
1

ICS103 Programming in C

Lecture 11: Recursive Functions

2

Outline

• Introducing Recursive Functions
• Format of recursive Functions
• Tracing Recursive Functions
• Examples
• Tracing using Recursive Trees

3

Introducing Recursive Functions
• We have seen so far that a function, such as main, can call

another function to perform some computation.
• In C, a function can also call itself. Such types of functions

are called recursive functions. A function, f, is also said to be
recursive if it calls another function, g, which in turn calls f.

• Although it may sound strange for a function to call itself, it is
in fact not so strange, as many mathematical functions are
defined recursively.

For example, the factorial function is defined mathematically as:

• Although less efficient than iterative functions (using loops)
due to overhead in function calls, in many cases, recursive
functions provide a more natural and simple solutions.

• Thus, recursion is a powerful tool in problem solving and
programming.

n (n-1)! , n>1

1, n = 0
n! =

4

Introducing Recursive Functions ...
• Problems that can be solved using recursion have the

following characteristics:
One or more simple cases of the problem have a direct and easy
answer – also called base cases. Example: 0! = 1.
The other cases can be re-defined in terms of a similar but smaller
problem - recursive cases. Example: n! = n (n-1)!
By applying this re-definition process, each time the recursive cases
will move closer and eventually reach the base case. Example: n!
(n-1)! (n-2)! . . . 1!, 0!.

• The strategy in recursive solutions is called divide-and-
conquer. The idea is to keep reducing the problem size until it
reduces to the simple case which has an obvious solution.

5

Format of recursive Functions
• Recursive functions generally involve an if statement

with the following form:
if this is a simple case

solve it
else

redefine the problem using recursion
• The if branch is the base case, while the else branch is

the recursive case.
• The recursive step provides the repetition needed for

the solution and the base step provides the
termination

• Note: For the recursion to terminate, the recursive
case must be moving closer to the base case with each
recursive call.

6

Example 1: Recursive Factorial
• The following shows the recursive and iterative

versions of the factorial function:

Recursive version

int factorial (int n)

{

if (n == 0)

return 1;

else

return n * factorial (n-
1);

}

Iterative version

int factorial (int n)

{

int i, product=1;

for (i=n; i>1; --i)

product=product * i;

return product;

}

Recursive
Call

7

The complete recursive multiply example
/* Computes the factorial of a number */
#include <stdio.h>
int factorial(int n);

/* shows how to call a user-define function */
int main(void) {

int num, fact;
printf("Enter an integer between 0 and 7> ");
scanf("%d", &num);
if (num < 0) {

printf("Factorial not defined for negative
numbers\n");

} else if (num <= 7) {
fact = factorial(num);
printf("The factorial of %d is %d\n", num, fact);

} else {
printf("Number out of range: %d\n", num);

}

system("pause");
return (0);

}

/* Computes n! for n greater than or equal
to zero */

int factorial (int n)
{

if (n == 0) //base case
return 1;

else
return n * factorial (n-1); //recursive

case
}

8

Tracing Recursive Functions
• Executing recursive algorithms goes through two phases:

Expansion in which the recursive step is applied until hitting the base
step
“Substitution” in which the solution is constructed backwards starting
with the base step

factorial(4) = 4 * factorial (3)
= 4 * (3 * factorial (2))
= 4 * (3 * (2 * factorial (1)))
= 4 * (3 * (2 * (1 * factorial (0))))

= 4 * (3 * (2 * (1 * 1)))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * 6
= 24

Expansion
phase

Substitution
phase

9

Example 2: Multiplication

• Suppose we wish to write a recursive function to multiply an
integer m by another integer n using addition. [We can add, but
we only know how to multiply by 1].

• The best way to go about this is to formulate the solution by
identifying the base case and the recursive case.

• The base case is if n is 1. The answer is m.
• The recursive case is: m*n = m + m (n-1).

m + m (n-1), n>1

m, n = 1
m*n

10

Example 2: Multiplication …
#include <stdio.h>

int multiply(int m, int n);

int main(void) {
int num1, num2;

printf("Enter two integer numbers to multiply: ");
scanf("%d%d", &num1, &num2);

printf("%d x %d = %d\n", num1, num2, multiply(num1, num2));
system("pause");
return 0;

}

int multiply(int m, int n) {
if (n == 1)

return m; /* simple case */
else

return m + multiply(m, n - 1); /* recursive step */
}

11

Example 2: Multiplication …

multiply(5,4) = 5 + multiply(5, 3)
= 5 + (5 + multiply(5, 2))
= 5 + (5 + (5 + multiply(5, 1)))

= 5 + (5 + (5 + 5))
= 5 + (5 + 10)
= 5 + 15
= 20

Expansion
phase

Substitution
phase

12

Example 3: Power function

• Suppose we wish to define our own power function that raise a
double number to the power of a non-negative integer exponent.
xn , n>=0.

• The base case is if n is 0. The answer is 1.
• The recursive case is: xn = x * xn-1.

x * x n-1, n>0

1, n = 0
xn

13

Example 3: Power function …
#include <stdio.h>

double pow(double x, int n);

int main(void) {
double x;
int n;

printf("Enter double x and integer n to find pow(x,n): ");
scanf("%lf%d", &x, &n);

printf("pow(%f, %d) = %f\n", x, n, pow(x, n));
system("pause");
return 0;

}

double pow(double x, int n) {
if (n == 0)

return 1; /* simple case */
else

return x * pow(x, n - 1); /* recursive step */
}

14

Example 4: Fibonacci Function

• Suppose we wish to define a function to compute the
nth term of the Fibonacci sequence.

• Fibonacci is a sequence of number that begins with the
term 0 and 1 and has the property that each succeeding
term is the sum of the two preceding terms:

• Thus, the sequence is: 0, 1, 1,2,3,5,8,13,21,34 …
• Mathematically, the sequence can be defined as:

fib(n-1) + fib(n-2) n>1

n, n = 0, 1
fib(n)

15

Example 4: Fibonacci Function …
#include <stdio.h>

int fib(int n);

int main(void) {
int n;

printf("Enter an integer n to find the nth fibonacci term: ");
scanf("%d", &n);

printf("fibonacci(%d) = %d\n", n, fib(n));
system("pause");
return 0;

}

int fib(int n) {
if (n == 0 || n== 1)

return n; /* simple case */
else

return fib(n-1) + fib(n-2); /* recursive step */
}

16

Tracing using Recursive Tree
• Another way to trace a recursive function is by drawing its

recursive tree.
• This is usually better if the recursive case involves more than one

recursive calls.

Rrecursive
tree of the
Fibonacci
function

