
1

ICS103 Programming in C

Lecture 10: Functions II

2

Outline
• Introducing Functions that return multiple results
• What is a Pointer variable?
• Functions returning multiple results
• Triple use for Asterisk (*)
• More Examples

3

Introducing Functions that return multiple results
• So far, we know how to pass inputs into a function and how to

use the return statement to send back at most one result from a
function.

• However, there are many situations where we would like a
function to return more than one result. Some Example are:

Function to convert time in seconds into hours, minutes and seconds
Function to find the quotient and remainder of a division
Function to return maximum, minimum and average from a set of
values

• In this lecture, we discuss how a function can return more than
one result, which is achieved through output parameters,
which are pointer variables.

• Thus, to be able to write functions that return multiple results,
we first need to learn about pointer variables.

4

What is a Pointer variable?
• A pointer variable is a special variable, that stores the address of other

normal variable.
• If a pointer variable stores the address of a char variable, we call it a

character pointer and so on.
• A normal variable directly contains a specific value. A pointer variable on

the other hand, contains an address of a variable that contains a specific
value.

• Pointers like any other variables must be declared before they can be used.
A pointer variable is declared by preceding its name with an asterisk.

Example: int *p;
• How can we initialize p? First we must have an integer variable, then we use

the & operator to get the address of the variable and assign it to p.
int n = 84;
p = &n;

• Suppose that the int variable n is stored in the memory cell # 1024, then the
following figure figure shows the relationship between n and p.

n

102484

p

5

What is a Pointer variable? …
n

102484

p

• A pointer variable such as p above, has two associated values:
• Its direct value, which is referenced by using the name of the

variable, p. In this example, this value is 1024. We can print
the direct value of a pointer variable using printf by using %p as
the place holder.

• Its indirect value, which is referenced by using the indirection
operator (*). So the value of *p is 84.

Reference Value
p Pointer (1024)
*p 84

6

Example 1:
• The following example demonstrate the relationship between a

pointer variable and the character variable it is pointing to.
/* Shows the relationship between a pointer variable

* and the character variable it is pointing to */

#include<stdio.h>

int main(void) {

char g='z';

char c='a';

char *p;

p=&c;

printf("%c\n",*p);

p=&g;

printf("%c\n",*p);

*p='K';

printf("%c\n",g);

system("pause");

return 0;

}

7

Functions returning multiple results
• As we saw in the last example, pointer variables

allow us indirect access to variables (e.g *p = ‘K’)
• This ability to indirectly access a variable is the key

to writing functions that return multiple results.
• We declare such functions to have pointer variables

as their formal parameters.
• From the calling function, instead of passing values

of variables as actual arguments, we pass addresses of
these variables.

• This will allow the function to indirectly manipulate
the variables of the calling function – thus achieving
the desired effect.

8

Example 2:
/* shows how function can
return multiple results */
#include <stdio.h>
void test1(int m, int n);
void test2(int *m, int *n);
void test3(int a, int *b);
int main(void) {

int a=10, b=16;
printf("a=%d,

b=%d\n",a,b);
test1(a,b);
printf("a=%d,

b=%d\n",a,b);
test2(&a,&b);
printf("a=%d,

b=%d\n",a,b);
test3(a,&b);
printf("a=%d,

b=%d\n",a,b);
system("pause");
return 0;

}

void test1(int m, int n) {
m=5;
n=24;

}

void test2(int *m, int *n)
{

*m=5;
*n=24;

}

void test3(int a, int *b) {
a=38;
*b=57;

}

9

Triple use for Asterisk (*)
• We have now seen three distinct meanings of the symbol *.
• As Multiplication operator: x * y => x times y
• In declaration

* tells the compiler that a new variable is to be a pointer
(read as “pointer to”)
Thus, in this case, it is a part of the name of the type of the
variable.

• As unary indirection operator :
It provides the content of the memory location specified by
a pointer. It mean “follow the pointer”.
It can also stand on the left side of an assignment.
Here the type depends on the variable being pointed – char
in the above case.
It is a common mistake by students to interpret the above as
a pointer type.

int * p

x = * p

* p = ‘K’

10

Example 3:
/* computes the area and circumference of a circle, given its
radius */
#include <stdio.h>

void area_circum (double radius, double *area, double *circum);

int main (void) {
double radius, area, circum ;

printf ("Enter the radius of the circle > ") ;
scanf ("%lf", &radius) ;

area_circum (radius, &area, &circum) ;
printf ("The area is %f and circumference is %f\n", area,

circum) ;
system("pause");
return 0;

}

void area_circum (double radius, double *area, double *circum)
{

*area = 3.14 * radius * radius ;
*circum = 2 * 3.14 * radius ;

}

11

Example 4:
/* Takes three integers and returns their sum, product and average
*/
#include<stdio.h>

void myfunction(int a,int b,int c,int *sum,int *prod, double *average);

int main (void) {
int n1, n2, n3, sum, product;
double av_g;
printf("Enter three integer numbers > ");
scanf("%d %d %d",&n1, &n2,&n3);
myfunction(n1, n2, n3, &sum, &product, &av_g);
printf("\nThe sum = %d\nThe product = %d\nthe avg =

%f\n",sum,product,av_g);
system("pause");
return 0;

}

void myfunction(int a,int b,int c,int *sum,int *prod, double *average)
{

*sum=a+b+c;
*prod=a*b*c;
*average=(a+b+c)/3.0;

}

12

Example 5:
/* takes the coefficients of
quadratic equation a, b and c and
returns its roots */
#include<stdio.h>
#include<math.h>

void quadratic(double a,double b,
double c, double *root1, double
*root2);

int main(void) {
double a,b,c,r1,r2;
printf("Please enter coefficients

of the equation: [a b c] > ");
scanf("%lf%lf%lf",&a,&b,&c);

quadratic(a,b,c,&r1,&r2);

printf("\nThe first root is :
%f\n",r1);

printf("The second root is :
%f\n", r2);

system("pause");
return 0;

}

void quadratic(double a,double b,
double c, double *root1, double
*root2) {

double desc;

desc =b*b-4*a*c;
if(desc < 0) {

printf("No real roots\n");
system("pause");
exit(0);

}
else {

*root1=(-b+sqrt(desc))/(2*a);
*root2=(-b-sqrt(desc))/(2*a);

}
}

13

Example 6:
/* swaps the values between 2 integer
variables */
#include <stdio.h>

void readint(int *a, int* b);
void swap (int *a, int *b);

int main (void) {
int num1,num2;
readint(&num1,&num2);
printf("before swapping num1= %d,

num2=%d\n",num1,num2);
swap(&num1,&num2);
printf("after swapping num1= %d,

num2=%d\n",num1,num2);
system("pause");
return 0;

}

void readint (int *a, int *b) {
printf("enter first integer number > ");
scanf("%d",a);
printf("enter second integer number > ");
scanf("%d",b);

}

void swap (int *a, int*b)
{

int temp;
temp=*a;
*a=*b;
*b=temp;

}

Because a and
b are pointer
variables, we
do not use the
& operator for

scanf.

