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First Chapter

• In this chapter, we will answer the 
following two questions
– What does it mean to be an efficient 

algorithm?
– How can one tell that it is more efficient than 

other algorithms?
based on some easy-to-understand 
searching and sorting algorithms that we 
may have seen earlier.
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Searching Problem

• Assume A is an array with n elements A[1], 
A[2], … A[n]. For a given element x, we must 
determine whether there is an index j; 1 ≤ j 
≤ n, such that  x = A[j]

• Two algorithms, among others, address this 
problem
– Linear Search
– Binary Search
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Linear Search Algorithm

Algorithm: LINEARSEARCH
Input:  array A[1..n] of n elements and an element 

x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.
1. j ← 1
2. while (j < n) and (x ≠A[j])
3. j ← j + 1
4. end while
5. if x = A[j] then return j else return 0
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Analyzing Linear Search

• One way to measure efficiency is to count how many 
statements get executed before the algorithm 
terminates

• One should keep an eye, though, on statements that 
are executed “repeatedly”.

• What will be the number of “element” comparisons if
– X first appears in the first element of A
– X first appears in the middle element of A
– X first appears in the last element of A
– X doesn’t appear in A.
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Binary Search
• We can do “better” than linear search if we knew 

that the elements of A are sorted, say in non-
decreasing order.

• The idea is that you can compare x to the middle 
element of A, say A[middle].
– If x < A[middle] then you know that x cannot be an 

element from A[middle+1], A[middle+2], …A[n]. Why?
– If x > A[middle] then you know that x cannot be an 

element from A[1], A[2], …A[middle-1]. Why?
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Binary Search Algorithm
Algorithm: BINARYSEARCH
Input: An array A[1..n] of n elements sorted in 

nondecreasing order and an element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.
1. low ← 1; high ← n; j ← 0
2. while (low ≤ high) and (j = 0)
3. mid ←  ⎣(low + high)/2⎦
4. if x = A[mid] then j ← mid
5. else if x < A[mid] then high ← mid - 1
6. else low ← mid + 1
7. end while
8. return j
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Worst Case Analysis of Binary 
Search

• What to do: Find the maximum number of element 
comparisons

• How to do:
– The number of “element” comparisons is equal to the 

number of iterations of the while loop in steps 2-7. HOW?
– How many elements of the input do we have in the

• First iteration
• Second iteration
• Thrid iteration
• …
• ith iteration

– The last iteration occurs when the size of  input we have 
= 8

Theorem

• The number of comparisons performed by 
Algorithm BINARYSEARCH on a sorted 
array of size n is at most ⎣ ⎦ 1log +n
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Merging Two Sorted Lists
• Problem Description: Given two lists (arrays) that are 

sorted in non-decreasing order, we need to merge them 
into one list sorted in non-decreasing order.

• Example:

12973 4 141321

Input

Output

141312974321



10

How to merge two arrays?

873

A[3..5]A[0..2]B[0..5]
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Algorithm MERGE

Algorithm: MERGE
Input: An array A[1..m] of elements and three 

indices p, q and r, with 1 ≤ p ≤ q <r ≤ m, such 
that both the subarrays A[p..q] and A[q + 1..r] 
are sorted individually in nondecreasing
order.

Output: A[p..r] contains the result of merging 
the two subarrays A[p..q] and A[q + 1..r].

Comment: B[p..r] is an auxiliary array.
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Algorithm MERGE (Cont.)
1.   s ← p; t ← q + 1; k ← p
2.   while s ≤ q and t ≤ r
3. if A[s] ≤ A[t] then
4. B[k] ← A[s]
5. s ← s + 1
6. else
7. B[k] ←A[t]
8. t ← t + 1
9.    end if
10.   k ← k + 1
11. end while

12. if  (s = q + 1) then B[k..r] ← A[t..r]
13.  else  B[k..r] ← A[s..q]
14. end if
15. A[p..r] ← B[p..r]
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Analyzing MERGE
• Assuming arrays A[p,q] and A[q+1,r]

– The least number of comparisons is           
which occurs when

– The most number of comparisons is          
which occurs when

– The number of element assignments 
performed is
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Selection Sort
Algorithm: SELECTIONSORT
Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.
1. for i ← 1 to n - 1
2. k ← i
3. for j ← i + 1 to n 

{Find the index of the ith smallest element}
4. if A[j] < A[k] then k ← j
5. end for
6. if k ≠ i then interchange A[i] and A[k]
7. end for
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Selection Sort Example

42 85 9

45 82 9

i k

1 2

54 82 92 5

94 82 53 5

94 82 54 4
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Analyzing Selection Sort
• We need to find the number of comparisons 

carried out in line #4:
– For each iteration of the outer for loop, how 

many times is line #4 executed?
– Therefore, in total, line #4 is executed

• The number of element Interchanges 
(swaps):
– Minimum:
– Maximum:

NOTE: The number of element assignments is 
3 times the number of element interchanges 17

Insertion Sort
Algorithm: INSERTIONSORT
Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.
1. for i ← 2 to n
2.   x ← A[i]
3. j ← i - 1
4. while (j > 0) and (A[j] > x)
5. A[j + 1] ← A[j]
6. j ← j - 1
7. end while
8. A[j + 1] ← x
9. end for
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Insertion Sort Example

42 85 9x=2

45 82 9x=9

45 82 9x=8

45 92 8x=4

94 82 5
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Analyzing Insertion Sort
• The minimum number of element 

comparisons is                                           
which occurs when

• The maximum number of element 
comparisons is                                        
which occurs when

• The number of element assignments is
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Bottom-Up Merge Sort

• Informally, the algorithm does the following
– 1. Divide the array into pairs of elements (with 

possibly single elements in case the number 
of elements is               )

– 2. Merge each pair in non-decreasing order 
(with possibly a single “pair” left)

– 3. Repeat step 2 until there is only one “pair”
left.
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Bottom-Up Merge Sort Example

5 2 9 8 4 12 7 1 3 6 10

52 98 4 12 71 3 6 10

52 98 4 1271 3 6 10

52 984 1271 3 6 10

52 984 1271 3 6 10
42 318 1075 9 12 6
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Algorithm BOTTOMUPSORT
Algorithm: BOTTOMUPSORT
Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. t ← 1
2. while t < n
3.   s ← t; t ← 2s; i ← 0
4.   while i + t ≤ n
5.     MERGE(A, i + 1, i + s, i + t)
6.     i ← i + t
7.   end while
8.   if i + s < n then 
9.     MERGE(A, i + 1, i+ s, n)
10. end while
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Analyzing Algorithm 
BOTTOMUPSORT

• With no loss of generality, assume that the size of 
the array, n,  is a power of 2.
– In the first iteration, we have             pairs that are 

merged using                element comparisons.
– In the second iteration, we have             pairs that are 

merged using
– ….
– In the jth iteration, we have              pairs that are 

merged using

– The outer while loop is executed               times.
– Therefore,
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Analyzing Algorithm 
BOTTOMUPSORT

• What about the number of element 
assignments?
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Time Complexity
• One way of measuring the performance of an 

algorithm is how fast it executes. The question is 
how to measure this “time”?
– Is having a digital stop watch suitable?

• In general, we are not so much interested in the 
time and space complexity for small inputs.

• For example, while the difference in time 
complexity between linear and binary search is 
meaningless for a sequence with n = 10, it is 
gigantic for n = 230.
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Complexity

•For example, let us assume two algorithms A and B 
that solve the same class of problems.

•The time complexity of A is 5,000n, the one for B is 
⎡1.1n⎤ for an input with n elements.

•For n = 10, A requires 50,000 steps, but B only 3, 
so B seems to be superior to A.

•For n = 1000, however, A requires 5,000,000 steps, 
while B requires 2.5⋅1041 steps. 
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Complexity

• Comparison: time complexity of algorithms A and B

Algorithm AAlgorithm A Algorithm BAlgorithm BInput SizeInput Size
nn
1010

100100
1,0001,000

1,000,0001,000,000

5,000n5,000n
50,00050,000

500,000500,000
5,000,0005,000,000

55⋅⋅101099

⎡⎡1.11.1nn⎤⎤

33

2.52.5⋅⋅10104141
13,78113,781

4.84.8⋅⋅10104139241392
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Order of Growth

•This means that algorithm B cannot be used for 
large inputs, while algorithm A is still feasible.

•So what is important is the growth of the 
complexity functions.

•The growth of time and space complexity with  
increasing input size n is a suitable measure for 
the comparison of algorithms. 

– we focus on asymptotic analysis

29

Example

Growth rate for some function 30

Example

Growth rate for same previous functions 
showing larger input sizes
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Running Times for Different Sizes 
of Inputs of Different Functions

Complexity 10                20                30                40        50                60

n 1×10-5 sec    2×10-5 sec   3×10-5 sec    4×10-5 sec    5×10-5 sec   6×10-5 sec

n2 0.0001 sec   0.0004 sec   0.0009 sec   0.016 sec     0.025 sec  0.036 sec

n3 0.001 sec     0.008 sec     0.027 sec     0.064 sec     0.125 sec     0.216 sec

n5 0.1 sec         3.2 sec         24.3 sec       1.7 min        5.2 min        13.0 min

2n 0.001sec      1.0 sec         17.9 min      12.7 days     35.7 years    366 cent

3n 0.59sec        58 min         6.5 years     3855 cent     2×108cent    1.3×1013cent 

log2 n 3×10-6 sec    4×10-6 sec   5×10-6 sec    5×10-6 sec    6×10-6 sec    6×10-6 sec

n log2 n 3×10-5 sec    9×10-5 sec   0.0001 sec   0.0002 sec    0.0003 sec   0.0004 sec
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Asymptotic Analysis: Big-oh (O())
• Definition: For T(n) a non-negatively valued 

function, T(n) is in the set O(f(n)) if there exist 
two positive constants c and n0 such that T(n) 
≤ cf(n) for all n > n0.

• Usage: The algorithm is in O(n2) in [best, 
average, worst] case.

• Meaning: For all data sets big enough (i.e., 
n>n0), the algorithm always executes in less 
than or equal to cf(n) steps in [best, average, 
worst] case.
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The Growth of Functions

The idea behind the big-O notation is to establish an 
upper boundary for the growth of a function f(x) for 
large x.
This boundary is specified by a function g(x) that is 
usually much simpler than f(x).
We accept the constant C in the requirement f(x) ≤
C⋅g(x)  whenever x > k, because C does not grow 
with x.
We are only interested in large x, so it is OK if
f(x) > C⋅g(x)  for x ≤ k.
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The Growth of Functions

Example:

Show that f(x) = x2 + 2x + 1 is O(x2).

For x > 1 we have:
x2 + 2x + 1 ≤ x2 + 2x2 + x2

⇒ x2 + 2x + 1 ≤ 4x2

Therefore, for C = 4 and k = 1:
f(x) ≤ Cx2 whenever x > k.

⇒ f(x) is O(x2).
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The Growth of Functions

Question: If f(x) is O(x2), is it also O(x3)?

Yes. x3 grows faster than x2, so x3 grows also 
faster than f(x).

Therefore, we always try to find the smallest
simple function g(x) for which f(x) is O(g(x)). 
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The Growth of Functions
“Popular” functions g(n) are

n log n, 1, 2n, n2, n!, n, n3, log n
Listed from slowest to fastest growth:

1
log n
n
n log n
n2

n3

2n

n!
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The Growth of Functions

A problem that can be solved with polynomial 
worst-case complexity is called tractable.
Problems of higher complexity are called 
intractable.
Later on NP-completeness.
Problems that no algorithm can solve are 
called unsolvable.
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Big O() Examples
• Example 1: Find c and n0 to show that 

T(n) = (n+2)/2 is in O(n)

• Example 2: Find c and n0 to show that 
T(n)=c1n2+c2n is in O(n2)

• Example 3: T(n) = c.  We say this is in O(1).
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A Procedure to show that
f(x) is O(g(x))

Show that 3x 3 + 5x 2 – 9 = O (x 3). 
Let C = 5.  Let’s find k so that 3x 3 + 

5x 2 – 9 ≤ 5x 3 for x > k : 
1. Collect terms: 5x 2 ≤ 2x 3 + 9
2. What k will make 5x 2 ≤ x 3 past k ?
3. k = 5 !
4. So for x > 5, 5x 2 ≤ x 3 ≤ 2x 3 + 9
5. Solution: C = 5, k = 5 (not unique!)
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Asymptotic Analysis: Big-Omega (Ω())

• Definition: For T(n) a non-negatively valued 
function, T(n) is in the set Ω(g(n)) if there exist 
two positive constants c and n0 such that T(n) 
>= cg(n) for all n > n0.

• Meaning: For all data sets big enough (i.e., n > 
n0), the algorithm always executes in more 
than or equal to cg(n) steps.

• Ω() notation indicates a lower bound.
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Ω() Example

• Find c and n0 to show that T(n) = c1n2 + 
c2n is in Ω(n2) .
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Asymptotic Analysis: Big Theta (Θ())

• When O() and Ω() meet, we indicate this 
by using Θ() (big-Theta) notation.

• Definition: An algorithm is said to be 
Θ(h(n)) if it is in O(h(n)) and it is in 
Ω(h(n)).
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Example

• Show that log(n!) is in Θ(n log n).

44

Complexity Classes and small-oh 
(o())

• Using Θ() notation, one can divide the functions 
into different equivalence classes, where f(n)
and g(n) belong to the same equivalence class 
if f(n) = Θ(g(n))

• To show that two functions belong to different 
equivalence classes, the small-oh notation has 
been introduced

• Definition: Let f(n) and g(n) be two functions 
from the set of natural numbers to the set of 
non-negative real numbers. f(n) is said to be in 
o(g(n)) if for every constant c > 0, there is a 
positive integer n0 such that f(n) < cg(n) for all n
≥ n0.
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Simplifying Rules
• If f(n) is in O(g(n)) and g(n) is in O(h(n)), 

then f(n) is in O(h(n))
• If f(n) is in O(kg(n)) for any constant k > 0, 

then f(n) is in ………
• If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)),

then (f1 + f2)(n) is in ………
• If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)) 

then f1(n)f2(n) is in ………
• You can safely “globally” replace O with  Ω or Θ in 

the above, where the above rules will still hold.
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Very Useful Simplifying Rule
• Let f(n) and g(n) be be two functions from the 

set of natural numbers to the set of non-
negative real numbers such that:

Then
if L < ∞ then f(n) is in O(g(n)) 
if L > 0  then f(n) is in Ω(g(n)) 
if 0 < L < ∞ then f(n) is in Θ(g(n)) 

∞≤=≤
∞→ )(

)(lim0
ng
nfL

n
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Big-O.  Negative Example
x 4 ≠ O (3x 3 + 5x 2 – 9) :
Show that no C, k can exist such that past k, 

C (3x 3 + 5x 2 – 9) ≥ x 4 is always true.  
Easiest way is with limits (yes Calculus is 
good to know):

Thus no-matter C, x 4 will always catch up and 
eclipse C (3x 3 + 5x 2 – 9) �

)/9/53(
lim

)953(
lim 323

4

xxC
x

xxC
x

xx −+
=
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Incomparable Functions

Given two functions f (x ) and g (x ) it is not 
always the case that one dominates the 
other so that f and g are asymptotically 
incomparable.

E.G:
f (x) = |x 2 sin(x)|  vs. g (x) = 5x 1.5
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Incomparable Functions

0 5 10 15 20 25 30 35 40 45 50
0

500

1000
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2500

y = |x 2 sin(x)|

y = x 2

y = 5x 1.5
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Space Complexity

• Space complexity refers to the number of 
memory cells needed to carry out the 
computational steps required in an algorithm 
excluding memory cells needed to hold the 
input.

• Compare additional space needed to carry out 
SELECTIONSORT to that of 
BOTTOMUPSORT if we have an array with 2 
million elements!
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Examples

• What is the space complexity for
– Linear search
– Binary search
– Selection sort
– Insertion sort
– Merge (that merges two sorted lists)
– Bottom up merge sort
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Estimating the Running Time of an 
Algorithm

• As mentioned earlier, we need to focus on 
counting those operations which 
represent, in general, the behavior of the 
algorithm

• This is achieved by
– Counting the frequency of basic operations.

• Basic operation is an operation with highest 
frequency to within a constant factor among all 
other elementary operations

– Recurrence Relations
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Counting the Frequency of Basic 
Operations

• Sometimes, it is easier to compute the 
frequency of an operation that is a good 
representative of the overall time complexity 
of the algorithm
– For example, Algorithm MERGE.

• Counting the number of iterations 
– The number of iterations in a while loop and/or 

a for loop is a good indication of the total 
number of operations 
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Nested loops

• Running time of a loop equals running time of 
the code within the loop times the number of 
iterations.

• Nested Loops: analyze inside out
1  for (i=0; i <n; i++)
2 for (j = 0; j< n; j++)
3 k++

• Running time of lines 2-3: O(n)
• Running time of lines 1-3: O(n2)
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Consecutive statements

• For a sequence S1, S2, .., Sk of statements, 
running time is maximum of running times of 
individual statements
for (i=0; i<n; i++)

x[i] = 0;
for (i=0; i<n; i++)

for (j=0; j<n; j++)
k[i] += i+j;

• Running time is: O(n2)
56

Conditional statements

• The running time of 
If (cond) S1
else S2
is running time of cond plus the max of running 

times of S1 and S2. 
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More nested loops

1 int k = 0;
2 for (i=0; i<n; i++)
3 for (j=i; j<n; j++)
4 k++
• Running time of lines 3-4: n-i
• Running time of lines 1-4:

)(2/)1()( 2
1

0
nOnnin

n

i
=−=−∑

−

=
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More nested loops
1 int k = 0;
2 for (i=1; i<n; i*= 2)
3 for (j=1; j<n; j++)
4 k++
• Running time of inner loop: O(n)
• What about the outer loop?
• In m-th iteration, value of i is 2m-1

• Suppose 2q-1 < n ≤ 2q, then outer loop is 
executed q times. 

• Running time is O(n log n). Why?
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A more intricate example
1 int k = 0;
2 for (i=1; i<n; i*= 2)
3 for (j=1; j<i; j++)
4 k++
• Running time of inner loop: O(i)
• Suppose 2q-1 < n ≤ 2q, then the total running 

time:
1 + 2 + 4 + ….+2q-1 = 2q -1

• Running time is O(n). 
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Computing Fibonacci numbers

• We write the following program: a 
recursive program
1   long int fib(n) {
2 if (n <= 1) 
3 return 1;
4 else return fib(n-1) + fib(n-2)

• Try fib(100), and it takes forever.
• Let us analyze the running time. 
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fib(n) runs in exponential time
• The number of operations can be represented 

as a recurrence relation. 
• Let T denote the running time.

T(0) = T(1) = c 
T(n) = T(n-1) + T(n-2) + 2

where 2 accounts for line 2 plus the addition at 
line 3. 

• By induction, we can show that the running time 
is Ω((3/2)n). 

• So the running time grows exponentially. 
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Efficient Fibnacci numbers
• Avoid recomputation
• Solution with linear running time

int fib(int n)
{

int fibn=0, fibn1=0, fibn2=1;
if (n < 2) 

return n
else
{

for( int i = 2; i <= n; i++ ) {
fibn = fibn1 + fibn2;
fibn1 = fibn2;
fibn2 = fibn;

}
return fibn;
}

}
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Average Case Analysis

• Probabilities of all inputs is an important 
piece of prior knowledge in order to 
compute the number of operations on 
average

• Usually, average case analysis is lengthy 
and complicated, even with simplifying 
assumptions.

∑
=

k

i 1
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Computing the Average Running 
Time

• The running time in this case is taken to be 
the average time over all inputs of size n.
– Assume we have k inputs, where each input 

costs Ci operations, and each input can occur 
with probability Pi, 1 ≤ i ≤ k, the average 
running time is given by

∑
=

k

i
iiCP

1
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Average Case Analysis of Linear 
Search

• Assume that the probability that key x appears in 
any position in the array (1, 2, …, n) or does not 
appear in the array is equally likely

– This means that we have a total of ……… different 
inputs, each with probability ………

– What is the number of comparisons for each input?

– Therefore, the average running time of linear search = 
………

66

Average Case Analysis of Insertion 
Sort

• Assume that array A contains the numbers 
from 1..n ( i.e. elements are distinct)

• Assume that all n! permutations of the input 
are equally likely.

• What is the number of comparisons for 
inserting A[i] in its proper position in A[1..i]? 
What about on average?

• Therefore, the total number of comparisons 
on average is
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Amortized Analysis

• The problem:
– We have a data structure
– We perform a sequence of operations

• Operations may be of different types (e.g., insert, delete)
• Depending on the state of the structure the actual cost of 

an operation may differ (e.g., inserting into a sorted array)

– Just analyzing the worst-case time of a single 
operation may not say too much

– We want the average running time of an operation 
(but from the worst-case sequence of operations!). 

68

Binary counter example

• Example data structure: a binary counter
– Operation: Increment
– Implementation: An array of bits A[0..k–1] 

Increment(A)  
1 i ← 0
2 while i < k and A[i] = 1 do 
3 A[i] ← 0 
4 i ← i + 1
5 if i < k then A[i] ← 1

How many bit assignments do we have to do in 
the worst-case to perform Increment(A)? k-1

But usually we do much less bit assignments!
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Analysis of binary counter
• How many bit-assignments do we do on 

average?
– Let’s consider a sequence of n Increment’s
– Let’s compute the sum of bit assignments:

• A[0] assigned on each operation: n assignments
• A[1] assigned every two operations: n/2 assignments
• A[2] assigned every four ops: n/4 assignments
• A[i]  assigned every 2i ops: n/2i assignments

lg
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2
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n n
⎢ ⎥⎣ ⎦
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∑

Thus, a single operation takes 2n/n = 2 = O(1) 
time amortized time 
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Amortized analysis
• Unlike average case analysis, we do not need any 

probability assumptions
• We compute the average cost per operation for any 

mix of n operations
• Three techniques for amortization:
1. Aggregate - the total amount of time needed for the 

n operations is added and divided by n.
2. Accounting - operations are assigned an amortized 

(invented) cost.
– Usually some of the operations have a cost of "0".  
– The rest have a positive cost, and "pay" for the "0" cost 

operations.
3. Potential function method not discussed.
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Aggregate analysis

• Aggregate analysis – a simple way to do 
amortized analysis
– Treat all operations equally
– Compute the worst-case running time of a 

sequence of n operations.
– Divide by n to get an amortized running time

• Used this method earlier on binary counter 
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Aggregate analysis – stack example

• Example data structure: a stack
– 3 Operations: Push, Pop, ClearStack

ClearStack(S)
1 while not empty(S) do
2 pop(S)
3   end while

Assume a sequence of n push, pop and clearStack
operations 
In the worst-case an operation takes n-1 steps

But usually much less!
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Aggregate analysis – stack example

• Push and Pop cost 1 
• ClearStack costs s where s is the size of the stack. 
• The  number of pushes is at most n
• Each object can be popped only once for each time it is 

pushed
• So the total number of  times pop can be called (directly 

or by clearStack) is bound by the number of pushes ≤ n.
• Worst case in n operations total n-1 pushes and 1 

clearStack, costing 2(n-1)=2n-2
• The amortized cost of each operation is (2n-2)/ n  ≈ 2, or 

O(1)
74

Start

push a a

push b a
b

push c a
b
c

clearStack ca
b

pop b a

pop a

Operation Stack

a

a
b

a
b
c

Stack

pop c

6 Operation: 6 Moves 4 Operation: 6 Moves

Aggregate analysis – stack example
Operation
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Amortization: Accounting Method
• The accounting method determines the amortized running 

time with a system of credits and debits.
• We view a computer as a coin-operated device requiring 1 

unit of cyber-money for a constant amount of computing.
• We set up a scheme for charging operations. This is known 

as an amortization scheme. 
– We may assign different charges to different operations -

sometimes more than appropriate, sometimes less. 
– When charged more than the actual cost, an operation will 

save some credit; when charged less, it will have to draw 
down some of the accumulated credit.

• The scheme must give us always enough money to pay for 
the actual cost of the operation – no negative balance.

• (amortized time) ≤ (total $ charged) / (# operations)
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Accounting Method: Binary counter
• To assign a bit, we have to use one riyal
• When we assign “1”, I use one riyal, and we put one 

riyal in a “savings account”.
• When we assign “0”, we can do it using a riyal from 

the savings account.
• How much do we have to pay for the Increment(A) for 

this scheme to work if the counter starts with 0?
– Only one assignment of “1” in the algorithm. Obviously, 

two riyals will always pay for the operation
• We assign the amortized costs:

– SR2 for 0 1 flip and SR0 for 1 0 flip
• With these costs, balance is always nonnegative. Why? 77

Accounting Method: Stack Example

• We assign the amortized costs:
– SR2 for push
– SR0 for both pop and clearStack

• For a sequence of n push, pop and clearStack
operations the cost is at most SR2n (i.e. max n pushes.)

• Each time we do a push we pay SR1 for the cost of the 
push and the element has a credit of SR1. 

• Each time an element is popped we take SR1 from the 
element to pay for it.

• Since the balance is never negative, amortized costs of 
SR2 for push and SR0 for pop and clearStack satisfy 
the balance constraint.
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Dynamic Tables

• In an insert operation, when 
the array is full, instead of 
throwing an exception, we 
can replace the array with a 
larger one

• How large should the new 
array be?
– keep it as small as possible
– incremental strategy: increase 

the size by a constant c
– doubling strategy: double the 

size

Algorithm insert(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o
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java.util.Vector - addElement()

new Vector( )
addElement(.)

Operation private Object[ ]

addElement(.)

1 move

addElement(.)

addElement(.)

addElement(.)

1 move
copy(1)

1 move
copy(2)

1 move

copy(4)
1 move

#copies = 1+2+4 #moves = 5

new array

new array

Total #  = (1+2+4) + 5

Cost

1

2

3

1

5

new array
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Comparison of the 
Strategies

• We compare the incremental strategy 
and the doubling strategy by analyzing 
the total time T(n) needed to perform a 
series of n insert operations

• We assume that we start with an empty 
table represented by an array of size 1
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Analysis of the 
Incremental Strategy

• We replace the array k = ⎣n/c⎦ times
• The total time T(n) of a series of n insert 

operations is proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =
n + ck(k + 1)/2

• Since c is a constant, T(n) is O(n + k2), i.e., O(n2)
• The amortized time of an insert operation is O(n)
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Aggregate Analysis of the 
Doubling Strategy

• We replace the array k = ⎡log2 n⎤
times

• The total time T(n) of a series of n
insert operations is proportional to

n + 1 + 2 + 4 + 8 + …+ 2k-1 =
n + 2k −1 = 3n −1

• T(n) is O(n)
• The amortized time of an insert 

operation is O(1)

geometric series

1

2

1
4

8
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Accounting Analysis 
of Doubling Strategy

• Charge each operation SR3 amortized cost
– Use SR1 to perform immediate Insert()
– Save SR2

• When table doubles
– SR2 reinserts old item
– Point is, we’ve already paid these costs
– Upshot: constant (amortized) cost per operation
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Amortization Scheme for the 
Doubling Strategy

• Consider again the k phases, where each phase 
consisting of twice as many insert s as the one before.

• At the end of a phase we must have saved enough to 
pay for the array-growing insert of the next phase.

• At the end of phase i we want to have saved 2i cyber-
riyals, to pay for the array growth for the beginning of 
the next phase.

• We charge SR3 for a push. The SR2 saved for a regular 
push are “stored” in the second half of the array. 

0 2 4 5 6 731

$ $ $ $
$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$
$
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Algorithm for Surjectivity

Q: Why is the second algorithm better than 
the first?

A:  Because the second algorithm runs 
faster.  Even under the criterion of code-
length, algorithm 2 is better.

Let’s see why:
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Running time of 1st algorithm
boolean isOnto( function f: (1, 

2,…, n) (1, 2,…, m) ){
if( m > n ) return false 
soFarIsOnto = true
for( j = 1 to m ){

soFarIsOnto = false
for(i = 1 to n ){

if ( f(i ) == j )
soFarIsOnto = true

if( !soFarIsOnto )
return false

}
}
return true;

}

1 step OR:
1 step (assigment)
m loops:  1 increment plus

1 step (assignment)
n loops:  1 increment plus

1 step possibly leads to:
1 step (assignment) 

1 step possibly leads to:
1 step (return) 

possibly 1 step
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Running time of 1st algorithm

1 step (m>n) OR:
1 step (assigment)
m loops:  1 increment plus

1 step (assignment)
n loops:  1 increment plus

1 step possibly leads to:
1 step (assignment) 

1 step possibly leads to:
1 step (return) 

possibly 1 step

WORST-CASE running time:
Number of steps = 1 OR 1+

1 +
m ·
(1+ 1 + 

n ·
(1+1 
+  1 

+ 1 
+  1
)

+ 1
) 

= 1 (if m>n) OR 5mn+3m+2
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Running time of 2nd algorithm
boolean isOntoB( function f: (1, 

2,…, n) (1, 2,…, m) ){
if( m > n ) return false 

for( j = 1 to m )
beenHit[ j ] = false

for(i = 1 to n )
beenHit[ f(i ) ] = true

for(j = 1 to m )
if( !beenHit[ j ] ) 

return false
return true

}

1 step OR:
m loops:  1 increment plus

1 step (assignment)
n loops:  1 increment plus

1 step (assignment)
m loops:  1 increment plus

1 step possibly leads to:
1 step 

possibly 1 step

.
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Running time of 2nd algorithm

1 step (m>n) OR:
m loops:  1 increment plus

1 step (assignment)
n loops:  1 increment plus

1 step (assignment)
m loops:  1 increment plus

1 step possibly leads to:
1 step 

possibly 1 step

.

WORST-CASE running time:
Number of steps = 1 OR 1+

m · (1+
1)

+ n · (1+
1 )

+ m · (1+
1 
+ 1)

+  1
= 1 (if m>n) OR 5m + 2n + 2
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Comparing Running Times
The first algorithm requires at most 5mn+3m+2

steps, while the second algorithm requires at 
most 5m+2n+2 steps.  In both cases, for worst 
case times we can assume that m ≤ n as this 
is the longer-running case (for the other case, 
constant time).  This reduces the respective 
running times to 5n 2+3n+2 and 5n+2n+2= 8n+2.

To tell which algorithm is better, find the most 
important terms using big-Θ notation:
– 5n 2+3n+2 = Θ(n 2) –quadratic time complexity
– 8n+2 = Θ(n) –linear  time complexity WINNER

Q:  Any issues with this line of reasoning?
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Comparing Running Times.
Issues

1. Inaccurate to summarize running times          
5n 2+3n+2 , 8n+2 only by biggest term.  For 
example, for n=1 both algorithms take 10 
steps.

2. Inaccurate to count the number of “basic 
steps” without measuring how long each basic 
step takes.  Maybe the basic steps of the 
second algorithm are much longer than those 
of the first algorithm so that in actuality first 
algorithm is faster.

92

Comparing Running Times.
Issues

3. Surely the running time depends on the 
platform on which it is executed.  E.g., C-code 
on a Pentium IV will execute much faster than 
Java on a Palm-Pilot.

4. The running time calculations counted many 
operations that may not occur.  In fact, a close 
look reveals that we can be certain the 
calculations were an over-estimate since 
certain conditional statements were mutually 
exclusive.  Perhaps we over-estimated so 
much that algorithm 1 was actually a linear-
time algorithm.
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Comparing Running Times.
Responses

1. Big-Θ inaccurate:  Quadratic time Cn
2 will always take longer than linear 
time Dn for large enough input, no 
matter what C and D are; furthermore, 
it is the large input sizes that give us 
the real problems so are of most 
concern.
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Comparing Running Times.
Responses

2. “Basic steps” counting inaccurate:  True that 
we have to define what a basic step is.  

EG:  Does multiplying numbers constitute a 
basic step or not.  Depending on the 
computing platform, and the type of problem 
(e.g. multiplying int’s vs. multiplying 
arbitrary integers)  multiplication may take a 
fixed amount of time, or not.  When this is 
ambiguous, you’ll be told explicitly what a 
basic step is.

Q:  What were the basic steps in previous 
algorithms?
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Comparing Running Times
A:  Basic steps—

Assignment Increment
Comparison Negation
Return Random array access
Function output access

Each may in fact require a different number bit 
operations –the actual operations that can 
be carried out in a single cycle on a 
processor.   However, since each operation is 
itself O (1) --i.e. takes a constant amount of 
time, asymptotically as if each step was in 
fact 1 time-unit long!
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Comparing Running Times.
Issues

3. Platform dependence:  Turns out there is usually 
a constant multiple between the various basic 
operations in one platform and another.  Thus, 
big-O erases this difference as well.

4. Running time is too pessimistic: It is definitely true 
that when m > n the estimates are over-kill.  Even 
when m=n there are cases which run much faster 
than the big-Theta estimate.  However, since we 
can always find inputs which do achieve the big-
Theta estimates (e.g. when f is onto), and the 
worst-case running time is defined in terms of the 
worst possible inputs, the estimates are valid.
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Worst Case vs. Average Case
The time complexity described above is worst case

complexity.  This kind of complexity is useful when 
one needs absolute guarantees for how long a 
program will run.  The worst case complexity for a 
given n is computed from the case of size n that 
takes the longest.

On other hand, if a method needs to be run repeatedly 
many times, average case complexity is most 
suitable.  The average case complexity is the avg. 
complexity over all possible inputs of a given size.

Usually computing avg. case complexity requires 
probability theory.

Q:  Does one of the two surjectivity algorithms perform 
better on average than worst case?
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Worst Case vs. Average Case
A:  Yes.  The first algorithm performs 

better on average.  This is because 
surjective functions are actually rather 
rare, and the algorithm terminates early 
when a non-hit element is found near 
the beginning.

With probability theory will be able to 
show that when m = n, the first 
algorithm has O (n) average complexity.
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Big-O
A Grain of Salt

Big-O notation gives a good first guess for 
deciding which algorithms are faster.  In 
practice, the guess isn’t always correct.

Consider time functions n 6  vs. 1000n 5.9.  
Asymptotically, the second is better.  Often catch 
such examples of purported advances in 
theoretical computer science publications. The 
following graph shows the relative performance 
of the two algorithms:
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Big-O
A Grain of SaltRunning-time

In days

Input size n

T(n) = n 6 

T(n) = 
1000n 5.9 

Assuming each operation
takes a nano-second, so
computer runs at 1 GHz


