|CS103 Programming in C

_ecture 11: Recursive Functions

Outline

Introducing Recursive Functions
Format of recursive Functions

Tracing Recursive Functions
Examples
Tracing using Recursive Trees

Introducing Recursive Functions

We have seen so far that a function, such as main, can call
another function to perform some computation.

In C, a function can also call itself. Such types of functions
are called recursive functions. A function, f, is also said to be
recursive If it calls another function, g, which in turn calls f.

Although it may sound strange for a function to call itself, it is
In fact not so strange, as many mathematical functions are
defined recursively.

= For example, the factorial function is defined mathematically as:
1, n=0

n! = {
n(n-1)! , n>1

Although less efficient than iterative functions (using loops)
due to overhead In function calls, In many cases, recursive
functions provide a more natural and simple solutions.

Thus, recursion is a powerful tool in problem solving and
programming.

Introducing Recursive Functions ...

* Problems that can be solved using recursion have the
following characteristics:

= One or more simple cases of the problem have a direct and easy
answer — also called base cases. Example: 0! = 1.

= The other cases can be re-defined in terms of a similar but smaller
problem - recursive cases. Example: n! =n (n-1)!

= By applying this re-definition process, each time the recursive cases
will move closer and eventually reach the base case. Example: n! =
(n-1)! > (n-2)! > ... 11, 0!,
» The strategy in recursive solutions is called divide-and-
conquer. The idea is to keep reducing the problem size until it
reduces to the simple case which has an obvious solution.

Ty T TT— Tmm— ™) ——
size n /! \ size n—1 .;"I E- sizen-2 ““«1 B ' size 2 / / size 1 K\.

problem '. - problem ! i problem 8 prablem roblam
Il.,___ — e ———— __tJ l___'_‘_'_—___ .-' _p j

size 1 size 1_\ sma e \
pr-:}blam prablem pr:::t}lern kprﬁblem -/

Format of recursive Functions
Recursive functions generally involve an if statement
with the following form:

If this Is a simple case
solve it
else
redefine the problem using recursion

"he If branch is the base case, while the else branch is
the recursive case.

The recursive step provides the repetition needed for
the solution and the base step provides the
termination

Note: For the recursion to terminate, the recursive
case must be moving closer to the base case with each
recursive call.

5

Example 1:

Recursive Factorial

» The following shows the recursive and iterative
versions of the factorial function:

Recursive version

int factorial (int n)

{
if (n==0)
return 1;
else

return n * factorial (n-

1);
} \

lterative version

int factorial (int n)

{
int i, product=1;
for (i=n; i=>1; --1)

product=product * i;

return product;

¥

Recursive

The complete recursive multiply example

[* Computes the factorial of a number */
#include <stdio.h>
int factorial(int n);

/* shows how to call a user-define function */
int main(void) {
int num, fact;
printf(*'Enter an integer between 0 and 7> *');
scanf(*'%d", &num);
if (num<0){
printf(*'Factorial not defined for negative
numbers\n'');

}else if (num <=7){

fact = factorial(num);

printf("'The factorial of %d is %d\n"*, num, fact);
} else {

printf(*"Number out of range: %d\n"', num);

}

system(*'pause');
return (0);

[* Computes n! for n greater than or equal
to zero */

int factorial (int n)
{
if (n ==0) //base case
return 1;
else

return n * factorial (n-1); //recursive
case

Tracing Recursive Functions

e EXxecuting recursive algorithms goes through two phases:
= Expansion in which the recursive step is applied until hitting the base
step

= “Substitution” in which the solution is constructed backwards starting
with the base step

factorial(4) =4 * factorial (3) Expansion
= 4 * (3 * factorial (2)) phase

=4 * (3 * (2 * factorial (1)))
=4 *(3*(2* (1 * factorial (0))))

=4*3*(2*(1*1))

:4*(3*(2*1))

=4*(3*2) Substitution
=4*6 phase

=24

Example 2: Multiplication

Suppose we wish to write a recursive function to multiply an
Integer m by another integer n using addition. [We can add, but
we only know how to multiply by 1].

The best way to go about this is to formulate the solution by
Identifying the base case and the recursive case.

The base case isif nis 1. The answer is m.
The recursive case i1s: m*n =m + m (n-1).

Example 2: Multiplication ...

#include <stdio.h>

int multiply(int m, int n);

int main(void) {

}

int numl, num?2;

printf(*'Enter two integer numbers to multiply: **);
scanf("'%d%d"", &numl, &num?2);

printf("'%d x %d = %d\n"', num1, num2, multiply(numl, numz2));
system("'pause™);
return O;

int multiply(int m, int n) {

if(n==1)
returnm; /*simple case */
else
return m + multiply(m, n - 1); /* recursive step */

10

Example 2: Multiplication ...

multiply(5,4) =5 + multiply(5, 3) Rlless

=5+ (5 + multiply(5, 2))
=5+ (5 + (5 + multiply(5, 1)))

=5+ (5+(5+)9))
=5+ (5+10) Substitution
-5+ 15 phase

=20

11

Example 3: Power function

Suppose we wish to define our own power function that raise a
double number to the power of a non-negative integer exponent.
X", n>=0.

The base case is if nis 0. The answer is 1.

The recursive case is: X" = x * x"1,

1, n=0

Xx*x"™l n>0

12

Example 3: Power function ...

#include <stdio.h>
double pow(double x, int n);
int main(void) {

double Xx;

intn;

printf(""Enter double x and integer n to find pow(x,n): '*);
scanf(*'%lIf%d"", &x, &n);

printf(*'pow(%f, %d) = %f\n"", X, n, pow(X, n));
system(*'pause’’);

return 0;
}
double pow(double x, int n) {
if (n==0)
return1; /*simple case */
else
return x * pow(x, n -1); /* recursive step */
}

13

Example 4. Fibonacci Function

Suppose we wish
nth term of the Fi

Fibonaccl IS a seo
term 0 and 1 and

to define a function to compute the
ponacci sequence.

uence of number that begins with the

nas the property that each succeeding

term is the sum of the two preceding terms:
Thus, the sequence is: 0, 1, 1,2,3,5,8,13,21,34 ...
Mathematically, the sequence can be defined as:

n, n=0,1

fib(n) {
fib(n-1) + fib(n-2) n>1

14

Example 4: Fibonacci Function ...

#include <stdio.h>

int fib(int n);

int main(void) {

}

int n;

printf(*'Enter an integer n to find the nth fibonacci term: '');
scanf(*'%d", &n);

printf(**fibonacci(%d) = %d\n"', n, fib(n));
system("'pause™);
return O;

int fib(int n) {

if(n==0]n==1)
returnn; /*simple case */
else
return fib(n-1) + fib(n-2); /* recursive step */

15

Tracing using Recursive Tree

 Another way to trace a recursive function is by drawing its
recursive tree.

 This is usually better if the recursive case involves more than one
recursive calls.

Rrecursive A
tree of the
Fibonacci F Fs
unction X
s Fe Fa v F3
F; Q\F /QILF Q\F /RLF C
L) & () & () L2
i Fo W Fi o B Fo
FT F]

16

