|CS103 Programming in C

|ecture 10: Functions ||

Outline
Introducing Functions that return multiple results
What is a Pointer variable?
Functions returning multiple results
Triple use for Asterisk (*)
More Examples

Introducing Functions that return multiple results

« So far, we know how to pass inputs into a function and how to
use the return statement to send back at most one result from a
function.

* However, there are many situations where we would like a
function to return more than one result. Some Example are:
= Function to convert time in seconds into hours, minutes and seconds
= Function to find the quotient and remainder of a division
= Function to return maximum, minimum and average from a set of
values
* In this lecture, we discuss how a function can return more than
one result, which is achieved through output parameters,
which are pointer variables.

* Thus, to be able to write functions that return multiple results,
we first need to learn about pointer variables.

What iIs a Pointer variable?

A pointer variable is a special variable, that stores the address of other
normal variable.

If a pointer variable stores the address of a char variable, we call it a
character pointer and so on.

A normal variable directly contains a specific value. A pointer variable on
the other hand, contains an address of a variable that contains a specific
value.

Pointers like any other variables must be declared before they can be used.

A pointer variable is declared by preceding its name with an asterisk.
Example: Int *p;

How can we initialize p? First we must have an integer variable, then we use

the & operator to get the address of the variable and assign it to p.

Int n = 84,
p=&n;
Suppose that the int variable n is stored in the memory cell # 1024, then the

following figure figure shows the relationship between n and p.
n Y

84 |« 1024 4

What Is a Pointer variable? ...

n p

84 < 1024

« A pointer variable such as p above, has two associated values:

 [ts direct value, which is referenced by using the name of the
variable, p. In this example, this value is 1024. We can print
the direct value of a pointer variable using printf by using %p as
the place holder.

 Its indirect value, which is referenced by using the indirection
operator (*). So the value of *p is 84.

Reference Value
P Pointer (1024)
*P 84

Example 1:

 The following example demonstrate the relationship between a
pointer variable and the character variable it is pointing to.

/* Shows the relationship between a pointer variable
* and the character variable it is pointing to */
#include<stdio.h>
int main(void) {
char g="z";
char c="'a’;
char *p;
p=&cC;
printf(*'%c\n",*p);
p=&g;

printf("'%c\n",*p);
*p="K"; ress any key to continue . . .

printf(""%c\n",qg);
system("'pause");

return O;

Functions returning multiple results

As we saw In the last example, pointer variables
allow us Indirect access to variables (e.g *p = ‘K’)

This ability to indirectly access a variable is the key
to writing functions that return multiple results.

We declare such functions to have pointer variables
as their formal parameters.

From the calling function, instead of passing values
of variables as actual arguments, we pass addresses of
these variables.

This will allow the function to indirectly manipulate
the variables of the calling function — thus achieving
the desired effect.

Example 2:

/* shows how function can
return multiple results */
#include <stdio.h>
void testl(int m, int n);
void test2(int *m, int *n);
void test3(int a, int *b);
int main(void) {
int a=10, b=16;
printf("'a=2%od,
b=%0d\n",a,b);
testl(a,b);
printf(*'a=%od,
b=%od\n",a,b);
test2(&a,&b);
printf("'a=2%od,
b=%0d\n",a,b);
test3(a,&b);
printf("'a=2%od,
b=%0d\n",a,b);
system('pause");

return O;
T

void testl(int m, int n) {
m=>5;
n=24;

by

void test2(int *m, int *n)
{

*mM=5;

*NnN=24;
¥

void test3(int a, int *b) {

a
a
a
a
P

-

Triple use for Asterisk (*)

We have now seen three distinct meanings of the symbol *.
As Multiplication operator: X * y => x times y
In declaration ' int * p

= *tells the compiler that a new variable is to be a pointer

(read as “pointer t0”)

Thus, In this case, it is a part of the name of the type of the
variable.

As unary indirection operator : X=7"P

It provides the content of the memory location specified by
a pointer. It mean “follow the pointer”.

It can also stand on the left side of an assignment. *P = K

Here the type depends on the variable being pointed — char
In the above case.

It is a common mistake by students to interpret the above as
a pointer type. 9

Example 3:

/* computes the area and circumference of a circle, given its
radius */
#include <stdio.h>

void area_circum (double radius, double *area, double *circum);
int main (void) {
double radius, area, circum ;

printf (""Enter the radius of the circle = ") ;
scanft ("%olf"", &radius) ;

area_circum (radius, &area, &circum) ;
printf (""The area is %f and circumference is %f\n"', area,

circum) ;
system("'pause"’);
return O;

s

void area_circum (double radius, double *area, double *circum)
{

*area = 3.14 * radius * radius ;

*circum = 2 * 3.14 * radius ; 10
1

Example 4.

/* Takes three integers and returns their sum, product and average
*/
#include<stdio.h>

void myfunction(int a,int b,int c,int *sum,int *prod, double *average);

int main (void) {

int N1, n2, N3, sum, product;

double av_g;

printf(""Enter three integer numbers > ");

scanf("'%d %od %20d",&Nn1l, &Nn2,&N3);

myfunction(nl, n2, n3, &sum, &product, &av_g);

printf("*\nThe sum = %d\nThe product = %cd\nthe avg =
% f\n",sum,product,av_g);

system('pause');

return O;

¥

void myfunction(int a,int b,int c,int *sum,int *prod, double *average)
{

*sum=a+b+c;

*prod=a*b¥*c;

*average=(a+b+c)/3.0; 11

¥

Exam

/> takes the coefficients of
quadratic equation a, b and c and
returns its roots */
#include<stdio.h>
#include<math.h>

void quadratic(double a,double b,
double c, double *rootl, double
*root2);

int main(void) {
double a,b,c,rl,r2;
printf("'Please enter coefficients
of the equation: [ab c] = ");
scanf(""%olf%lf%olf",&a,&b,&C);

quadratic(a,b,c,&rl1,&r2);

printf(""\nThe first root is :
%f\n",rl);

printf(""The second root is :
%f\n", r2);

system("'pause™);

return O;

b

nle 5:

void quadratic(double a,double b,
double c, double *rootl, double
*root2) {

double desc;

desc =b*b-4*a*c;

iIf(desc < 0) {
printf(""No real roots\n");
system(''pause");
exit(0);

¥

else {
*rootl=(-b+sqgrt(desc))/(2*a);
*root2=(-b-sqgrt(desc))/(2*a);

¥

¥

12

Example 6:

/* swaps the values between 2 integer

variables */ void swap (int *a, int*b)
#include <stdio.h> {
void readint(int *a, int* b); int temp;
void swap (int *a, int *b); temp==*a;
. . . *aq=*p-
int main (void) { e
int numl1,Nnum?2; b=temp;
readint(&numl,&num?2); bs
printf(""before swapping numl= %od,
num2=%od\n",numl,num?2);
swap(&num1l,&num2); enter first integer number > 3
i " ’ .2 enter second integer number > 4
printf(*'after swapping numl= %od, hefore swapping numl= 3. num2=4
num2=%d\n",numil,num?2); after swapping numl= 4, num2=3
system(''pause);

return O;

¥

void readint (int *a, int *b) {

printf(*'enter fiW
scanf(''%d",a);

Because a and
b are pointer
variables, we
do not use the
printf(*"enter second integer number = '"); & operator for
scanf("'%d",b); scanf.

! 13

