 0 1
0 0 0

write an interactive program which has a menu with the following options:

0. Exit

1. Show number of empty seats

2. Show Empty seats

3. Reserve a seat

4. Cancel a seat

The program first reads from the data file FLIGHT and stores the data in a two-

dimensional integer array seats of size 6 3 row-wise. then:

a. If option 1 is chosen, the main program passes the array seats to an integer function

NEMPTY which returns the number of empty seats. Then the main program prints

this number.

b. If option 2 is chosen, the main program passes the array seats to a subroutine

ESEATS which returns the number of empty seats and the positions of all empty

seats in a two-dimensional integer array EMPTY of size 18 2. Then, the main

program prints the array EMPTY row-wise.

c. If option 3 is chosen, the user is prompted to enter the row number and the column

number of the seat to be reserved. the main program then passes these two integers

together with the array SEATS to a logical function RESERV which reserves a seat

if it is empty and returns the value .true. to the main program. If the requested seat is

already reserved or if the row or column number is out of range the function returns

the value .false. to the main program. The main program then prints the message

SEAT RESERVED or SEAT NOT AVAILABLE respectively.

d. If option 4 is chosen, the user is prompted to enter the row number and the column

number of the seat to be canceled. the main program then passes these two integers

together with the array SEATS to a logical function CANCEL which cancels a seat if

it is reserved and returns the value .true. to the main program. if the requested seat is

already empty or if the row or column number is out of range the function returns the

tenth Solutions to Exercises 180

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

value .false. to the main program. The main program then prints the message SEAT

CANCELED or WRONG CANCELLATION respectively.

e. If option 0 is chosen, the main program stops immediately if no changes were made

to the array seats. otherwise, the main program closes the data file flight and then

opens it to write into the data file the new seating arrangement stored in the array

seats before stopping.

9.5 Solutions to Exercises

1. For each of the following subprograms, appropriate changes must be made to the

subroutine MENU on page 190 and the main program on page 192.

a.

 SUBROUTINE LISTGR(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), SID, SEARCH, K
 PRINT*, 'ENTER STUDENT ID'
 READ*, SID
C USING SEARCH FUNCTION ON PAGE 189
 K = SEARCH(ID, N, SID)
 IF (K .NE. 0)THEN
 PRINT*,'GRADE OF ID #', SID,' IS ', GRADE(K)
 ELSE
 PRINT*,'ID #', SID,' DOES NOT EXIST'
 ENDIF
 RETURN
 END

b.

 SUBROUTINE LISALL(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), SGR, SEARCH, K
 PRINT*, 'ENTER STUDENT GRADE'
 READ*, SGR
 PRINT*,'ID OF STUDENTS WITH GRADE = ', SGR
 DO 10 K = 1, N
 IF(GRADE(K) .GE. SGR) PRINT*, ID(K)
10 CONTINUE
 RETURN
 END

c.

 REAL FUNCTION AVERAG(GRADES, N)
 INTEGER N, GRADES(N), K
 REAL SUM
 SUM = 0
 DO 10 K = 1, N
 SUM = SUM + GRADE(K)
10 CONTINUE
 AVERAG = SUM / N
 RETURN
 END

tenth Solutions to Exercises 181

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

d.

 SUBROUTINE LISMAX(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), INDEX, MAXGRD, K
 INDEX = 1
 MAXGRD = GRADES(1)
 DO 10 K = 1, N
 IF(GRADES(K) .GT. MAXGRD) THEN
 MAXGRD = GRADES(K)
 INDEX = K
 ENDIF
10 CONTINUE
 PRINT*,'MAXIMUM GRADE = ', MAXGRD
 PRINT*,'ID OF STUDENT WITH MAXIMUM GRADE = ', ID(INDEX)
 RETURN
 END

e.

 SUBROUTINE LISMIN(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), INDEX, MINGRD, K
 INDEX = 1
 MINGRD = GRADES(1)
 DO 10 K = 1, N
 IF(GRADES(K) .LT. MINGRD) THEN
 MINGRD = GRADES(K)
 INDEX = K
 ENDIF
10 CONTINUE
 PRINT*,'MINIMUM GRADE = ', MINGRD
 PRINT*,'ID OF STUDENT WITH MINIMUM GRADE = ', ID(INDEX)
 RETURN
 END

f.

 SUBROUTINE LISIDS(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), K
 REAL AVERAG, AVG
C USING AVERAGE FUNCTION IN PART C
 AVG = AVERAG (GRADES, N)
 PRINT*, 'ID OF STUDENTS ABOVE AVERAGE'
 DO 10 K = 1, N
 IF(GRADE(K) .GT. AVG) PRINT*, ID(K)
10 CONTINUE
 RETURN
 END

tenth Solutions to Exercises 182

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 2.

 INTEGER SEATS(6,3), EMPTY(18,2), NEMPTY, OPTION,ROW,CLMN
 INTEGER J, K
 LOGICAL RESERV, CANCEL, CHANGE
 OPEN(UNIT=40, FILE = 'FLIGHT', STATUS = 'OLD')
 DO 10 J = 1, 6
 READ(40,*)(SEATS(J,K), K=1,3)
10 CONTINUE
 CHANGE = .FALSE.
 CALL MENU(OPTION)
15 IF(OPTION .NE. 0)THEN
 IF(OPTION .EQ. 1)THEN
 PRINT*,'THE NUMBER OF EMPTY SEATS = ', NEMPTY(SEATS)
 ELSEIF(OPTION .EQ. 2)THEN
 CALL ESEATS(SEATS, EMPTY, N)
 PRINT*,'EMPTY SEATS:'
 DO 20 J = 1, N
 PRINT*,(EMPTY(J,K), K = 1, 2)
20 CONTINUE
 ELSEIF(OPTION .EQ. 3)THEN
 PRINT*,'ENTER NEEDED SEATS ROW AND COLUMN NUMBER'
 READ*,ROW, CLMN
 IF(RESERV(SEATS, ROW, CLMN))THEN
 PRINT*,'SEAT RESERVED'
 CHANGE = .TRUE.
 ELSE
 PRINT*,'SEAT NOT AVAILABLE'
 ENDIF
 ELSEIF(OPTION .EQ. 4)THEN
 PRINT*,'ENTER ROW# AND COLUMN# OF THE SEAT TO CANCEL'
 READ*,ROW, CLMN
 IF(CANCEL(SEATS, ROW, CLMN))THEN
 PRINT*,'SEAT CANCELED'
 CHANGE = .TRUE.
 ELSE
 PRINT*,'WRONG CANCELLATION'
 ENDIF
 ELSE
 PRINT*,'WRONG OPTION'
 ENDIF
 CALL MENU(OPTION)
 GOTO 15
 ENDIF
 IF(CHANGE)THEN
 CLOSE(40)
 OPEN(UNIT=40, FILE = 'FLIGHT', STATUS = 'OLD')
 DO 25 J = 1, 6
 WRITE(40,*)(SEATS(J,K), K = 1, 3)
25 CONTINUE
 ENDIF
 END

tenth Solutions to Exercises 183

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 SUBROUTINE MENU(OPTION)
 INTEGER OPTION
 PRINT*,'***** FLIGHT RESERVATION *****'
 PRINT*,'1. NUMBER OF EMPTY SEATS'
 PRINT*,'2. EMPTY SEATS '
 PRINT*,'3. RESERVE SEAT'
 PRINT*,'4. CANCEL SEAT'
 PRINT*,'5. EXIT'
 PRINT*,' ENTER YOUR OPTION:'
 READ*,OPTION
 RETURN
 END

 INTEGER FUNCTION NEMPTY(SEATS)
 INTEGER SEATS(6,3), J, K
 NEMPTY = 0
 DO 30 J = 1 , 6
 DO 35 K = 1 , 3
 IF(SEATS(J,K) .EQ. 0)THEN
 NEMPTY = NEMPTY + 1
 ENDIF
35 CONTINUE
30 CONTINUE
 RETURN
 END

 SUBROUTINE ESEATS(SEATS, EMPTY, N)
 INTEGER N, SEATS(6,3), EMPTY(18,2), J, K
 N = 1
 DO 40 J = 1, 6
 DO 45 K = 1, 3
 IF(SEATS(J,K) .EQ. 0)THEN
 EMPTY(N,1)= J EMPTY(N,2)= K

 N = N + 1
 ENDIF
45 CONTINUE
40 CONTINUE
 N = N - 1
 RETURN
 END

 LOGICAL FUNCTION RESERV(SEATS, ROW, CLMN)
 INTEGER SEATS(6,3), ROW, CLMN
 RESERV = .FALSE.
 IF(ROW .GE. 1 .AND. ROW .LE. 6)THEN
 IF(CLMN .GE. 1 .AND. CLMN .LE. 3)THEN
 IF(SEATS(ROW,CLMN) .EQ. 0)THEN
 SEATS(ROW,CLMN) = 1

 RESERV = .TRUE.
 ENDIF
 ENDIF
 ENDIF
 RETURN
 END

tenth Solutions to Exercises 184

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 LOGICAL FUNCTION CANCEL(SEATS, ROW, CLMN)

 INTEGER SEATS(6,3), ROW, CLMN
 CANCEL = .FALSE.
 IF(ROW .GE. 1 .AND. ROW .LE. 6)THEN
 IF(CLMN .GE. 1 .AND. CLMN .LE. 3)THEN
 IF(SEATS(ROW,CLMN) .EQ. 1)THEN
 SEATS(ROW,CLMN) = 0
 CANCEL = .TRUE.
 ENDIF
 ENDIF
 ENDIF
 RETURN
 END

185

tenth Character Operations 186

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

10 ADVANCED TOPICS

In this chapter, we will expand on earlier topics discussed in this book. We introduce

more advanced character operations, N-dimensional arrays, double precision and

complex data types.

10.1 Character Operations

FORTRAN provides the capability of operating on character data. But what kinds of

operations make sense on character strings ? Certainly the arithmetic operators: +, -, *, /

and logical operators: NOT, AND, OR do not make sense with respect to character data.

In this section, we shall highlight the kinds of operations that we can apply on strings.

10.1.1 Character Assignment

Character constants can be assigned to character variables using an assignment

statement. If the length of a character constant is shorter than the character variable

length, blanks are added to the right of the constant. If the length of a character constant

is longer than the character variable length, the excess characters on the right are

ignored.

Example 2: What will be printed be the following program?

 CHARACTER *5 MSG1 , MSG2
 MSG1 = 'GOOD'

 MSG2 = 'EXCELLENT'
 PRINT*, MSG1, MSG2
 END

Solution:
GOOD EXCEL

Notice that MSG1 contains the word GOOD followed by 1 blank; an equivalent

statement would be

 MSG1 = 'GOOD '

 while MSG2 contains 'EXCEL'.

Example 2: What will be printed be the following program?

 CHARACTER *5 MSG1 , MSG2
 MSG1 = 'GOOD1'
 MSG2 = 'EXCELLENT'
 PRINT*, MSG1, MSG2
 END

tenth Character Operations 187

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:
GOOD1EXCEL

Notice that there is no automatic blanks between the values of character variables.

A character variable can be used to initialize another character variable as follows:

 CHARACTER BTYPE1*3 , BTYPE2*3
 BTYPE1 = 'AB+'

 BTYPE2 = BTYPE1

Both variables, BTYPE1 and BTYPE2, contain the character string 'AB+'.

10.1.2 Comparison of Character Strings

To perform the comparison, the following points have to be considered:

1. A collating sequence includes all possible characters from lowest to the highest

values. Two standard sequences are known: ASCII (American Standard Code for

Information Interchange) and EBCDIC (Extended Binary Coded Decimal

Interchange Code). In the following table the number that represent a character is

equal to the sum of its row number and column number. b represents the space

character. Gaps in the tables represent unprintable or control characters.

ASCII Table

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
16
32 b ! “ # $ % & „ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ^ _
96 ` a b c d e f g h i j k l m n o
112 p q r s t u v w x y z { | } ~

tenth Character Operations 188

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

EBCDIC Table

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32

48

64 b c . < (+ |

80 & ! $ *) ;

96 - / , % _ > ?

112 : # @ „ = “

128 a b c d e f g h i

144 j k l m n o p q r

160 ~ s t u v w x y z

176

192 { A B C D E F G H I

208 } J K L M N O P Q R

224 \ S T U V W X Y Z

240 0 1 2 3 4 5 6 7 8 9

 These sequences are based on the numeric value used to represent a character in

order to store that character in the computer memory. The ASCII and the EBCDIC

sequences use different numeric values for each character. An important point to

note here is that the numeric values associated with alphabetic characters do not

appear in a continuous numeric sequence in either the ASCII or the EBCDIC

character sets. But the numeric values of numeric characters ('0','1', etc.) appear in a

continuous sequence in both character sets. Also note that the numeric characters

appear after the alphabetic characters in the EBCDIC collating sequence while they

appear before in the ASCII collating sequence.

2. All of the relational operators: .EQ. , .NE. , .LT. , .LE. , .GT. and .GE. can be used

to compare character strings.

3. In order to compare two strings they must be equal in length. If one string is

shorter than the other, FORTRAN adds blanks to the right of the shorter string

so that they become of equal length.

4. The comparison of two strings starts from left to right character by character.

5. In order for two strings to be equal, they must be identical, character by character.

For example, the string 'ICS ' is not equal to ' ICS' because of different position

of the blank character.

6. If a character string is less than another character string, it is implied that the first

string precedes the second string in the order indicated in the collating

sequence. Thus 'ABC' is less than 'BCD'.

7. For clarity, sometimes, we use b to represent a blank.

Example: What will be printed be the following program?

tenth Character Operations 189

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 CHARACTER WORD1*5 , WORD2*5
 WORD1 = 'MAN'
 WORD2 = 'WOMAN'
 IF (WORD1 .LT. WORD2) THEN
 PRINT*, WORD1
 ELSE
 PRINT*, WORD2
 ENDIF
 END

Solution: To perform the comparison between WORD1 and WORD2 in the above

program, two blanks have to be added to the right of WORD1 to be equal in length with

WORD2; an equivalent statement would be WORD1 = 'MANbb' . Since M is less than

W in the collating sequence the output would be:
MAN

10.1.3 Extraction of Substrings

Each character in a string of size N can be referred to by a number called a character

position. The first position in a string is character position 1 and the last character is

character position N. By specifying a starting position and a stopping position in a

string, we can identify parts of a string called the substring . If TEXT is a character

variable of size N, then TEXT(I:J) is a substring starting with the Ith character of TEXT

and ending with the Jth character of TEXT, where I and J are integer values. J must be

greater than or equal I; otherwise an execution error would occur. In addition, both I and

J must be in the range 1,2,3,...n; otherwise they would not correspond to any character

position within the variable. If I is omitted (i.e. TEXT(:J)), it is assumed to be 1. If J is

omitted (i.e. TEXT(I:)), it is assumed to be N.

Example 1: What will be printed be the following program?

 CHARACTER *10 A , B
 A = 'FORTRAN 77'

 B = 'PASCAL'
 PRINT 10, A(1:4) , A(9:) , B(:3)
10 FORMAT (' ' , A4, 2X, A2, 2X, A3)
 END

Solution:

....+....1....+....2....+....3....+....4.

FORT 77 PAS

Example 2: Vowel Determination: Write a program that reads a character string of

length 100. The program should print all the vowels in the string.

Solution:

 CHARACTER TEXT*100 , VOWELS(5)*1
 READ*, (VOWELS(K), K = 1, 5)
 READ*, TEXT
 DO 10 I = 1, 100
 DO 20 J = 1, 5
 IF (TEXT(I:I) .EQ. VOWELS(J)) PRINT*, VOWELS(J)
20 CONTINUE
10 CONTINUE
 END

Example 3: What will be printed be the above program if the input is:
'A' 'E' 'I' 'O' 'U'

tenth Character Operations 190

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

'CAT + DOG = FIGHT'

Solution:
A

O
I

10.1.4 String Concatenation

New character strings may be formed by combining two or more character strings. This

operation is known as concatenation and is denoted by a double slash placed between

the character strings to be combined.

Example: What will be printed be the following program?

 CHARACTER DAY*2, MONTH*3, YEAR*4
 DAY = '03'
 MONTH = 'MAY'

 YEAR = '1993'
 PRINT 55, MONTH//DAY//YEAR,MONTH//'-'//DAY//'-'//YEAR
55 FORMAT (' ',A9, 5X, A13)
 END

Solution:

....+....1....+....2....+....3....+....4.

MAY031993 MAY-03-1993

10.1.5 Character Intrinsic Functions

Just as there are some intrinsic functions for numeric data such as INT, REAL, SQRT,

and MOD, there are a number of intrinsic functions designed for use with character

strings. These functions are:

10.1.6 Function INDEX(c1 , c2)

The function INDEX takes as arguments two character strings c1 and c2. The functions

returns an integer value giving the first occurrence of string c2 within string c1;

otherwise zero is returned.

Example 1: What will be printed be the following program?

 CHARACTER FRUIT*6
 FRUIT = 'BANANA'
 PRINT*, INDEX(FRUIT,'NA')
 END

Solution:
 3

Example 2: What will be printed be the following program?

 CHARACTER STR*18
 STR = 'TO BE OR NOT TO BE'
 K = INDEX(STR, 'BE')

 J = INDEX(STR(K+1:), 'BE') + K
 PRINT*, K , J
 END

Solution:
 4 17

tenth Character Operations 191

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice that the value of J represent the location of the second occurrence of the string

'BE' in STR.

10.1.7 Function LEN(c)

The function LEN takes as an argument one character string c. It returns the integer

length of the string c. The function is used primarily in functions and subroutines that

have character string arguments.

Example 1: What will be printed the following program segment:

 CHARACTER TEXT*10
 PRINT*, LEN(TEXT)

Solution:
10

Example 2: Frequency of Blanks: Write a function that accepts a character string and

returns the number of blanks in the string.

Solution:

 INTEGER FUNCTION NB(X)
 CHARACTER * (*) X
 NB = 0
 DO 10 I = 1 , LEN(X)
 IF (X(I:I) .EQ. ' ') NB = NB + 1
10 CONTINUE
 RETURN
 END

10.1.8 Function CHAR(i)

The function CHAR takes as an argument an integer value i and returns the ith

character in the collating sequence.

Example: What is the output of the following program?

 INTEGER N

 N = 65
 PRINT*, CHAR(N)
 END

Solution: Assuming ASCI code representation the program will print
A

10.1.9 Function ICHAR(c)

ICHAR the function is the reverse of function CHAR. It takes as an argument a single

character c and returns its position in the collating sequence. The first character in the

collating sequence corresponds to position 0 and the last to n-1, where n is the number

of characters in the collating sequence.

Example 1: What is the output of the following program?

 INTEGER J
 J = ICHAR('C') - ICHAR('A')
 PRINT*, J
 END

Solution: Assuming ASCI code representation the program will print
 2

tenth N-Dimensional Arrays 192

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 2: Character Code Determination: What is the output of the following

program?

 CHARACTER CH(26)*1
 INTEGER CODE(26)
 READ*, CH
 DO 10 I = 1, 26
 CODE(I) = ICHAR(CH(I))
10 CONTINUE
 PRINT*, CODE
 END

Assume the input is
'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q'

'R' 'S' 'T' 'U' 'V' 'W' 'X' 'Y' 'Z'

Solution:
193 194 195 196 197 198 199 200 201 209 210 211 212 213 214 215 216

217 226 227 228 229 230 231 232 233

10.1.10 Functions LGE, LGT, LLE, LLT

These functions allow comparisons to be made based on an ASCII collating sequence.

They produce one of the two logical values: .TRUE., .FALSE.. Each function takes as

arguments two character strings. The function LGE(STRG1, STRG2) is true if STRG1

is greater than or equal to STRG2. The LGT, LLE, LLT functions perform the

comparisons greater than , less than or equal and less than respectively. For example,

LLT('ABC', 'XYZ') would produce a .TRUE. value.

10.2 N-Dimensional Arrays

In chapter 5, one-dimensional and two-dimensional array data structures were

introduced. FORTRAN provides for arrays of up to seven dimensions. A two

dimensional array data structure is one that varies in two attributes, a three dimensional

array data structure is one that varies in three attributes, a four dimensional array data

structure is one that varies in four attributes, and an N dimensional array data structure

is one that varies in N attributes. Because of similarities between two and higher

dimensional arrays, this section presents three dimensional arrays only. Higher

dimensional arrays are treated similarly. An example of three-dimensional arrays is the

grades of students in several classes for several quizzes; such an array is declared in

FORTRAN as

 REAL GRADES (50 , 5 , 4)

Where we have 50 students, 5 quizzes and 4 classes. In three dimensional arrays, as in

two-dimensional arrays, the elements are stored column-wise with the first subscript

changing fastest, the second subscript changing more slowly, and the third subscript

changing the slowest. For the array declaration

 REAL A (2 , 2 , 2)

The elements are stored in the following order:

A(1,1,1)

A(2,1,1)

A(1,2,1)

tenth Double Precision Data Type 193

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

A(2,2,1)

A(1,1,2)

A(2,1,2)

A(1,2,2)

A(2,2,2)

To access a three-dimensional array, a nesting of three DO loops is common. Also an

implied DO loop can be used.

Example

If we have the declaration:

 INTEGER A (3, 4, 5)

then the following three READ statements do the same job of storing data in the three

dimensional array A:

 READ*, A

 READ*,((A((I, J, K), I = 1, 3), J = 1, 4), K = 1,5)

 DO 10 K = 1, 5
 DO 10 J = 1, 4
 DO 10 I = 1, 3
 READ* , A (I, J, K)
10 CONTINUE

10.3 Double Precision Data Type

Some applications require that calculations are performed with more precision than is

normally provided by the real data type. The real data type has only seven significant

digits, while the double precision data type has fourteen digits of significance.

10.3.1 Double Precision Definition

To declare variables of double precision type we use DOUBLE PRECISION statement

as follows:

 DOUBLE PRECISION LIST OF VARIABLES

or

 REAL*8 LIST OF VARIABLES

10.3.2 Double Precision Operations

The operations that are done on variables declared as double precision will be carried

out internally with fourteen significant digits. All the operations that are done on real

data type, can also be done on double precision data type such as addition, subtraction,

multiplication, division, and exponentiation. Expressions that involve mixed types like

double precision, real, and integer will be converted automatically to double precision.

Reading double precision variables is possible and up to fourteen digits to the right

of the decimal point are taken from the input stream. Printing double precision values is

also possible and the output will show fourteen digits to the right of the decimal point if

no formatting is used. The FORMAT statement can be used to print double precision

tenth Complex Data Type 194

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

values, the D specification may be used to print double precision numbers. Dw.d

format specifier is used where w represents the total width and d represents the number

of digits to the right of the decimal point.

10.3.3 Double Precision Intrinsic Functions

There is a large number of mathematical functions that has real arguments and/or real

results. There exists an extension to these functions to work with double precision with

only one simple change, which is prefixing the function name with the letter D like

DSIN(DX), DLOG(DX), DEXP(DX), DABS(DX), etc. DX indicates that the argument

to these functions is of the type double precision.

10.4 Complex Data Type

Some applications require that calculations are performed using complex numbers

rather than real numbers. A complex number is represented by two real numbers where

the first is the real part and the second is the imaginary part.

10.4.1 Complex Data Type Definition

To declare variables of complex type, the following declaration statement should be

used in your program:

 COMPLEX LIST OF VARIABLES

10.4.2 Complex Operations

The complex constants appear in the program as two real numbers separated by a

comma and enclosed between a pair of parentheses as shown below:

Example 1

 COMPLEX VALUE
 VALUE = (2.0, 3.0)

The operations that are done on variables defined as complex will be carried out in the

same way as defined mathematically. Here is the definition of some of these operations:

Addition (a+ib) + (c+id) = (a+c) + i (b+d)

Subtraction (a+ib) - (c+id) = (a-c) + i (b-d)

Multiplication (a+ib) * (c+id) = (ac-bd) + i (ad+bc)

Division

()

()

()

()

()

()

a ib

c id

ac bd

c d
i

cb da

c d

where i

2 2 2 2

1

When a complex variable is read, two real numbers are taken from the input stream; one

for the real part and the other for the imaginary part. Printing a complex variable will

result also in two real numbers representing the real part and the imaginary part. If

formatting is to be used then two FORMAT specifies are needed of type F.

10.4.3 Complex Intrinsic Functions

There is a large number of mathematical functions that has real arguments and/or real

results. There exists an extension to these functions to work with complex type with

only one simple change which is prefixing the function name with the letter C like

eleventh Exercises 195

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

CSIN(CX), CLOG(CX), CEXP(CX), CABS(DX), etc. CX indicates that the argument

to these functions is of the complex type. In addition there are four functions for

complex type which are:

Function Description

REAL(CX) gives the real part of the argument

AIMAG(CX) gives the imaginary part of the argument

CMPLX(X,Y) gives the complex number X + i Y

CONJG(CX) gives the conjugate of the argument

10.5 Exercises

1. What will be printed by the following programs?

1. CHARACTER X(1:2)*2
 READ*, X
 PRINT 11, X
11 FORMAT (1X, 2X, I2, 2X, I2)
 END

Assume the input is:
'12' '34'

2. CHARACTER INPUT*60, SPACE*1
 INTEGER KK, JJ
 INPUT = 'THIS IS A TEST.'

 SPACE = ' '
 KK = 1
10 JJ = INDEX(INPUT(KK:),SPACE)

 KK = KK + JJ
 PRINT*, INPUT(:KK-1)
 IF (KK.LT.INDEX(INPUT,'.')) GOTO 10
 END

3. CHARACTER STR*10
 INTEGER LL, J, NUM
 STR = '1234'
 LL = INDEX(STR,' ')
 NUM = 0
 DO 10 J = LL-1,1,-1
 NUM = NUM + (ICHAR(STR(J:J)) - ICHAR('0'))*10**J
10 CONTINUE
 PRINT*, NUM
 END

4. CHARACTER*7 STR, SUB*6
 INTEGER L, K
 L = 3
 SUB = 'AA'
 STR = '++++++++'

 K = INDEX(SUB,' ')
 IF (K.NE.0) L = LEN(STR) - K + 1
 STR (L/2+1:) = SUB(:K-1)
 PRINT*, STR, K, L
 END

eleventh Exercises 196

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

5. CHARACTER*1 A, B
 A = 'B'
 B = 'C'
 PRINT 11, B
11 FORMAT(1X,'B=',A)
 END

6. CHARACTER*8 F, K, X
 F(K) = K(1:2)//'REF'//K(6:8)
 X = 'CANDEULL'
 PRINT*, F(X)
 END

7. INTEGER FUNCTION LENGTH(A)
 CHARACTER *(*) A
 LENGTH = LEN(A)
 RETURN
 END
 CHARACTER*9 A, B, C*6
 INTEGER LENGTH
 READ*, A, B, C
 PRINT*, (LENGTH(A)+LENGTH(B)+LENGTH(C))/5
 END

Assume the input is:
 'AN' 'EASY' 'EXAM'

8. CHARACTER X*9, Y*4
 INTEGER L
 X = 'ABDABDA'
 Y = 'HIJK'
10 L = INDEX(X, 'A')
 IF (L.NE.0) THEN
 X(L:L) = '*'
 GOTO 10
 ENDIF
 PRINT*, LEN(X), X//Y
 END

9. CHARACTER*30 S1, S2
 S1 = 'TODAY IS SATURDAY'

 S2 = 'EXAM 201 + EXAM 101'
 PRINT 11, S1(10:)
 PRINT 22, S2(10:)
11 FORMAT(' ',10X,A)
22 FORMAT(A)
 END

10. LOGICAL LEQ, X, Y, EQAL(4)
 CHARACTER*20 L(8)
 INTEGER K, L
 LEQ(X,Y) = .NOT.X.AND..NOT.Y
 READ*, L
 K = 1
 DO 10 J = 1,7,2
 EQAL(K) = LEQ(LGT(L(J),L(J+1)), LLT(L(J),L(J+1)))
 K = K + 1
10 CONTINUE
 PRINT*, EQAL
 END

Assume the input is:

eleventh Exercises 197

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 'EXAM DAY','VACATION DAY','SUCCESS','FAILURE'

 'EASY','DIFFICULT','BE HAPPY','BE HAPPY'

11. INTEGER WC, CC, J, K
 CHARACTER SENT*30, BLANK
 WC = 0
 SENT = 'I HAVE FORTRAN CLASSES.'
 J = 0

 BLANK = ' '
 CC = INDEX(SENT(J+1:),' .') - 1
10 K = INDEX(SENT(J+1:),BLANK)
 IF (K.NE.0 .AND. J.LT.CC) THEN
 WC = WC + 1

 J = K
 GOTO 10
 ENDIF
 IF (CC.NE.0) WC = WC + 1
 CC = CC - WC + 1
 PRINT*, WC, CC, J
 END

12. CHARACTER*1 FUNCTION LCHAR(STR)
 CHARACTER*20 STR
 INTEGER LAST
 LAST = 20
 10 IF (STR(LAST:LAST).EQ.' ') THEN
 LAST = LAST - 1
 GOTO 10
 ENDIF
 LCHAR = STR(LAST:LAST)
 RETURN
 END
 CHARACTER LCHAR*1, LINE*20
 READ*, LINE
 PRINT*, LCHAR(LINE)
 END

Assume the input is:
 'GOOD FINAL EXAM'

eleventh Exercises 198

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

13. SUBROUTINE INSERT(STR,SUBSTR,AFTER,RESULT,FLAG)
 CHARACTER *(*) STR, SUBSTR, AFTER, RESULT
 LOGICAL FLAG
 INTEGER IPOS
 IPOS = INDEX(STR,AFTER)
 IF (IPOS.EQ.0) THEN
 FLAG = .FALSE.
 RETURN
 ENDIF
 FLAG = .TRUE.
 LENAFT = LEN(AFTER)

 LENWOR = LEN(SUBSTR)
 LENSTR = LEN(STR)
 INSPOS = IPOS+LENAFT

 RESULT = STR(:INSPOS)//SUBSTR//STR(INSPOS:)
 RETURN
 END
 CHARACTER STR*13, S1*7, S2*3, RES1*22, RES2*28
 LOGICAL FLAG
 READ*, STR
 READ*, S1, S2
 CALL INSERT(STR,S1,S2,RES1,FLAG)
 READ*, S1, S2
 CALL INSERT(RES1,S1,S2,RES2,FLAG)
 IF (FLAG) THEN
 PRINT 5, RES2
 ELSE
 PRINT 6
 ENDIF
5 FORMAT(' ','RESULT = “',A,””)
6 FORMAT(' ','NO MATCH')
 END

Assume the input is:
 'ICS 101 EXAM'

 'FORTRAN', '101'
 'FINAL','101'

14. CHARACTER*4 ONE, TWO, THREE, FOUR
 ONE = '+'
 TWO = ONE // ONE
 THREE = ONE // TWO

 FOUR = TWO // (ONE // ONE)
 PRINT*, 'ONE =', ONE
 PRINT*, 'TWO =', TWO
 PRINT*, 'THREE=',THREE
 PRINT*, 'FOUR =',FOUR
 END

eleventh Exercises 199

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

15. CHARACTER CH*3
 INTEGER A(3),I, J, K, L, M, N
 READ*, (A(J),J=1,2)
 L = 1

 M = 2
 N = 1
 CH = 'ICS'
 DO 10 I = 1,2
 DO 20 J = L,M,N
 PRINT*, (CH(K:K),K=1,A(J))
20 CONTINUE
 K = L

 L = M
 M = K
 N = -1
10 CONTINUE
 END

Assume the input is:
1 2

2. How many characters one can store in each variable in the following declaration?

CHARACTER*10 A, B(-2:3), C(2,5:10)*5

3. Assume that the only declaration statements in a FORTRANprogram are the

following:

INTEGER A(1:10),B(3,5)
CHARACTER*7 NUM(50), NAME, CH, C

Which of the following statement(s) is (are) correct FORTRAN statement(s) ?
1. NUM(2)(2:2) = '2'

2. A(3:3) = 2

3. (A(K) = A(K)+2, K = 1,10)

4. NAME(:3) = NAME(3:)
5. NUM(2) = B(2,2)

4. From the INPUT strings :
'THIS' 'ASY' 'VERY' 'EXAM'

generate the message
THIS IS EASY

by completing the print statement in the following program

CHARACTER A(2,2)*4
READ*, A
PRINT*,_________________________________
END

Hint (Use substring and concatenation of the INPUT strings)

5. Complete the missing parts to produce the expected output:

CHARACTER*11 NAME, COURSE*6
NAME = 'COMPUTER'
COURSE = 'ICS101'
NAME(__(1)__) = COURSE(__(2)__)
PRINT*, NAME
END

The expected output :
COMPUTER101

eleventh Exercises 200

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Q6) A palindrome is a word of text that is spelled the same forward and backward. The

string 'RADAR' is an example of palindrome. Write a FORTRAN program to tell

whether an INPUT string of length 60 is a palindrome or not.

7. Write a FORTRAN program that will do the following :

 Read N, the number of students.

 Read N data lines, each line contains a student ID, major, course code and grade.

The program stores the data into a two-dimensional character array (CLASS) of

size 204 such that each element has a length of 7 characters.

 Print all those students who have a major CE and a course code ICS101 and a

grade A.

8. Write a FORTRAN program which reads a character string STR of length 7

characters, and an integer array LIST of 7 elements. Then the program should print

the string in the order of the numbers stored in the array LIST.

For example: If STR = 'RNFROTA' and LIST = 3 5 1 6 4 7 2

Then your program outputs the 3rd, 5th, 1st,... characters from STR.

The output should look like the following (Use FORMAT)

....+....1....+....2....+....3....+....4.

DECODED STRING = FORTRAN

Assume the following data:
'RNFROTA'

3,5,1,6,4,7,2

9. Write a FORTRAN program that accepts a string INPUT (at most 60 characters

long), and a string PAT (exactly one character long). Then it should find the number

of times string PAT is found in the string INPUT and replace every occurrence of

PAT by '*'.

10. Consider the following FORTRAN statements

CHARACTER * 3 STR*5, X
STR = 'APPLE'

Which of the following statements will place the string APL in variable X?
i. X = STR(1:1)//STR(3:3)//STR(4:4)

ii. X = STR(1:1)//STR(3:4)

iii. X = STR(1:2)//STR(3:4)
iv. X = STR(:2)//STR(3:)

11. Write a FORTRAN program that:

 a) Reads a sentence of upto 70 characters long.

 b) Replaces each blank within the sentence by the character '$' and prints out the

new sentence.

 c) Places each vowel in the sentence into a new character string called NEW and

prints out the string NEW.

Note: The sentence is terminated by a full stop.

 Vowels are alphabets A, E, I, O and U.

eleventh Solutions to Exercises 201

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

10.6 Solutions to Exercises

Ans 1.

1. ERROR: TYPE MISMATCH IN FORMAT

2. THIS

 THIS IS

 THIS IS A

 THIS IS A TEST.

3. 43210

4. ++AA 3 5

5. B=C

6. CAREFULL

7. 4

8. 9*BD*BD* HIJK

9. EXAM 101 SATURDAY

10. F F F T

11. 1 -1 0

12. M

13. RESULT = 'ICS 101FINAL FORTRAN EXAM '

14. ONE =+

 TWO =+

 THREE=+

 FOUR =+

15. I

 IC

 IC

 I

Ans 2.

A) 10

B) 60

C) 60

Ans 3

1 and 4

Ans 4.

 PRINT*, A(1,1)//' '//A(1,1)(3:4)//' E'//A(2,1)

Ans 5.

(1) 9:10

(2) 4:6

eleventh Solutions to Exercises 202

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 6.

 CHARACTER INPUT*60
 LOGICAL PALIN
 INTEGER K
 READ*, INPUT
 PALIN = .TRUE.
 K = 1
10 IF(PALIN .AND. K .LE. 30) THEN
 IF (INPUT(K:K) .NE. INPUT(61-K:61-K)) PALIN = .FALSE.
 K = K + 1
 GOTO 10
 ENDIF
 PRINT*, PALIN
 END

Ans 7.

 CHARACTER*7 CLASS(20,4)
 LOGICAL COND1, COND2, COND3
 INTEGER K, N
 READ*,N
 DO 10 K = 1, N
 READ*, (CLASS(K,J), J = 1 , 4)
10 CONTINUE
 DO 20 K = 1 , N
 COND1 = CLASS(K,2) .EQ. 'CE'
 COND2 = CLASS(K,3) .EQ. 'ICS101'
 COND3 = CLASS(K,4) .EQ. 'A'
 IF(COND1 .AND. COND2 .AND. COND3) PRINT*,CLASS(K,1)
20 CONTINUE
 END

Ans 8.

 CHARACTER STR*7
 INTEGER LIST(7)
 INTEGER K
 READ*, STR
 READ*, (LIST(K), K = 1 , 7)
 PRINT1, (STR(LIST(K): LIST(K)), K = 1 , 7)
1 FORMAT(1X, 'DECODED STRING = ', 7A)
 END

Ans 9.

 CHARACTER INPUT*60, PAT*1
 READ*, INPUT
 READ*, PAT
 NT = 0
10 K = INDEX(INPUT, PAT)
 IF (K .NE. 0) THEN
 NT = NT + 1
 INPUT(K:K) = '*'
 GOTO 10
 ENDIF
 PRINT*, 'THE NUMBER OF TIMES PAT OCCURRED = ', NT
 END

Ans 10.

I amd II

eleventh Solutions to Exercises 203

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 11.

 CHARACTER SENT*70, NEW*70, VOWLS*5
 INTEGER K, M
 READ*, SENT
 VOWLS = 'AEIOU'

 NEW = ' '
10 K = INDEX(SENT , ' ')
 IF (K .NE. 0) THEN
 SENT(K:K) = '$'
 GOTO 10
 ENDIF
 PRINT*, SENT
 M = 0
 DO 20 K = 1 , 70
 IF (INDEX(VOWLS , SENT(K:K)) .NE. 0) THEN
 M = M + 1

 NEW(M:M) = SENT(K:K)
 ENDIF
20 CONTINUE
 PRINT*, NEW
 END

204

Index

-, 14

' ', 160

'-', 160

'+', 160

'0', 160

'1', 160

*, 14

**, 14

+, 14

.AND., 17, 18

.EQ., 19

.FALSE., 10

.GE., 19

.GT., 19

.LE., 19

.LT., 19

.NE., 19

.NOT., 17, 18

.OR, 17

.OR., 18

.TRUE, 10

/, 14

1-D, 117

2-D array, 141

—A—

A specification, 167

ABS, 61

actual arguments, 56

Addition, 13

arguments, 56

arithmetic expression, 14

arithmetic operations, 13

Arithmetic Operators, 14

array declaration, 141

arrays, 117

ascending, 189

ASCII, 202

assembler, 3

assignment statement, 20

—B—

binary operations, 14

binary system, 3

—C—

CALL, 64

carriage control, 159, 169

central processing unit, 2

CHAR, 206

CHARACTER, 13

Character Assignment, 201

character constant, 10

character position, 204

character variables, 13

CLOSE, 172

column-wise, 142

comment, 6

comparison, 202

compiler, 3, 5

complex type, 210

constant, 9

continuation, 5

CONTINUE, 93

COS, 61

—D—

D specification, 209

data, 9

Declaration of a character array, 118

Declaration of a logical array, 118

Declaration of a real array, 118

Declaration of an integer array, 117

declaration statement, 11, 12, 13

declaration statement., 117

decreasing, 189

digits, 10

DIMENSION, 118, 141

division, 13

DO, 91, 92

double precision, 209

Index 205

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

double spacing, 160

dummy arguments, 56

—E—

EBCDIC, 202

editor, 5

END, 6, 56

evaluation, 14

EXP, 61

explicit definition, 11

exponentiation, 13

—F—

F specification, 163

FILE, 170

files, 169

FORMAT, 159, 209, 210

function, 56

function body, 56

functions, 55

—G—

GOTO, 97

—H—

Hardware, 2

header, 56

high level language, 3

—I—

I specification, 160

ICHAR, 207

IF, 36, 42

IF-ELSE, 35

IF-ELSEIF, 38

IF-THEN, 97

implicit definition, 11

Implied loops, 102

increment, 93

index, 93, 117, 205

initial, 93

inner loop, 95

input arguments, 63

input devices, 2

input statement, 22

INT, 61

INTEGER, 11

integer constant, 9

integer operator, 15

integer variable, 11

intrinsic function, 61

intrinsic functions, 205

—K—

keyboard, 2

—L—

L specification, 168

LEN, 206

LGT, 207

limit, 93

literal specification, 167

LLE, 207

LLT, 207

LOG, 61

LOG10, 61

LOGICAL, 12

logical constant, 10

logical expression, 19

Logical operations, 17

Logical variables, 12

loop, 91

loop body, 91

—M—

main program, 56, 94

mainframe, 1

memory, 2

microcomputers, 1

minicomputers, 1

mixed-mode operator, 15

MOD, 61

mouse, 2

multiplication, 13

—N—

N dimensional array, 208

natural language, 2

nested DO loops, 95

Nested implied loops, 103

Nested WHILE Loops, 99

new page, 160

—O—

one-dimensional array, 117

OPEN, 169, 171

order, 189

outer loop, 95

output arguments, 63

output buffer, 159

output devices, 2

output statements, 24

—P—

parameters, 56

parameters of DO loop, 93

Personal computers, 1

Index 206

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

power, 14

precedence. See priority

precedency, 14

PRINT, 24, 159

printer, 2

printing an array, 121

Printing Two-Dimensional Arrays, 145

priority, 14, 18, 19

program, 3, 5

—R—

READ, 22, 170

reading arrays, 119

REAL, 12, 61

real constant, 9

real operator, 15

real variable, 12

relational expression, 19

relational operators., 19

Repetition, 91

RETURN, 56, 63

REWIND, 172

right-justified, 160

row-wise, 142

—S—

scientific notation, 9

screen, 2

Searching, 189

Sequential search, 191

SIN, 61

single quote, 10

single spacing, 160

Software, 3

Sorting, 189

special characters, 11

SQRT, 61

statement, 5

statement function, 61

statement number, 105

step-wise refinement. See topdown design

STOP, 6

subprogram, 94, 125, 149

subprograms, 55, 103

subroutine, 63

subroutines, 55

subscript, 117

substring, 204

subtraction, 13

successive refinement. See topdown design

swapping, 124

—T—

TAN, 61

termination condition, 91

three-dimensional array, 208

top down design, 55

top-down design, 4

triple spacing, 160

two-dimensional array, 141

—U—

unary operations, 14

UNIT, 170

—V—

variable name, 10

Variables, 10

—W—

WHILE, 91

WHILE loop, 96

WRITE, 171

—X—

X specification, 166

—Z—

zero-trip, 94

