
1

First Chapter

• In this chapter, we will answer the
following two questions
– What does it mean to be an efficient

algorithm?
– How can one tell that it is more efficient than

other algorithms?
based on some easy-to-understand
searching and sorting algorithms that we
may have seen earlier.

2

Searching Problem

• Assume A is an array with n elements A[1],
A[2], … A[n]. For a given element x, we must
determine whether there is an index j; 1 ≤ j
≤ n, such that x = A[j]

• Two algorithms, among others, address this
problem
– Linear Search
– Binary Search

3

Linear Search Algorithm

Algorithm: LINEARSEARCH
Input: array A[1..n] of n elements and an element

x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.
1. j ← 1
2. while (j < n) and (x ≠A[j])
3. j ← j + 1
4. end while
5. if x = A[j] then return j else return 0

4

Analyzing Linear Search

• One way to measure efficiency is to count how many
statements get executed before the algorithm
terminates

• One should keep an eye, though, on statements that
are executed “repeatedly”.

• What will be the number of “element” comparisons if
– X first appears in the first element of A
– X first appears in the middle element of A
– X first appears in the last element of A
– X doesn’t appear in A.

5

Binary Search
• We can do “better” than linear search if we knew

that the elements of A are sorted, say in non-
decreasing order.

• The idea is that you can compare x to the middle
element of A, say A[middle].
– If x < A[middle] then you know that x cannot be an

element from A[middle+1], A[middle+2], …A[n]. Why?
– If x > A[middle] then you know that x cannot be an

element from A[1], A[2], …A[middle-1]. Why?

6

Binary Search Algorithm
Algorithm: BINARYSEARCH
Input: An array A[1..n] of n elements sorted in

nondecreasing order and an element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.
1. low ← 1; high ← n; j ← 0
2. while (low ≤ high) and (j = 0)
3. mid ← ⎣(low + high)/2⎦
4. if x = A[mid] then j ← mid
5. else if x < A[mid] then high ← mid - 1
6. else low ← mid + 1
7. end while
8. return j

7

Worst Case Analysis of Binary
Search

• What to do: Find the maximum number of element
comparisons

• How to do:
– The number of “element” comparisons is equal to the

number of iterations of the while loop in steps 2-7. HOW?
– How many elements of the input do we have in the

• First iteration
• Second iteration
• Thrid iteration
• …
• ith iteration

– The last iteration occurs when the size of input we have
= 8

Theorem

• The number of comparisons performed by
Algorithm BINARYSEARCH on a sorted
array of size n is at most ⎣ ⎦ 1log +n

9

Merging Two Sorted Lists
• Problem Description: Given two lists (arrays) that are

sorted in non-decreasing order, we need to merge them
into one list sorted in non-decreasing order.

• Example:

12973 4 141321

Input

Output

141312974321

10

How to merge two arrays?

873

A[3..5]A[0..2]B[0..5]

873

873

873

873

873

542

542

542

542

542

542

2

32

432

5432

875432
11

Algorithm MERGE

Algorithm: MERGE
Input: An array A[1..m] of elements and three

indices p, q and r, with 1 ≤ p ≤ q <r ≤ m, such
that both the subarrays A[p..q] and A[q + 1..r]
are sorted individually in nondecreasing
order.

Output: A[p..r] contains the result of merging
the two subarrays A[p..q] and A[q + 1..r].

Comment: B[p..r] is an auxiliary array.
12

Algorithm MERGE (Cont.)
1. s ← p; t ← q + 1; k ← p
2. while s ≤ q and t ≤ r
3. if A[s] ≤ A[t] then
4. B[k] ← A[s]
5. s ← s + 1
6. else
7. B[k] ←A[t]
8. t ← t + 1
9. end if
10. k ← k + 1
11. end while

12. if (s = q + 1) then B[k..r] ← A[t..r]
13. else B[k..r] ← A[s..q]
14. end if
15. A[p..r] ← B[p..r]

13

Analyzing MERGE
• Assuming arrays A[p,q] and A[q+1,r]

– The least number of comparisons is
which occurs when

– The most number of comparisons is
which occurs when

– The number of element assignments
performed is

14

Selection Sort
Algorithm: SELECTIONSORT
Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.
1. for i ← 1 to n - 1
2. k ← i
3. for j ← i + 1 to n

{Find the index of the ith smallest element}
4. if A[j] < A[k] then k ← j
5. end for
6. if k ≠ i then interchange A[i] and A[k]
7. end for

15

Selection Sort Example

42 85 9

45 82 9

i k

1 2

54 82 92 5

94 82 53 5

94 82 54 4

16

Analyzing Selection Sort
• We need to find the number of comparisons

carried out in line #4:
– For each iteration of the outer for loop, how

many times is line #4 executed?
– Therefore, in total, line #4 is executed

• The number of element Interchanges
(swaps):
– Minimum:
– Maximum:

NOTE: The number of element assignments is
3 times the number of element interchanges 17

Insertion Sort
Algorithm: INSERTIONSORT
Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.
1. for i ← 2 to n
2. x ← A[i]
3. j ← i - 1
4. while (j > 0) and (A[j] > x)
5. A[j + 1] ← A[j]
6. j ← j - 1
7. end while
8. A[j + 1] ← x
9. end for

18

Insertion Sort Example

42 85 9x=2

45 82 9x=9

45 82 9x=8

45 92 8x=4

94 82 5

19

Analyzing Insertion Sort
• The minimum number of element

comparisons is
which occurs when

• The maximum number of element
comparisons is
which occurs when

• The number of element assignments is
20

Bottom-Up Merge Sort

• Informally, the algorithm does the following
– 1. Divide the array into pairs of elements (with

possibly single elements in case the number
of elements is)

– 2. Merge each pair in non-decreasing order
(with possibly a single “pair” left)

– 3. Repeat step 2 until there is only one “pair”
left.

21

Bottom-Up Merge Sort Example

5 2 9 8 4 12 7 1 3 6 10

52 98 4 12 71 3 6 10

52 98 4 1271 3 6 10

52 984 1271 3 6 10

52 984 1271 3 6 10
42 318 1075 9 12 6

22

Algorithm BOTTOMUPSORT
Algorithm: BOTTOMUPSORT
Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. t ← 1
2. while t < n
3. s ← t; t ← 2s; i ← 0
4. while i + t ≤ n
5. MERGE(A, i + 1, i + s, i + t)
6. i ← i + t
7. end while
8. if i + s < n then
9. MERGE(A, i + 1, i+ s, n)
10. end while

23

Analyzing Algorithm
BOTTOMUPSORT

• With no loss of generality, assume that the size of
the array, n, is a power of 2.
– In the first iteration, we have pairs that are

merged using element comparisons.
– In the second iteration, we have pairs that are

merged using
– ….
– In the jth iteration, we have pairs that are

merged using

– The outer while loop is executed times.
– Therefore,

24

Analyzing Algorithm
BOTTOMUPSORT

• What about the number of element
assignments?

25

Time Complexity
• One way of measuring the performance of an

algorithm is how fast it executes. The question is
how to measure this “time”?
– Is having a digital stop watch suitable?

• In general, we are not so much interested in the
time and space complexity for small inputs.

• For example, while the difference in time
complexity between linear and binary search is
meaningless for a sequence with n = 10, it is
gigantic for n = 230.

26

Complexity

•For example, let us assume two algorithms A and B
that solve the same class of problems.

•The time complexity of A is 5,000n, the one for B is
⎡1.1n⎤ for an input with n elements.

•For n = 10, A requires 50,000 steps, but B only 3,
so B seems to be superior to A.

•For n = 1000, however, A requires 5,000,000 steps,
while B requires 2.5⋅1041 steps.

27

Complexity

• Comparison: time complexity of algorithms A and B

Algorithm AAlgorithm A Algorithm BAlgorithm BInput SizeInput Size
nn
1010

100100
1,0001,000

1,000,0001,000,000

5,000n5,000n
50,00050,000

500,000500,000
5,000,0005,000,000

55⋅⋅101099

⎡⎡1.11.1nn⎤⎤

33

2.52.5⋅⋅10104141
13,78113,781

4.84.8⋅⋅10104139241392

28

Order of Growth

•This means that algorithm B cannot be used for
large inputs, while algorithm A is still feasible.

•So what is important is the growth of the
complexity functions.

•The growth of time and space complexity with
increasing input size n is a suitable measure for
the comparison of algorithms.

– we focus on asymptotic analysis

29

Example

Growth rate for some function 30

Example

Growth rate for same previous functions
showing larger input sizes

31

Running Times for Different Sizes
of Inputs of Different Functions

Complexity 10 20 30 40 50 60

n 1×10-5 sec 2×10-5 sec 3×10-5 sec 4×10-5 sec 5×10-5 sec 6×10-5 sec

n2 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec 0.025 sec 0.036 sec

n3 0.001 sec 0.008 sec 0.027 sec 0.064 sec 0.125 sec 0.216 sec

n5 0.1 sec 3.2 sec 24.3 sec 1.7 min 5.2 min 13.0 min

2n 0.001sec 1.0 sec 17.9 min 12.7 days 35.7 years 366 cent

3n 0.59sec 58 min 6.5 years 3855 cent 2×108cent 1.3×1013cent

log2 n 3×10-6 sec 4×10-6 sec 5×10-6 sec 5×10-6 sec 6×10-6 sec 6×10-6 sec

n log2 n 3×10-5 sec 9×10-5 sec 0.0001 sec 0.0002 sec 0.0003 sec 0.0004 sec

32

Asymptotic Analysis: Big-oh (O())
• Definition: For T(n) a non-negatively valued

function, T(n) is in the set O(f(n)) if there exist
two positive constants c and n0 such that T(n)
≤ cf(n) for all n > n0.

• Usage: The algorithm is in O(n2) in [best,
average, worst] case.

• Meaning: For all data sets big enough (i.e.,
n>n0), the algorithm always executes in less
than or equal to cf(n) steps in [best, average,
worst] case.

33

The Growth of Functions

The idea behind the big-O notation is to establish an
upper boundary for the growth of a function f(x) for
large x.
This boundary is specified by a function g(x) that is
usually much simpler than f(x).
We accept the constant C in the requirement f(x) ≤
C⋅g(x) whenever x > k, because C does not grow
with x.
We are only interested in large x, so it is OK if
f(x) > C⋅g(x) for x ≤ k.

34

The Growth of Functions

Example:

Show that f(x) = x2 + 2x + 1 is O(x2).

For x > 1 we have:
x2 + 2x + 1 ≤ x2 + 2x2 + x2

⇒ x2 + 2x + 1 ≤ 4x2

Therefore, for C = 4 and k = 1:
f(x) ≤ Cx2 whenever x > k.

⇒ f(x) is O(x2).

35

The Growth of Functions

Question: If f(x) is O(x2), is it also O(x3)?

Yes. x3 grows faster than x2, so x3 grows also
faster than f(x).

Therefore, we always try to find the smallest
simple function g(x) for which f(x) is O(g(x)).

36

The Growth of Functions
“Popular” functions g(n) are

n log n, 1, 2n, n2, n!, n, n3, log n
Listed from slowest to fastest growth:

1
log n
n
n log n
n2

n3

2n

n!

37

The Growth of Functions

A problem that can be solved with polynomial
worst-case complexity is called tractable.
Problems of higher complexity are called
intractable.
Later on NP-completeness.
Problems that no algorithm can solve are
called unsolvable.

38

Big O() Examples
• Example 1: Find c and n0 to show that

T(n) = (n+2)/2 is in O(n)

• Example 2: Find c and n0 to show that
T(n)=c1n2+c2n is in O(n2)

• Example 3: T(n) = c. We say this is in O(1).

39

A Procedure to show that
f(x) is O(g(x))

Show that 3x 3 + 5x 2 – 9 = O (x 3).
Let C = 5. Let’s find k so that 3x 3 +

5x 2 – 9 ≤ 5x 3 for x > k :
1. Collect terms: 5x 2 ≤ 2x 3 + 9
2. What k will make 5x 2 ≤ x 3 past k ?
3. k = 5 !
4. So for x > 5, 5x 2 ≤ x 3 ≤ 2x 3 + 9
5. Solution: C = 5, k = 5 (not unique!)

40

Asymptotic Analysis: Big-Omega (Ω())

• Definition: For T(n) a non-negatively valued
function, T(n) is in the set Ω(g(n)) if there exist
two positive constants c and n0 such that T(n)
>= cg(n) for all n > n0.

• Meaning: For all data sets big enough (i.e., n >
n0), the algorithm always executes in more
than or equal to cg(n) steps.

• Ω() notation indicates a lower bound.
41

Ω() Example

• Find c and n0 to show that T(n) = c1n2 +
c2n is in Ω(n2) .

42

Asymptotic Analysis: Big Theta (Θ())

• When O() and Ω() meet, we indicate this
by using Θ() (big-Theta) notation.

• Definition: An algorithm is said to be
Θ(h(n)) if it is in O(h(n)) and it is in
Ω(h(n)).

43

Example

• Show that log(n!) is in Θ(n log n).

44

Complexity Classes and small-oh
(o())

• Using Θ() notation, one can divide the functions
into different equivalence classes, where f(n)
and g(n) belong to the same equivalence class
if f(n) = Θ(g(n))

• To show that two functions belong to different
equivalence classes, the small-oh notation has
been introduced

• Definition: Let f(n) and g(n) be two functions
from the set of natural numbers to the set of
non-negative real numbers. f(n) is said to be in
o(g(n)) if for every constant c > 0, there is a
positive integer n0 such that f(n) < cg(n) for all n
≥ n0.

45

Simplifying Rules
• If f(n) is in O(g(n)) and g(n) is in O(h(n)),

then f(n) is in O(h(n))
• If f(n) is in O(kg(n)) for any constant k > 0,

then f(n) is in ………
• If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)),

then (f1 + f2)(n) is in ………
• If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n))

then f1(n)f2(n) is in ………
• You can safely “globally” replace O with Ω or Θ in

the above, where the above rules will still hold.

46

Very Useful Simplifying Rule
• Let f(n) and g(n) be be two functions from the

set of natural numbers to the set of non-
negative real numbers such that:

Then
if L < ∞ then f(n) is in O(g(n))
if L > 0 then f(n) is in Ω(g(n))
if 0 < L < ∞ then f(n) is in Θ(g(n))

∞≤=≤
∞→)(

)(lim0
ng
nfL

n

47

Big-O. Negative Example
x 4 ≠ O (3x 3 + 5x 2 – 9) :
Show that no C, k can exist such that past k,

C (3x 3 + 5x 2 – 9) ≥ x 4 is always true.
Easiest way is with limits (yes Calculus is
good to know):

Thus no-matter C, x 4 will always catch up and
eclipse C (3x 3 + 5x 2 – 9) �

)/9/53(
lim

)953(
lim 323

4

xxC
x

xxC
x

xx −+
=

−+ ∞→∞→

∞=⋅=
−+

=
∞→∞→

x
CC

x
xx
lim

3
1

)003(
lim

48

Incomparable Functions

Given two functions f (x) and g (x) it is not
always the case that one dominates the
other so that f and g are asymptotically
incomparable.

E.G:
f (x) = |x 2 sin(x)| vs. g (x) = 5x 1.5

49

Incomparable Functions

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

y = |x 2 sin(x)|

y = x 2

y = 5x 1.5

50

Space Complexity

• Space complexity refers to the number of
memory cells needed to carry out the
computational steps required in an algorithm
excluding memory cells needed to hold the
input.

• Compare additional space needed to carry out
SELECTIONSORT to that of
BOTTOMUPSORT if we have an array with 2
million elements!

51

Examples

• What is the space complexity for
– Linear search
– Binary search
– Selection sort
– Insertion sort
– Merge (that merges two sorted lists)
– Bottom up merge sort

52

Estimating the Running Time of an
Algorithm

• As mentioned earlier, we need to focus on
counting those operations which
represent, in general, the behavior of the
algorithm

• This is achieved by
– Counting the frequency of basic operations.

• Basic operation is an operation with highest
frequency to within a constant factor among all
other elementary operations

– Recurrence Relations
53

Counting the Frequency of Basic
Operations

• Sometimes, it is easier to compute the
frequency of an operation that is a good
representative of the overall time complexity
of the algorithm
– For example, Algorithm MERGE.

• Counting the number of iterations
– The number of iterations in a while loop and/or

a for loop is a good indication of the total
number of operations

54

Nested loops

• Running time of a loop equals running time of
the code within the loop times the number of
iterations.

• Nested Loops: analyze inside out
1 for (i=0; i <n; i++)
2 for (j = 0; j< n; j++)
3 k++

• Running time of lines 2-3: O(n)
• Running time of lines 1-3: O(n2)

55

Consecutive statements

• For a sequence S1, S2, .., Sk of statements,
running time is maximum of running times of
individual statements
for (i=0; i<n; i++)

x[i] = 0;
for (i=0; i<n; i++)

for (j=0; j<n; j++)
k[i] += i+j;

• Running time is: O(n2)
56

Conditional statements

• The running time of
If (cond) S1
else S2
is running time of cond plus the max of running

times of S1 and S2.

57

More nested loops

1 int k = 0;
2 for (i=0; i<n; i++)
3 for (j=i; j<n; j++)
4 k++
• Running time of lines 3-4: n-i
• Running time of lines 1-4:

)(2/)1()(2
1

0
nOnnin

n

i
=−=−∑

−

=

58

More nested loops
1 int k = 0;
2 for (i=1; i<n; i*= 2)
3 for (j=1; j<n; j++)
4 k++
• Running time of inner loop: O(n)
• What about the outer loop?
• In m-th iteration, value of i is 2m-1

• Suppose 2q-1 < n ≤ 2q, then outer loop is
executed q times.

• Running time is O(n log n). Why?
59

A more intricate example
1 int k = 0;
2 for (i=1; i<n; i*= 2)
3 for (j=1; j<i; j++)
4 k++
• Running time of inner loop: O(i)
• Suppose 2q-1 < n ≤ 2q, then the total running

time:
1 + 2 + 4 + ….+2q-1 = 2q -1

• Running time is O(n).

60

Computing Fibonacci numbers

• We write the following program: a
recursive program
1 long int fib(n) {
2 if (n <= 1)
3 return 1;
4 else return fib(n-1) + fib(n-2)

• Try fib(100), and it takes forever.
• Let us analyze the running time.

61

fib(n) runs in exponential time
• The number of operations can be represented

as a recurrence relation.
• Let T denote the running time.

T(0) = T(1) = c
T(n) = T(n-1) + T(n-2) + 2

where 2 accounts for line 2 plus the addition at
line 3.

• By induction, we can show that the running time
is Ω((3/2)n).

• So the running time grows exponentially.
62

Efficient Fibnacci numbers
• Avoid recomputation
• Solution with linear running time

int fib(int n)
{

int fibn=0, fibn1=0, fibn2=1;
if (n < 2)

return n
else
{

for(int i = 2; i <= n; i++) {
fibn = fibn1 + fibn2;
fibn1 = fibn2;
fibn2 = fibn;

}
return fibn;
}

}
63

Average Case Analysis

• Probabilities of all inputs is an important
piece of prior knowledge in order to
compute the number of operations on
average

• Usually, average case analysis is lengthy
and complicated, even with simplifying
assumptions.

∑
=

k

i 1

64

Computing the Average Running
Time

• The running time in this case is taken to be
the average time over all inputs of size n.
– Assume we have k inputs, where each input

costs Ci operations, and each input can occur
with probability Pi, 1 ≤ i ≤ k, the average
running time is given by

∑
=

k

i
iiCP

1
65

Average Case Analysis of Linear
Search

• Assume that the probability that key x appears in
any position in the array (1, 2, …, n) or does not
appear in the array is equally likely

– This means that we have a total of ……… different
inputs, each with probability ………

– What is the number of comparisons for each input?

– Therefore, the average running time of linear search =
………

66

Average Case Analysis of Insertion
Sort

• Assume that array A contains the numbers
from 1..n (i.e. elements are distinct)

• Assume that all n! permutations of the input
are equally likely.

• What is the number of comparisons for
inserting A[i] in its proper position in A[1..i]?
What about on average?

• Therefore, the total number of comparisons
on average is

67

Amortized Analysis

• The problem:
– We have a data structure
– We perform a sequence of operations

• Operations may be of different types (e.g., insert, delete)
• Depending on the state of the structure the actual cost of

an operation may differ (e.g., inserting into a sorted array)

– Just analyzing the worst-case time of a single
operation may not say too much

– We want the average running time of an operation
(but from the worst-case sequence of operations!).

68

Binary counter example

• Example data structure: a binary counter
– Operation: Increment
– Implementation: An array of bits A[0..k–1]

Increment(A)
1 i ← 0
2 while i < k and A[i] = 1 do
3 A[i] ← 0
4 i ← i + 1
5 if i < k then A[i] ← 1

How many bit assignments do we have to do in
the worst-case to perform Increment(A)? k-1

But usually we do much less bit assignments!
69

Analysis of binary counter
• How many bit-assignments do we do on

average?
– Let’s consider a sequence of n Increment’s
– Let’s compute the sum of bit assignments:

• A[0] assigned on each operation: n assignments
• A[1] assigned every two operations: n/2 assignments
• A[2] assigned every four ops: n/4 assignments
• A[i] assigned every 2i ops: n/2i assignments

lg

0
2

2

n

i
i

n n
⎢ ⎥⎣ ⎦

=

⎢ ⎥ <⎢ ⎥⎣ ⎦
∑

Thus, a single operation takes 2n/n = 2 = O(1)
time amortized time

70

Amortized analysis
• Unlike average case analysis, we do not need any

probability assumptions
• We compute the average cost per operation for any

mix of n operations
• Three techniques for amortization:
1. Aggregate - the total amount of time needed for the

n operations is added and divided by n.
2. Accounting - operations are assigned an amortized

(invented) cost.
– Usually some of the operations have a cost of "0".
– The rest have a positive cost, and "pay" for the "0" cost

operations.
3. Potential function method not discussed.

71

Aggregate analysis

• Aggregate analysis – a simple way to do
amortized analysis
– Treat all operations equally
– Compute the worst-case running time of a

sequence of n operations.
– Divide by n to get an amortized running time

• Used this method earlier on binary counter

72

Aggregate analysis – stack example

• Example data structure: a stack
– 3 Operations: Push, Pop, ClearStack

ClearStack(S)
1 while not empty(S) do
2 pop(S)
3 end while

Assume a sequence of n push, pop and clearStack
operations
In the worst-case an operation takes n-1 steps

But usually much less!

73

Aggregate analysis – stack example

• Push and Pop cost 1
• ClearStack costs s where s is the size of the stack.
• The number of pushes is at most n
• Each object can be popped only once for each time it is

pushed
• So the total number of times pop can be called (directly

or by clearStack) is bound by the number of pushes ≤ n.
• Worst case in n operations total n-1 pushes and 1

clearStack, costing 2(n-1)=2n-2
• The amortized cost of each operation is (2n-2)/ n ≈ 2, or

O(1)
74

Start

push a a

push b a
b

push c a
b
c

clearStack ca
b

pop b a

pop a

Operation Stack

a

a
b

a
b
c

Stack

pop c

6 Operation: 6 Moves 4 Operation: 6 Moves

Aggregate analysis – stack example
Operation

75

Amortization: Accounting Method
• The accounting method determines the amortized running

time with a system of credits and debits.
• We view a computer as a coin-operated device requiring 1

unit of cyber-money for a constant amount of computing.
• We set up a scheme for charging operations. This is known

as an amortization scheme.
– We may assign different charges to different operations -

sometimes more than appropriate, sometimes less.
– When charged more than the actual cost, an operation will

save some credit; when charged less, it will have to draw
down some of the accumulated credit.

• The scheme must give us always enough money to pay for
the actual cost of the operation – no negative balance.

• (amortized time) ≤ (total $ charged) / (# operations)

76

Accounting Method: Binary counter
• To assign a bit, we have to use one riyal
• When we assign “1”, I use one riyal, and we put one

riyal in a “savings account”.
• When we assign “0”, we can do it using a riyal from

the savings account.
• How much do we have to pay for the Increment(A) for

this scheme to work if the counter starts with 0?
– Only one assignment of “1” in the algorithm. Obviously,

two riyals will always pay for the operation
• We assign the amortized costs:

– SR2 for 0 1 flip and SR0 for 1 0 flip
• With these costs, balance is always nonnegative. Why? 77

Accounting Method: Stack Example

• We assign the amortized costs:
– SR2 for push
– SR0 for both pop and clearStack

• For a sequence of n push, pop and clearStack
operations the cost is at most SR2n (i.e. max n pushes.)

• Each time we do a push we pay SR1 for the cost of the
push and the element has a credit of SR1.

• Each time an element is popped we take SR1 from the
element to pay for it.

• Since the balance is never negative, amortized costs of
SR2 for push and SR0 for pop and clearStack satisfy
the balance constraint.

78

Dynamic Tables

• In an insert operation, when
the array is full, instead of
throwing an exception, we
can replace the array with a
larger one

• How large should the new
array be?
– keep it as small as possible
– incremental strategy: increase

the size by a constant c
– doubling strategy: double the

size

Algorithm insert(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o

79

java.util.Vector - addElement()

new Vector()
addElement(.)

Operation private Object[]

addElement(.)

1 move

addElement(.)

addElement(.)

addElement(.)

1 move
copy(1)

1 move
copy(2)

1 move

copy(4)
1 move

#copies = 1+2+4 #moves = 5

new array

new array

Total # = (1+2+4) + 5

Cost

1

2

3

1

5

new array

80

Comparison of the
Strategies

• We compare the incremental strategy
and the doubling strategy by analyzing
the total time T(n) needed to perform a
series of n insert operations

• We assume that we start with an empty
table represented by an array of size 1

81

Analysis of the
Incremental Strategy

• We replace the array k = ⎣n/c⎦ times
• The total time T(n) of a series of n insert

operations is proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =
n + ck(k + 1)/2

• Since c is a constant, T(n) is O(n + k2), i.e., O(n2)
• The amortized time of an insert operation is O(n)

82

Aggregate Analysis of the
Doubling Strategy

• We replace the array k = ⎡log2 n⎤
times

• The total time T(n) of a series of n
insert operations is proportional to

n + 1 + 2 + 4 + 8 + …+ 2k-1 =
n + 2k −1 = 3n −1

• T(n) is O(n)
• The amortized time of an insert

operation is O(1)

geometric series

1

2

1
4

8

83

Accounting Analysis
of Doubling Strategy

• Charge each operation SR3 amortized cost
– Use SR1 to perform immediate Insert()
– Save SR2

• When table doubles
– SR2 reinserts old item
– Point is, we’ve already paid these costs
– Upshot: constant (amortized) cost per operation

84

Amortization Scheme for the
Doubling Strategy

• Consider again the k phases, where each phase
consisting of twice as many insert s as the one before.

• At the end of a phase we must have saved enough to
pay for the array-growing insert of the next phase.

• At the end of phase i we want to have saved 2i cyber-
riyals, to pay for the array growth for the beginning of
the next phase.

• We charge SR3 for a push. The SR2 saved for a regular
push are “stored” in the second half of the array.

0 2 4 5 6 731

$ $ $ $
$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$
$

85

Algorithm for Surjectivity

Q: Why is the second algorithm better than
the first?

A: Because the second algorithm runs
faster. Even under the criterion of code-
length, algorithm 2 is better.

Let’s see why:

86

Running time of 1st algorithm
boolean isOnto(function f: (1,

2,…, n) (1, 2,…, m)){
if(m > n) return false
soFarIsOnto = true
for(j = 1 to m){

soFarIsOnto = false
for(i = 1 to n){

if (f(i) == j)
soFarIsOnto = true

if(!soFarIsOnto)
return false

}
}
return true;

}

1 step OR:
1 step (assigment)
m loops: 1 increment plus

1 step (assignment)
n loops: 1 increment plus

1 step possibly leads to:
1 step (assignment)

1 step possibly leads to:
1 step (return)

possibly 1 step
87

Running time of 1st algorithm

1 step (m>n) OR:
1 step (assigment)
m loops: 1 increment plus

1 step (assignment)
n loops: 1 increment plus

1 step possibly leads to:
1 step (assignment)

1 step possibly leads to:
1 step (return)

possibly 1 step

WORST-CASE running time:
Number of steps = 1 OR 1+

1 +
m ·
(1+ 1 +

n ·
(1+1
+ 1

+ 1
+ 1
)

+ 1
)

= 1 (if m>n) OR 5mn+3m+2

88

Running time of 2nd algorithm
boolean isOntoB(function f: (1,

2,…, n) (1, 2,…, m)){
if(m > n) return false

for(j = 1 to m)
beenHit[j] = false

for(i = 1 to n)
beenHit[f(i)] = true

for(j = 1 to m)
if(!beenHit[j])

return false
return true

}

1 step OR:
m loops: 1 increment plus

1 step (assignment)
n loops: 1 increment plus

1 step (assignment)
m loops: 1 increment plus

1 step possibly leads to:
1 step

possibly 1 step

.

89

Running time of 2nd algorithm

1 step (m>n) OR:
m loops: 1 increment plus

1 step (assignment)
n loops: 1 increment plus

1 step (assignment)
m loops: 1 increment plus

1 step possibly leads to:
1 step

possibly 1 step

.

WORST-CASE running time:
Number of steps = 1 OR 1+

m · (1+
1)

+ n · (1+
1)

+ m · (1+
1
+ 1)

+ 1
= 1 (if m>n) OR 5m + 2n + 2

90

Comparing Running Times
The first algorithm requires at most 5mn+3m+2

steps, while the second algorithm requires at
most 5m+2n+2 steps. In both cases, for worst
case times we can assume that m ≤ n as this
is the longer-running case (for the other case,
constant time). This reduces the respective
running times to 5n 2+3n+2 and 5n+2n+2= 8n+2.

To tell which algorithm is better, find the most
important terms using big-Θ notation:
– 5n 2+3n+2 = Θ(n 2) –quadratic time complexity
– 8n+2 = Θ(n) –linear time complexity WINNER

Q: Any issues with this line of reasoning?

91

Comparing Running Times.
Issues

1. Inaccurate to summarize running times
5n 2+3n+2 , 8n+2 only by biggest term. For
example, for n=1 both algorithms take 10
steps.

2. Inaccurate to count the number of “basic
steps” without measuring how long each basic
step takes. Maybe the basic steps of the
second algorithm are much longer than those
of the first algorithm so that in actuality first
algorithm is faster.

92

Comparing Running Times.
Issues

3. Surely the running time depends on the
platform on which it is executed. E.g., C-code
on a Pentium IV will execute much faster than
Java on a Palm-Pilot.

4. The running time calculations counted many
operations that may not occur. In fact, a close
look reveals that we can be certain the
calculations were an over-estimate since
certain conditional statements were mutually
exclusive. Perhaps we over-estimated so
much that algorithm 1 was actually a linear-
time algorithm.

93

Comparing Running Times.
Responses

1. Big-Θ inaccurate: Quadratic time Cn
2 will always take longer than linear
time Dn for large enough input, no
matter what C and D are; furthermore,
it is the large input sizes that give us
the real problems so are of most
concern.

94

Comparing Running Times.
Responses

2. “Basic steps” counting inaccurate: True that
we have to define what a basic step is.

EG: Does multiplying numbers constitute a
basic step or not. Depending on the
computing platform, and the type of problem
(e.g. multiplying int’s vs. multiplying
arbitrary integers) multiplication may take a
fixed amount of time, or not. When this is
ambiguous, you’ll be told explicitly what a
basic step is.

Q: What were the basic steps in previous
algorithms?

95

Comparing Running Times
A: Basic steps—

Assignment Increment
Comparison Negation
Return Random array access
Function output access

Each may in fact require a different number bit
operations –the actual operations that can
be carried out in a single cycle on a
processor. However, since each operation is
itself O (1) --i.e. takes a constant amount of
time, asymptotically as if each step was in
fact 1 time-unit long!

96

Comparing Running Times.
Issues

3. Platform dependence: Turns out there is usually
a constant multiple between the various basic
operations in one platform and another. Thus,
big-O erases this difference as well.

4. Running time is too pessimistic: It is definitely true
that when m > n the estimates are over-kill. Even
when m=n there are cases which run much faster
than the big-Theta estimate. However, since we
can always find inputs which do achieve the big-
Theta estimates (e.g. when f is onto), and the
worst-case running time is defined in terms of the
worst possible inputs, the estimates are valid.

97

Worst Case vs. Average Case
The time complexity described above is worst case

complexity. This kind of complexity is useful when
one needs absolute guarantees for how long a
program will run. The worst case complexity for a
given n is computed from the case of size n that
takes the longest.

On other hand, if a method needs to be run repeatedly
many times, average case complexity is most
suitable. The average case complexity is the avg.
complexity over all possible inputs of a given size.

Usually computing avg. case complexity requires
probability theory.

Q: Does one of the two surjectivity algorithms perform
better on average than worst case?

98

Worst Case vs. Average Case
A: Yes. The first algorithm performs

better on average. This is because
surjective functions are actually rather
rare, and the algorithm terminates early
when a non-hit element is found near
the beginning.

With probability theory will be able to
show that when m = n, the first
algorithm has O (n) average complexity.

99

Big-O
A Grain of Salt

Big-O notation gives a good first guess for
deciding which algorithms are faster. In
practice, the guess isn’t always correct.

Consider time functions n 6 vs. 1000n 5.9.
Asymptotically, the second is better. Often catch
such examples of purported advances in
theoretical computer science publications. The
following graph shows the relative performance
of the two algorithms:

100

Big-O
A Grain of SaltRunning-time

In days

Input size n

T(n) = n 6

T(n) =
1000n 5.9

Assuming each operation
takes a nano-second, so
computer runs at 1 GHz

