
1

ICS103 Programming in C

Lecture 8: Data Files

2

Outline

• Why data files?
• Declaring FILE pointer variables
• Opening data files for input/output
• Scanning from and printing to data files
• Closing input and output files
• Echo Prints vs. Prompts
• Handling File not found error
• EOF-controlled Loops

3

Why data files?
• So far, all our examples obtained their input from the

keyboard and displayed their output on the Screen.
• However, in many real-life applications, the input data is so

much that it will be inconvenient to expect the user to type it
each time the program is run.

For example: A program to generate employee pay slip from
employee data.

• Similarly, there are many applications where the output will
be more useful if it is stored in a file rather than the screen.

For example: In the program that generates pay slip, how can we print
the pay slips and distribute them to the employees if the output is
printed on the screen?

• The good news is that C allows a programmer to direct his
program to use data files, both for input and for output.

4

Steps For Using Data Files
• The process of using data files for

input/output involves four steps as follows:
1. Declare variables of type FILE to represent the files
2. Open the files for reading/writing using the fopen

function.
3. Read/write from/to the files using the fscanf and

fprintf functions.
4. Close the files after processing the data using the

fclose function.

• In what follows, we explain each of these
steps.

5

Declaring FILE pointer variables

• The first step in using data files for input/output is to
declare variables to represent the files. This is done
as follows:

FILE *infile, //pointer variable for the input file
*outfile; //pointer variable for the output file

• Note that the type for declaring file variables is FILE
in upper case.

• Also note the use of ‘*’ just before the variable
identifiers.

This is used to indicate that the variables are pointer
variables – they store memory addresses.
We shall learn more about pointer variables later in the
course.

6

Opening data files for input/output
• The second step is to open the input file for reading and the

output file for writing.
• Suppose we have our data in a file named, data.txt. Then to

open it for reading the data inside we use:
infile = fopen("data.txt", "r");

• If the operation succeeds, the address of the file is stored in the
variable infile. If it fails – for example if the file is not found,
the value NULL is assigned to infile

• The "r" is used to indicate the purpose of opening the file –
reading. “w" is used for opening output file as we show next.

• To open a file, result.txt, for the output, we write:
outfile = fopen("result.txt", "w");

• If the operation succeeds, oufile is assigned the address of the
file. If it fails, NULL is assigned.

• If the file does not exists, the system will create it. If it exists it
is overwritten, thus losing any data it may contains.

7

Scanning from and printing to data files
• The third step is to scan data from the input file and print the

result into the output file.
• Suppose that the input file, data.txt, contains a double value

representing distance in miles. Then to scan this value we use:
miles = fscanf (infile, "%lf", &miles);

• The fscanf function works in the same way as scanf except that
it has an additional argument – the variable representing the
input file.

• After computing the result, kms = KMS_PER_MILES * miles;
we need to print the result into the output file as follows:

fprintf(outfile, "That equals %.2f kilometers.\n", kms);
• Again, fprintf function works similar to printf except that it has

an additional argument – the variable representing the output
file.

• Like scanf and printf, fscanf and fprintf are also in the stdio
library. So we use the same #include <stdio.h>

8

Closing input and output files
• The final step in using data files is to close the files

after you finish using them.
• The fclose function is used to close both input and

output files as shown below:
fclose(infile);
fclose(outfile);

• Warning: It is a common error to forget to close files
– this is a problem especially for output files.

The system may delay writing data to output files until they
are closed. So if you forget to close the file you may find
no data in the file even though your program actually prints
the data.

• It is possible for a program to open a file for output,
prints some result, close the file, and then open the
same file for input.

9

#include <stdio.h>
#define KMS_PER_MILE 1.609

int main(void) {
double kms, miles;
FILE *infile, *outfile;

infile = fopen("data.txt","r");
outfile = fopen("result.txt","w");

fscanf(infile, "%lf", &miles);
fprintf(outfile, "The distance in miles is %.2f.\n", miles);

kms = KMS_PER_MILE * miles;

fprintf(outfile, "That equals %.2f kilometers.\n", kms);
fclose(infile);
fclose(outfile);
return (0);

}

Example 1: Miles to Kilometers conversion
using data files

To run this program, you need to first create a
file using any text editor, such as Notepad,
type a double value in the file and save it as
data.txt.

10

Echo Prints vs. Prompts
• In the last example program, fscanf gets a value for miles

from the data file.
• Because the program input comes from a data file, there is no

need to precede this statement with a prompting message.
• Instead, we follow the call to fscanf with the statement

printf(”The distance in miles is %.2f.\n”,miles);

• This statement echo prints or displays the value just stored in
miles.

• Without it, we would have no easy way of knowing what value
fscanf obtained for miles.

• Whenever you read input from a data file, make sure to use
echo print instead of a prompt.

11

Echo Prints vs. Prompts …
#include <stdio.h>
#define KMS_PER_MILE 1.609

int main(void) {
double kms, miles;
FILE *infile, *outfile;
infile = fopen("data.txt","r");
outfile = fopen("result.txt","w");

//Scan and echo the distance in miles
fscanf(infile, "%lf", &miles);
fprintf(outfile, "The distance in miles is %.2f.\n", miles);

kms = KMS_PER_MILE * miles;

fprintf(outfile, "That equals %.2f kilometers.\n", kms);
fclose(infile);
fclose(outfile);
return (0);

}

12

Handling File not found error
• A common error in using data files is forgetting to create the input

file before running the program.
• Of course this will make the program generate a run-time error.
• Recall that the fopen function assigns NULL to the file pointer

variable if the open operation fails.
• A common practice is to check the value of the file variable

immediately after the fopen statement and stop the program right
there if the variable has a NULL value.

• You can stop a program at any point by calling the exit function.
if (infile==NULL) { // to check if input file is opened properly or not

printf(“Sorry, input file not found");
exit(1); // terminates the program

}
• Note: exit should be called with an argument of 1. This tells the

operating system that the program stops due to an error. 0 (used
with return (0) indicates success

13

#include <stdio.h>
#define KMS_PER_MILE 1.609

int main(void) {
double kms, miles;
FILE *infile, *outfile;
infile = fopen("data.txt","r");
if (infile==NULL) { // to check if input file is opened properly or not

printf("Sorry, input file not found");
exit(1); // terminates the program

}
outfile = fopen("result.txt","w");
fscanf(infile, "%lf", &miles);
fprintf(outfile, "The distance in miles is %.2f.\n", miles);

kms = KMS_PER_MILE * miles;

fprintf(outfile, "That equals %.2f kilometers.\n", kms);
fclose(infile);
fclose(outfile);
return (0);

}

Handling File not found error …

14

EOF-controlled Loops
• The last example reads a single value from the input file – this

can easily be provided by the user.
• A more common application of data files is where the input data

is large – for example, finding class average from grades of
students in a quiz.

• The grades are normally stored in an input file and the program
needs to read them one at a time in a loop, until all of them are
read and added to a sum variable.

• The question here is, how many times should the program scan
for the values?

• We may use counting loop if we know how many students are in
the class, but this will require changing the program to work for a
different class size.

• The good news is, fscanf returns a special value, EOF, when it
encounters end of file – no more data values to read.

• We can take advantage of this by using it as a condition for
terminating our loops – reads as long as we have not reached end
of file. Such loops are commonly called EOF-controlled Loops.

15

/*finds the sum and average score of a class in a quiz.
The scores are read from an input file, scores.txt */

#include <stdio.h>
int main (void) {

FILE *infile;
double score, sum=0, average;
int count=0, input_status;

infile = fopen("scores.txt", "r");
input_status = fscanf(infile, "%lf", &score);
while (input_status != EOF)
{

printf("%f\n ", score);
sum += score;
count++;
input_status = fscanf(infile, "%lf", &score);

}
average = sum / count;

printf("\nSum of the scores is %f\n", sum);
printf("Average score is %.2f\n", average);
fclose(infile);
system("pause");
return 0;

}

Example: EOF-controlled Loops

