
1

ICS103 Programming in C

Lecture 9: Functions I

2

Outline
• Review about Functions
• Types of Functions

void Functions with Arguments
– Actual Arguments & Formal Parameters
– Writing Modular programs using functions

Functions with Input Argument and a Single Result
– Re-usability of Functions
– Logical Functions
– Functions with Multiple Arguments
– Argument List Correspondence
– The Function Data Area
– Testing Functions Using Drivers

• Advantages of Using Function Subprograms
Procedural Abstraction
Reuse of Functions.

3

Review about Functions
• In chapter 3, we introduced functions as program modules

that perform some operations that contribute towards solving
the problem that a C program is designed to solve.

• We learnt how to use functions from the standard C library
such as those in <math.h> and <stdio.h>.

• We also learnt the steps involved in defining our own (user-
defined) functions, namely:

Declare the function prototype before the main function
Define the detail implementation of the function after the main function
Call the function from the main function where its operation is required

• However, we learnt to write only the simplest type of
functions – those that take no argument and return nothing.

• In this Lecture, we shall learn how to write functions that take
arguments, those that return a result and those that do both.

4

Types of Functions
• We use function arguments to communicate with the

function. There are two types of function arguments:
Input arguments – ones that are used to pass information from
the caller (such as main function) to the function.
Output arguments – ones that return results to the caller from
the function. [we shall learn about these in the next lecture]

• Types of Functions
No input arguments, no value returned – void functions without
arguments [already discussed in chapter 3]
Input arguments, no value returned - void functions with
arguments.
Input arguments, single value returned.
Input arguments, multiple value returned [next lecture]

5

void Functions with Input Arguments …

• A function may take one or more arguments as input but
returns no result.

• Such functions should be declared as void, but each argument
should be declared in the bracket following the function name

• An argument is declared in the same way as variables (its type
followed by the name of the argument).

Example: void print_rboxed(double rnum);
• If there are more than one argument, they should be separated

by comma.
Example: void draw_rectangle(int length, int width);

• The following function example displays its argument value
in a rectangular box.

6

void Functions with Input Arguments…
/* Uses the print_rboxed function to display a double argument */
#include <stdio.h>

void print_rboxed(double rnum); //prototype for the function

int main(void) {
double x;

printf("Enter a double value > ");
scanf("%lf", &x);
print_rboxed(x); //function call
return 0;

}

/* Displays a real number in a box. */
void print_rboxed(double rnum)
{

printf("***********\n");
printf("* *\n");
printf("* %7.2f *\n", rnum);
printf("* *\n");
printf("***********\n");

}

7

Actual Arguments & Formal Parameters
• Actual argument: an expression used

inside the parentheses of a function call.
• Formal parameter: An identifier that

represents a corresponding actual
argument in a function definition.

• Actual argument can be any expression
that evaluates to a value expected by the
function: x, 125.5, x+y, etc.

• When the function call is encountered at run-time, the
expression for the actual argument is first evaluated, the
resulting value is assigned to the formal parameter, then the
function is executed.

• Arguments make functions more versatile because they enable
a function to manipulate different data each time it is called.

8

Writing Modular programs using functions
• Suppose we wish to write a program that draws a rectangle

similar to the following given the length and width.
• An algorithm for the solution could be:

Draw a solid line by printing ‘*’ width times
Draw a hollow line (‘*’, width-2 spaces and ‘*’)
length – 2 times
Draw a solid line by printing * width times

• It is possible to write a very long main method to implement
the above algorithm.

• However, this will involve many repetitions and the code will
be difficult to re-use in another application.

• A better approach is to implement the different components of
the solution as functions – this will result in a modular
program and re-usable functions.

• The above algorithm could involve three functions, namely,
draw_rectangle, draw_solid_line and draw_hollow_line

9

Writing Modular programs using functions …
//draws a rectangle using functions
#include <stdio.h>

void draw_solid_line(int size);
void draw_hollow_line(int size);
void draw_rectangle(int len, int wide);

int main(void) {
int length, width;

printf("Enter length and width of rectangle >");
scanf("%d%d", &length, &width);

draw_rectangle(length, width);

system("pause");
return 0;

}

void draw_solid_line(int size) {
int i;
for (i=1; i<=size; i++)

printf("*");
printf("\n");

}

void draw_hollow_line(int size) {
int i;
printf("*");
if (size > 2) {

for (i=1; i<= size-2; i++)
printf(" ");

}
printf("*\n");

}

void draw_rectangle(int len, int wide) {
int i;
draw_solid_line(wide);
if (len > 2) {

for (i=1; i<=len - 2; i++)
draw_hollow_line(wide);

}
draw_solid_line(wide);

}

10

Functions with Input Argument and a Single Result

• By far, the must common types of functions in C are those that
takes one or more arguments and return a single result.

• For example, virtually all the functions in the <math.h>
library, sqrt, log, abs, sin, cos, etc. are in this category.

• Unlike void functions, for which the function call is a
statement on its own, functions that return a single result are
often called as part of another expression.

• To declare these types of function, instead of void, the
function name is preceded by the type of result the function
returns (int, double, char, etc.).

11

Functions with Input Argument and a Single Result…

• Functions that return a single result must have at least one
return statement that returns the result to the calling function.
/* Computes n! for n greater than or equal to zero */
int factorial (int n) {

int i, /* local variables */
product = 1;

/* Computes the product n x (n-1) x (n-2) x ... x 2 x 1 */
for (i = n; i > 1; --i) {

product *= i;
}

/* Returns function result */
return product;

}

12

The complete factorial example
/* Computes the factorial of a number */
#include <stdio.h>
int factorial(int n);

/* shows how to call a user-define function */
int main(void) {

int num, fact;
printf("Enter an integer between 0 and 10> ");
scanf("%d", &num);
if (num < 0) {

printf("Factorial not defined for negative
numbers\n");

} else if (num <= 7) {
fact = factorial(num);
printf("The factorial of %d is %d\n", num, fact);

} else {
printf("Number out of range: %d\n", num);

}

system("pause");
return (0);

}

/*
Computes n! for n greater than or equal

to zero
*/

int factorial(int n)
{

int i, /* local variables */
product = 1;

/* Computes the product
n x (n-1) x (n-2) x ... x 2 x 1

*/
for (i = n; i > 1; --i) {

product *= i;
}

/* Returns function result */
return (product);

}

13

Re-usability of Functions

• One important advantage of using functions is that they are
reusable.

If we need to write another program that uses the same function, we do
not need to re-write the function – just use the one we had before.

• For example, suppose we wish to write a program that
computes how many different ways we can choose r items
from a total n items.

E.g. How many ways we can choose 2 letters from 3 letters (A, B, C).

• From probability theory, this number is given by the
combination formula:

In our example, we have:

14

Re-usability of Functions …
/* Uses the combination functions to computes the number
of combinations of n items taken r at a time */

#include <stdio.h>
int factorial(int n);
int combinations(int n, int r);

int main(void) {
int n, r, c;

printf("Enter total number of components> ");
scanf("%d", &n);
printf("Enter number of components selected> ");
scanf("%d", &r);
if (r <= n) {

c = combinations(n, r);
printf("The number of combinations is %d\n", c);

} else {
printf("Components selected cannot exceed total

number\n");
}

system("pause");
return (0);

}

/* Uses the factorial function to computes
the number of combinations of n items
taken r at a time. It assumes n >= r */

int combinations(int n, int r) {
return factorial(n) / (factorial(r) *

factorial(n-r));
}

/* Computes n! for n greater than or equal
to zero */

int factorial(int n) {
int i, /* local variables */

product = 1;

for (i = n; i > 1; --i) {
product *= i;

}

/* Returns function result */
return (product);

}

Logical functions

15

• As we must observed by now, C uses integers to represent logical values.
• Thus, a function that returns a logical result should be declared as type int.

In the implementation, the function return 0 for false or any other value for
true.

• Example, the following is a logical function that checks if its integer
argument is even or not. One important advantage of using functions is that
they are reusable.

• The function is used as follows:

/* Indicates whether or not num is even. Returns 1 if it is, 0 if
not */
int even(int num) {
int ans;
ans = ((num % 2) == 0);
return (ans);

}

if (even(n))
even_nums++;

else
odd_nums++;

16

Functions with Multiple Arguments
• As we saw with the functions draw_rectangle (int len, int wide|) and

combination (int n, int r), a function can have multiple arguments.
• Below is another function that multiplies its first argument by 10 raised to the

power of its second argument.
• Function call scale(2.5, 2)returns the value 250.0

/* Multiplies its first argument by the power of 10 specified
by its second argument. */

double scale(double x, int n) {
double scale_factor; /* local variable */

scale_factor = pow(10, n);
return (x * scale_factor);

}

17

Argument List Correspondence

• When using multiple-argument functions, the number
of actual argument used in a function call must be the
same as the number of formal parameters listed in the
function prototype.

• The order of the actual arguments used in the
function call must correspond to the order of the
parameters listed in the function prototype.

• Each actual argument must be of a data type that can
be assigned to the corresponding formal parameter
with no unexpected loss of information.

18

Testing Function scale
/* Tests function scale */

#include <math.h>

#include <stdio.h>

double scale(double x, int n);

int main(void) {

double num_1;

int num_2;

/* Get values for num 1 and num 2 */

printf("Enter a real number> ");

scanf("%lf", &num_1);

printf("Enter an integer> ");

scanf("%d", &num_2);

/* Call scale and display result. */

printf("Result of call to function scale is
%.3f\n", scale(num_1, num_2));

system ("pause");

return (0);}

double scale(double x, int n)
{

double scale_factor;

scale_factor = pow(10, n);

return (x * scale_factor);

}

19

The Function Data Area
• Each time a function call is executed, an area of memory is

allocated for storage of that function’s data.
• Included in the function data area are storage cells for its

formal parameters and any local variables that may be declared
in the function.

• Local Variables: variable declarations within a function body.
Can only be used from within the function they are declared in – no
other function can see them
These variables are created only when the function has been activated
and become undefined after the call.

• The function data area is always lost when the function
terminates.

• It is recreated empty when the function is called again.
So if you set a local variable value, that value will be reset again next
time the function is called.

20

Data Areas After Call scale(num_1, num_2);

21

Testing Functions Using Drivers

• A function is an independent program module
• As such, it can be tested separately from the program

that uses it.
• To run such a test, you should write a short piece of

code called driver that defines the function
arguments, calls the functions, and displays the value
returned.

• As long as you do not change the interface, your
function can be reused.

22

Why do we use Functions?

• There are two major reasons:
1. A large problem can be solved easily by breaking it

up into several small problems and giving the
responsibility of a set of functions to a specific
programmer.
• It is easer to write two 10 line functions than one 20 line

one and two smaller functions will be easier to read than
one long one.

2. They can simplify programming tasks because
existing functions can be reused as the building
blocks for new programs.
• Really useful functions can be bundled into libraries.

23

Procedural Abstraction
• Procedural Abstraction – A programming technique in

which a main function consists of a sequence of function calls
and each function is implemented separately.

• All of the details of the implementation to a particular
subproblem is placed in a separate function.

• The main functions become a more abstract outline of what the
program does.

When you begin writing your program, just write out your algorithm in
your main function.
Take each step of the algorithm and write a function that performs it for
you.

• Focusing on one function at a time is much easier than trying
to write the complete program at once.

24

Reuse of Function Subprograms

• Functions can be executed more than once in a
program.

Reduces the overall length of the program and the
chance of error.

• Once you have written and tested a function, you can
use it in other programs or functions.

25

Common Programming Errors
• Remember to use a #include preprocessor directives for every

standard library from which you are using functions.
• Place prototypes for your own function subprogram in the

source file preceding the main function; place the actual
function definitions after the main function.

• The acronym NOT summarizes the requirements for argument
list correspondence.

Provide the required Number of arguments
Make sure the Order of arguments is correct
Make sure each argument is the correct Type or that conversion to the
correct type will lose no information.

• Include a statement of purpose on every function you write.
• Also be careful in using functions that are undefined on some

range of values.

